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Abstract. Joining up services in e-Government usually implies governmental 

agencies acting in concert without a central control regime. This requires to the 

sharing scattered and heterogeneous data. Semantic Web Service (SWS) 

technology can help to integrate, mediate and reason between these datasets. 

However, since a few real-world applications have been developed, it is still 

unclear which are the actual benefits and issues of adopting such a technology 

in the e-Government domain. In this paper, we contribute to raising awareness 

of the potential benefits in the e-Government community by analyzing 

motivations, requirements and expected results, before proposing a reusable 

SWS-based framework. We demonstrate the application of this framework by 

showing how integration and interoperability emerge from this model through a 

cooperative and multi-viewpoint methodology. Finally, we illustrate added 

values and lessons learned by two compelling case studies: a change of 

circumstances notification system and a GIS-based emergency planning system, 

and describe key challenges which remain to be addressed.   

Keywords: e-Government, Semantic Web Services, Case Study, GIS, Change 

of Circumstances. 

1 Introduction 

To a large extent, tiers of government – such as national, county, and district – 

operate autonomously, without central control of service provision. Additionally, they 

each have distinct viewpoints which may differ from that of general citizens. 



Therefore, integration and interoperability are significant requirements in the 

development of service-oriented applications in the e-Government domain. 

Integration leads to “form a temporary or permanent larger unit of government 

entities for the purpose of merging processes and/or sharing information” [18]. In 

particular, this requires the assembly and transformation of processes needed to 

support specific user tasks into a single service with the corresponding back-office 

practices. As a result, interoperation among multiple government entities at different 

levels occurs “whenever independent or heterogeneous information systems - or their 

components - controlled by different jurisdictions/administrations or by external 

partners smoothly and effectively work together in a predefined and agreed upon 

fashion” [18].  

Interoperability is a key issue in order to allow for data and information to be 

exchanged and processed seamlessly across governments. A working paper by the 

Commission of European Communities [6] emphasized its role in e-Government, not 

only as a technical issue concerned with linking up computer networks, but also as a 

fundamental requirement to share and re-use knowledge between networks, and re-

organize administrative processes to better support the services themselves. 

Additionally in [7], the following three levels of interoperability were individuated: 

I. Technical: concerning with the technical issues of linking up computer systems, 

the definition of open interfaces, data formats and protocols, including 

telecommunications; 

II. Semantic: concerning with the exchange of information in an understandable 

way - whether within and between administrations, either locally or across 

countries and with the enterprise sector - by any other application not initially 

developed for this purpose. 

III. Organizational: concerning with modelling business processes, aligning 

information architectures with organizational goals and enabling processes to co-

operate, by rewriting rules for how governmental agencies work internally, 

interact with their customers, and use Information and Communication 

Technologies (ICT). 

The semantic Web [3] can alleviate integration and interoperability issues by creating 

a universal medium for information exchange and by giving meaning (semantics) to 

contents on the Web, in a manner understandable by machines. The semantic Web 

moreover allows the development of easy to use applications and transparent access 

to services and data. In particular, Semantic Web Services (SWS) technology [31], [8] 

provides an infrastructure in which new services can be added, discovered and 

composed continually, and the organization processes automatically updated to reflect 

new forms of cooperation [16]. SWS combine the flexibility, reusability, and 

universal access that typically characterize Web services with the expressivity of 

semantic mark-up and reasoning, in order to make feasible the invocation, 

composition, mediation, and automatic execution of complex services with multiple 

paths of execution and levels of process nesting.  

The adoption of SWS in e-Government therefore appears to be a natural 

development. However, demonstrating this to the e-Government community requires 

the achievement of several prerequisites: (a) creating compelling demonstrators and 

prototypes; (b) establishing visible standards; (c) developing stable and mature 

technology and products; (d) proving convincing business cases. 



In our work, a close collaboration has been established with the Essex County 

Council (ECC) - a large local authority in South East England (UK) comprised of 13 

boroughs and containing a population of 1.3M – to deploy real-world applications in 

the e-Government domain. During this collaboration, we developed, tested and 

refined a specific framework designed around an existing SWS broker: IRS-III [8]. In 

this paper, we report our experience by firstly introducing the devised approach and 

then focusing on the obtained results. The main contributions are to provide a proof of 

concept of the added values introduced by SWS in real-world application scenarios, 

propose a guide for the deployment of new e-Government applications, test the IRS-

III approach with complex use cases and outline future research directions on the 

basis of the lessons learned.  

The rest of the paper is structured as follows: Section 2 briefly introduces the 

technologies at the basis of our work: Web services, ontologies and SWS; in Section 3 

we discuss the rationales that prompted our work by identifying motivations, 

requirements and expected results of matching two present-day research areas: SWS 

and e-Government; Section 4 and Section 5 provide an overview of IRS-III and our 

framework for creating SWS-based applications; Section 6 details and demonstrates 

our approach through two e-Government applications. On the basis of these two 

implementations, we summarize the lessons learned and point out the open challenges 

in Section 7. Finally, Section 8 describes the related work and Section 9 reports our 

conclusions.  

2 Web Services, Ontologies, and Semantic Web Services 

From an information technology viewpoint the two important features of Web 

Services are that: (a) they are accessible over the Internet using standard XML-based 

protocols and (b) the interface of a Web service encapsulates its actual 

implementation. The first feature gives Web services high availability whereas the 

second feature facilitates reusability and interoperability since interface descriptions 

are independent from software platforms. 

From a business perspective one key feature is that Web services can be used to 

expose the business services – i.e. value-producing activities directly accessible by the 

customer - of an organization. For example, Google [13] has a Web service interface 

to its search engine and Amazon allows software developers to directly access their 

technology platform and product data [2]. The ability to couple business services to 

Web accessible software components will have profound effects on the nature of 

business and on the structure of participating organisations. 

Three main technologies are currently used to implement Web services: SOAP 

[28], WSDL [36] and UDDI [33]. SOAP is an XML based, stateless, one-way 

message exchange paradigm for interacting with Web services. SOAP messages are 

transported over HTTP and are composed of two elements: a header and a body. 

WSDL is also an XML-based format and defines services as collections of network 

endpoints or ports. UDDI is a registry which allows clients to find Web services 

through descriptions of theirs entities, provided functionalities or via technically 

oriented aspects.  



A key problem with the above technologies is that they are purely syntactic. They 

thus rely on human developers to understand the intended meaning of the descriptions 

and to carry out the activities related to Web service use.  

The semantic Web [3] is an extension of the current Web where documents 

incorporate machine processable meaning. The overall semantic Web vision is that 

one day it will be possible to delegate non-trivial tasks, such as booking a holiday, to 

computer based agents able to locate and reason with relevant heterogeneous online 

resources. One of the key building blocks for the semantic Web is the notion of an 

ontology [14]. An ontology is an explicit formal shared conceptualization of a domain 

of discourse. More specifically, an ontology captures the main concepts and relations 

that a community shares over a particular domain. Within the context of the semantic 

Web, ontologies facilitate interoperability as the underlying meaning of terms within 

a Web document can be made explicit for computer based agents to support 

processing.  

Semantic Web Services (SWS) research aims to automate the development of Web 

service based applications through the semantic Web technologies. By providing 

formal descriptions with well defined semantics, SWS facilitate the machine 

interpretation of Web service – functional and not functional - properties. The 

research agenda for SWS identifies a number of key areas of concern, namely:  

• Discovery: finding the Web service which can fulfil a task. Discovery usually 

involves matching a formal task description against semantic descriptions of Web 

services. 

• Mediation: we can not assume that the software components which we find are 

compatible. Mediation aims to overcome all incompatibilities involved. Typically 

this means mismatches at the level of data format, message protocol and 

underlying business processes. 

• Composition: often no single service will be available to satisfy a request. In this 

case we need to be able to create a new service by composing existing 

components. Artificial Intelligence (AI) planning engines are typically used to 

compose Web service descriptions from high goals. 

3 Motivations, Requirements, and Expected Results 

In our work, we address the following two research questions: (a) how can semantic 

Web support interoperability and reuse of software components available on the 

Web? (b) How can SWS support e-Government? In the following, we detail these two 

perspectives by analyzing motivations, requirements, and expected results of moving 

from SWS to e-Government (Section 3.1) and from e-Government to SWS (Section 

3.2), respectively. 

3.1 From Semantic Web Services to e-Government 

Currently, one of the main needs of SWS technology is the development of real-world 

applications that demonstrate its added (business) values. The next application-driven 



research challenge thus can be defined only through the feedback from practical 

prototypes and applications. The full potential application of SWS requires many 

more large-scale testing domains.  

Since it is an enormous challenge to achieve interoperability and to address 

semantic differences related to the great variety of datasets and information 

technology solutions which should be networked, e-Government may be a very 

effective test-bed for evaluating SWS technology. E-Government moreover exhibits 

further significant characteristics which may indicate several research issues for SWS. 

For example, e-Government is characterized by top-down prescribed constraints in 

key areas (e.g. laws, legal requirements, policies in the use of services and access to 

data); limited central control; strong requirements to come to same decisions in 

similar situations; high requirements for non-functional properties such as security, 

privacy, and trust; wide information imbalances between stakeholders, as well as 

multiple and heterogeneous stakeholders involved in the same process. 

3.2 From e-Government to Semantic Web Services 

The ability to aggregate and reuse diverse information resources relevant to a given 

situation in a cost-effective way and to make this available as a basis for transparent 

interaction between community partner organizations and individual citizens is a key 

benefit that SWS technology can provide to e-Government. Specifically, SWS 

technology promises to:  

a) Provide added value joined up services: allowing software agents to create 

interoperating services transparently to the users and hence automate integration, 

reasoning and mediation among heterogeneous data sources and processes 

available at distinct governmental levels. 

b) Enable formalization of government business processes in an unambiguous 

structure: allowing the creation of a common understanding of processes and 

visualization of the knowledge involved. This could eventually lead to a 

reengineering of the governmental systems and simplification of processes. 

c) Reduce risk and cost: (i) moving from “hard coding” services to reusable 

functionalities through, for example, utility computing of shared services (e.g. 

payment platforms, legal resources, etc.); (ii) keeping government organizations’ 

autonomy in the description/management of their domains; (iii) increasing 

flexibility; enabling discovery of new or previously unknown services; (iv) 

aggregating services on the basis of user preferences; (v) providing better service 

to third-parties and customers; (vi) easily addressing the evolution and change of 

existing services and scenario. 

d) Provide better support to front line: allowing one-stop, customer focused, and 

multiple viewpoint access to services and shared information.  

The e-Government community (stakeholders, administrations, end-users, but also 

researchers) needs to perceive these benefits more clearly before it will adopt the 

technology. At present, Web services are being introduced as infrastructure (often 

experimental) in some areas of government and the broad awareness of need for 

semantic enrichment is increasing. However, since SWS are completely new – and 

are mainly visible to the academic and industrial research ‘e-Government’ sector - a 



measurable benefit to service and achievable cost savings, or “cashable benefits” will 

need to be established.  

In absence of golden standards, demonstrating real-world applications is the 

important first step to accomplish this goal. Perhaps more importantly, this may 

provide a way to address existing barriers and perceptions, such as:  

e) Trust in automated data sharing: governmental organizations are concerned 

about: (i) ownership, control and quality among service providers; (ii) security, 

data protection, confidentiality, and privacy issues.  

f) Patchy awareness of Web services: stakeholders are often unclear about the 

distinction between Web services and general services available via Web. 

g) Up-front Infrastructure costs (e.g. investment in Web Services): governmental 

organizations are reluctant to be the pioneers which take the initial financial ‘hit’ 

in implementing SWS, as with almost any new technology. 

h) Market development: in terms of raising the awareness of potential SWS benefits 

in e-Government, increasing pilot applications, and promoting the availability of 

working SWS platforms.    

4 IRS-III: A broker-based approach for SWS 

IRS-III [8] is a platform and broker for developing and executing SWS. By definition, 

a broker is an entity which mediates between two parties and IRS-III mediates 

between a service requester and one or more service providers. To achieve this, IRS-

III adopts a semantic Web based approach and is thus founded on ontological 

descriptions. At the heart of IRS-III there is the SWS Library, where semantic 

descriptions of various aspects of Web services, reference Domain Ontologies and 

Knowledge bases (instances) are stored using OCML representation language [23]. 

Specific IRS-III components interpret such descriptions to discover and select the 

appropriate Web service, choreograph and ground to the Web service operations [9], 

orchestrate multiple Web services, and mediate semantic descriptions by running 

mediation rules or invoking mediation services [5]. Note that IRS-III supports 

grounding to standard Web services with a WSDL description, as well as stand-alone 

Java and Lisp code. Similarly, Web applications accessible as HTTP GET requests 

are handled internally by IRS-III.  

4.1 The IRS-III service ontology 

The IRS-III service ontology forms the epistemological basis for IRS-III and provides 

semantic links between the knowledge level components describing the capabilities of 

a service and the restrictions applied to its use. The IRS-III service ontology is based 

on the WSMO standard [37] which specifies the following main aspects:  

• Non-functional properties: these properties are associated with every main 

component model and can range from information about the provider such as 

organisation, to information about the service such as category, cost and quality 

of service, to execution requirements such as scalability, security or robustness. 



• Ontologies: provide the foundation for describing domains semantically. They are 

used by the three other WSMO components. 

• Goal-related information: a goal description represents the user perspective of the 

required functional capabilities. It includes a description of the requested Web 

service capability. 

• Web service-related information: a Web service interface represents the 

functional behavior of an existing deployed Web service. It includes a description 

of: (a) Functional capabilities which represent the provider perspective of what 

the service does in terms of assumptions, effects, pre-conditions and post-

conditions. Capabilities are expressed by logical expressions that constrain the 

state or the type of inputs and outputs. (b) Choreography which specifies how to 

communicate with a Web service. (c) Grounding which is part of the Web service 

choreography and describes how the semantic declarations are associated with a 

syntactic specification such as WSDL. (d) Orchestration which specifies the 

decomposition of Web service capability in terms of the functionality of other 

Web services.  

• Mediators: in WSMO, a mediator specifies which WSMO top elements are 

connected and which type of mismatches can be resolved between them. WSMO 

defined four kinds of mediators: GG-mediator which links different goals; WG-

mediator which connects Web services with goals; OO-mediator which enables 

components to import heterogeneous ontologies; and WW-mediator which links 

Web services to Web services. 

The WSMO conceptual model has been represented using OCML representation 

language [23] and extended in the following ways:  

• Explicit input and output role declaration: IRS-III requires that goals and Web 

services have input and output roles, which include a name and a semantic type. 

The declared types are imported from domain ontologies. This makes the 

definition of goal and Web services easier when complex choreographies are not 

required. 

• Web services are linked to goals via WG-mediators: if a WG-mediator associated 

with a Web service has a goal as a source, then this Web service is considered to 

solve that goal. An assumption expression can be introduced for further refining 

the applicability of the Web service. 

• GG-mediators provide data-flow between sub-goals – in IRS-III, GG-mediators 

are used to link sub-goals within an orchestration and so they also provide 

dataflow between the sub-goals. 

• Web services can inherit from goals - Web services which are linked to goals 

‘inherit’ the goal’s input and output roles. This means that input role declarations 

within a Web service are not mandatory and can be used to either add extra input 

roles or to change an input role type. 

• Client choreography – the provider of a Web service must describe the 

choreography from the viewpoint of the client. This means IRS-III can interpret 

the choreography in order to communicate with the deployed Web service. 

• Mediation services are goals – a mediator declares a goal as the mediation 

service which can simply be invoked. The required transformation is performed 

by the associated Web service. 



• IRS-III component goals – the main components of IRS-III (e.g. the orchestration 

and choreography interpreters and the handlers for the different WSMO 

mediators) are implemented using internal goal, Web service and mediator 

descriptions. Additionally, a number of utility goals, for example a number of 

arithmetic and list primitives are incorporated. 

4.2 The IRS-III Core Functionalities 

A core design principle for IRS-III is to support capability-based selection and 

invocation of Web services. A client sends a request which captures a desired 

outcome or goal and, using the set of semantic Web service descriptions introduced in 

the previous section, IRS-III will: 

F1. Discover potentially relevant Web services. 

F2. Select the set of Web services which best fit the incoming request. 

F3. Invoke the selected Web services whilst adhering to any data, control flow and 

Web service invocation constraints. 

F4. Mediate any mismatches at the data, goal or process level. 

In the following sub-sections, we highlight the main aspects associated with the 

aforementioned functionalities. 

4.2.1 Discovery 

As introduced in Section 4.1, IRS-III makes use of WG-mediators to link a goal to all 

Web services that can solve it. Figure 1 depicts the specific ontology concepts and 

relations involved in the IRS-III discovery and selection. 

 

Web Service

has-capability : Capability

has-interface : Interface

used-mediator : OO-Mediator

Capability

has-assumption : KappaExpression

used-mediator : WG-Mediator

has-effect : KappaExpression

has-porstcondition : KappaExpression

has-precondition : KappaExpression

has-capability

WG-Mediator

has-source-component : Goal

has-mediation-service : Goal

Goal

has-input-role : Role

has-output-role : Role

used-mediator : OO-Mediator

has-postcondition : KappaExpression

has-source-component

1..*

used-mediator

1..*

can-solve-goal

Interface

has-orchestration : Orchestration

has-choreography : Choreography

has-interface

is-suitable-for-goal

 

Figure 1. The ontology concepts and relations involved in the IRS-III discovery. 

Given a goal, multiple WG-mediators can define such a goal as their source 

component. In turn, distinct capability descriptions can refer to a specific WG-

mediator and thus link to a goal. Finally, each capability description is part of a 

unique Web service description.  

On the basis the semantic descriptions above, a pool of Web services that 

potentially satisfy a given goal is identified by a backward chaining rule-based 



reasoning. In particular, the can-solve-goal relation is inferred at runtime during 

the goal achievement process. The listing below shows the OCML [23] definition of 

the can-solve-goal relation. The sufficient conditions of the definition 

(:sufficient) specify the clauses to be proved when inferring such a relation. The 

IRS-III interpreter will fire the clauses in the order in which these are listed, by 

finding any instance which makes true the specific clause. As a result, starting from a 

goal instance given in input (?goal), it is possible to identify: (i) all of the WG-

mediators (?mediator) which use such a goal as source component1; (ii) the 

capabilities (?capabilities) which use the identified WG-mediators; (iii) the Web 

services  (?thing) which define the identified capabilities. 

 
(def-relation can-solve-goal (?goal ?thing) 
  "Returns the web services which solve a goal.  
   Uses the mediator to find the link" 
  :sufficient (and (instance-of ?goal goal) 
                   (= ?goal (the-slot-value ?mediator has-source-component)) 
       (instance-of ?mediator WG-mediator) 
       (= ?mediator (the-slot-value ?capability used-mediator)) 
       (instance-of ?capability capability) 
       (= ?capability (the-slot-value ?thing has-capability)) 
       (instance-of ?thing web-service))))) 

4.2.2 Selection 

The selection process aims to identify the most appropriate Web services which 

satisfy a goal, starting from the results of the previous phase (can-solve-goal 

relation). On the basis of the current goal inputs, the IRS-III interpreter will test the 

applicability conditions of each discovered Web service.  

The listing below shows the suitable-web-service-goal which is invoked to 

check if a Web service is satisfactory for a specific goal invocation2.  

 
Suitable-web-service-goal  
Input Role 
 has-goal goal "sexpr" 
 has-actual-role-pairs list "sexpr" 
 has-web-service web-service "sexpr" 
 has-combined-oo-mediator-ontology ontology "sexpr" 
Output Role 
 is-suitable-web-service boolean "sexpr" 
Post Condition     
 (kappa (goal-inst)  
 (== (has-role-value goal-inst is-suitable-web-service) 
     (is-suitable-for-goal  
  (instantiate (has-role-value goal-inst has-goal) 
        (has-role-value goal-inst has-actual-role-pairs)) 
   web-service))) 

 

Suitable-web-service-goal has four input roles which respectively represent: 

(a) the current goal; (b) the values for the current goal’s input roles; (c) the Web 

service under consideration; and, (d) an ontology created specifically for the goal 

                                                           
1The the-slot-value function returns the value of a specific slot (e.g. has-source-

component) of an instance (e.g. ?mediator). 
2As mentioned earlier, IRS-III components themselves are modelled using WSMO 

descriptions. 



invocation. Note that for each input role, we specify the type of values permissible 

and a SOAP grounding (sexpr in the listing above) which is ‘inherited’ by Web 

services linked through a WG-mediator. Moreover, the ontology created in step (d) 

combines the goal and Web service ontologies, making use of OO-mediators – both 

goal and Web service descriptions refer to OO-mediators (Figure 1) - to resolve any 

data mismatches (Section 4.2.4).  

The output role (is-suitable-web-service) is a boolean value which is true if 

the Web service is suitable for the goal instance, false otherwise.  

The post condition expresses the expected result as an OCML anonymous relation, 

called kappa expression. The latter takes as argument the suitable-web-service-

goal itself and is satisfied if its clauses hold for the given argument. In the given 

example, the is-suitable-for-goal relation is used to state the relationship 

between the considered goal and the selected Web services. 

To accomplish the suitable-web-service-goal introduced above and thus 

infer the is-suitable-for-goal relation, an internal IRS-III Web service is 

invoked. The latter exposes an OCML function which performs the following tasks: 

(i) retrieving the applicability conditions – currently the assumptions defined in the 

WSMO capability description – of a given Web service and (ii) testing the 

applicability conditions according to the input roles defined in the given goal instance. 

Checking the following OCML relation is the core of such a function.  

 
(def-relation applicable-to-goal (?web-service ?goal) 
  :iff-def (or (not (and (= ?capability  
                            (the-slot-value ?web-service has-capability)) 
                         (instance-of ?capability capability) 
                         (= ?exp (the-slot-value ?capability has-assumption)) 
                         (not (= ?exp :nothing)))) 
               (and (= ?capability  
   (the-slot-value ?web-service has-capability)) 
                    (instance-of ?capability capability) 
                    (= ?exp (the-slot-value ?capability has-assumption)) 
                    (not (= ?exp :nothing)) 
                    (holds ?exp  ?goal)))) 

 

Sufficient and necessary conditions of the definition above (:iff-def) specify the 

clauses to be proved. Similar to the can-solve-goal relation introduced in Section 

4.2.1, the IRS-III interpreter will fire the clauses. The or expression of the definition 

introduces two main cases3.  

The first case manages the situation of Web services that do not define any 

assumption. We assume that Web services which do not define assumptions are 

applicable to the goal. In this way, for example, we can deal with general purpose 

Web services. 

The second case manages the situation of Web services that define assumptions. 

The ?exp variable captures the stated assumption which is expressed as a kappa 

expression (e.g. the goal post condition defined above). The holds function invokes 

the IRS-III interpreter to test the retrieved kappa expression, using the current goal 

instance ?goal as given parameter. If the kappa expression is satisfied, the Web 

service is applicable to the goal.  

                                                           
3 As in Prolog, depth-first search with chronological backtracking is used in OCML to 

control the proof process. 



Note that several Web services can be selected. The current IRS-III policy is invoking 

the first Web service of the list, since a ranking mechanism is not defined. However, 

future work concerns improving current IRS-III selection with trust-based 

mechanisms [12].  

4.2.3 Invocation, Choreography and Orchestration 

According to the WSMO model, the IRS-III interface provides information on how 

the functionality of the deployed Web services is achieved, and, as stated in Section 

4.1, the main interface components are orchestration and choreography. The semantic 

descriptions of the interface model are interpreted by IRS-III when the latter 

identified the Web service to satisfy a goal. According to such descriptions, specific 

actions are performed. 

The overall view is that Web service execution consists of a number of discrete 

steps, and, at any given point, the next action performed within an interface execution 

will depend upon the current state. IRS-III performs its interface abstract model 

through the tuple 〈E, S, C, T〉, where: E is a finite set of events; S is the (possibly 

infinite) set of states; C is the (possibly infinite) set of conditions; T represents the 

(possibly infinite) set of transitions rules.  

The events represent actions performed during the interface execution. The subset 

of events from E which can occur in choreography and orchestration differs. 

Specifically, E =  Ec ∪ Eo: where Ec is the set of choreography events; and Eo is the 

set of orchestration events. In more detail, Ec = {obtain, present, provide, receive, 

obtain-initiative, present-initiative} [9]. Every choreography event maps to an 

operation during the conversation viewed from the IRS-III perspective. Similarly, the 

set of possible orchestration events are Eo = {invoke-goal, invoke-mediator, find-

mediator, evaluate-logical-expression, return-output}.  

Given a transition step Ti, a state si ∈ S is a non-empty set of ontologies that define 

a state signature over which transition rules are executed. Optional mediators are used 

to solve ontology or data mismatches (Section 4.2.4). The parameterized 

choreography state is a set of instances, concerning message exchange patterns and 

the choreography execution. Every state includes a constant subset, which identifies 

the Web service host, port, and location, which is invariant whenever the same Web 

service is invoked, and the event instantiation e ∈ Ec, dependent on the event which 

occurred at step Ti. The orchestration states characterize the phases of the workflow 

process during goal decomposition. Given a transition step Ti, an orchestration state 

contains a description of the triggering-event, the control flow step identifier, and the 

result - the output of the achieved sub-goal.  

A condition c ∈ C (also called guard) depicts a situation occurring during interface 

execution. Every constraint within the condition has to be verified before the next 

event is triggered.  

The transition rules express changes of state by modifying a set of instances 

within the signature ontology. In particular, a transition rule, t ∈ T,updates the state 

after the occurrence of an event, e ∈ E, and consists of a function, ( ) SSt
E

C →2,: , 

that associates a couple (s, {c1, .., cn}) to s’, where s and s’ ∈  S,  and  every ci  ∈ C  (1 



≤  i ≤  n) . Choreography transition rules are defined with the following two specific 

restrictions: (a) ‘If rules do not chain and are of the form “If condition then Fire 

Event”; and (b) conditions are mutually exclusive so only one rule can fire at a time. 

These rules represent the interaction between IRS-III and the Web service and are 

applied when executing the choreography. Orchestration transition rules provide a 

workflow model based on the following set of control flow constructs: sequence, 

conditional, loop, fork, join. These rules describe the model of a composed Web 

service. The distinguishing characteristic of this model is that the basic unit within 

composition is a goal. Further, dataflow and the resolution of mismatches between 

goals are supported by mediators. 

4.2.4 Mediation 

The overall design goal for IRS-III is to act as a semantic broker between a client 

application and deployed Web services available at large on the internet. This 

brokering activity can be seen as mediation itself, which in IRS-III is further broken 

down into goal, process and data mediation [5]. Goal Mediation takes places during 

F2, and the types of mismatches that can occur are: the input types of a goal are 

different from the input types of the target Web service; and Web services have more 

inputs than the goal. A WG-mediator is mainly involved in this mediation. Process 

Mediation takes places during F3 – specifically, during orchestration - and the types 

of mismatches which can occur are: output types of a sub-goal are different from the 

input types of the target sub-goal; output values of a sub-goal are in a different order 

from the inputs of the target sub-goal; and, the output of a sub-goal has to be split or 

concatenated into the inputs of the target sub-goals. A GG-mediator is mainly 

involved in this mediation. Data Mediations is used by both goal and process 

mediation to map data across domain ontologies. An OO-mediator is mainly involved 

in this mediation.  

In IRS-III, a mediator declares a source component, a target component and either 

a mediation service or mapping rules to solve mismatches between the two.  

The mediation service is just another goal that can be accomplished by published 

Web services. For example (Figure 2), a mediation service of a WG-mediator (or GG-

mediator) transforms input values coming from the source goal into an input value 

used by the target Web service (or Goal). The mediation goal is invoked and then 

accomplished when the respective mediator is considered by the IRS-III interpreter.  

   

Figure 2. Use of mediation services for WG and GG mediators. 

Mapping rules are used between two ontologies, source and target components 

(Figure 3).  They represent backward chaining rules, based on three OCML main 



mapping primitives: Maps-to, a relation created internally for every mapped 

instance; Def-concept-mapping, generates the mappings specified with the maps-

to relation between two ontological concepts; Def-relation-mapping, generates 

a mapping between two relations using a rule definition within an ontology. Since 

OCML represents concept attributes as relations, this primitive can be used to map 

between input and output descriptions.  

 

Figure 3. Use of mapping rules for OO-mediator. 

5 Creating Semantic Web Services based Applications  

In this section, we describe the general infrastructure and the methodology adopted to 

deploy our e-Government applications. Since government legacy systems are often 

isolated - i.e. not interconnected and/or use distinct technological solutions - our 

approach firstly enables the data and functionalities provided by existing legacy 

systems of the involved governmental partners to be exposed as Web services. The 

latter are then semantically annotated and published following the IRS-III approach 

(Section 4). The generic application architecture presented in Section 5.1 reflects and 

explains this double stage process. The setting up of a domain-specific application is 

driven by a cooperative and multi-viewpoint methodology refined during our work, 

and here described in Section 5.2. 

5.1 Generic Application Architecture  

The proposed generic application architecture is depicted in Figure 4. From the 

bottom up the four application layers are: 

• Legacy System layer: consists of the existing data sources and IT systems 

available from each of the organizations involved in the integrated application.   

• Service Abstraction layer: exposes (micro-) functionalities of the legacy systems 

as Web Services, abstracting from the hardware and software platforms. At this 

level we address thus the level I of interoperability defined by [7] and introduced 

in Section 1. Web Services are distributed and stored within the multiple 

organizational infrastructures that expose the functionality. Existing Enterprise 

Application Integration (EAI) software can be used to facilitate the creation of 

required Web Services. For example, for standard databases the necessary 

functionalities of Web Services can simply be implemented as SQL query 



functions. Further services available on the Web - and not related to the involved 

legacy systems - can be integrated to perform supporting functionalities (e.g. 

mediation services).  

• Semantic Web Service layer: this layer is implemented by IRS-III which provides 

the functionalities F1 – F4 described in Section 4.2. At this level we address thus 

the levels II and III of interoperability defined by [7] and introduced in Section 1. 

To set up an application, a set of application-specific SWS descriptions has to be 

provided: goals, mediators, and Web services, all supported by the relevant 

ontologies (see Section 5.2). These descriptions are centrally stored within the 

SWS Library of IRS-III (Section 4.1). Note that we distinguish two main sets of 

SWS descriptions: basic SWS (bottom of the layer) that simply wrap the Web 

Services to achieve simple goals; and complex SWS (top of the layer) that require 

a composition of basic or complex SWS to achieve complex goals.  

• Presentation layer: consist of a Web application accessible through a standard 

Web browser. The goals defined within the SWS layer are reflected in the 

structure of the interface and can be invoked either through the IRS-III API or as 

an HTTP GET request. The goal requests are filled with data provided by the 

user and sent to the Semantic Web Service layer. We should emphasise that the 

presentation layer may be comprised of a set of Web applications to support 

distinct user communities. In this case, each community would be represented by 

a set of goals supported by community related ontologies. 

  

 

Figure 4. The generic architecture used to create IRS-III-based  

e-Government applications. 

5.2 Development Methodology 

In order to successfully create applications from SWS as depicted in Figure 4 four key 

activities need to be carried out as follows: 

1. Requirements capture: the requirements for the overall application are captured 

using standard software engineering methodologies and tools. We do not 

advocate any particular requirements capture method but envisage that the 



resulting documents describe the stakeholders, the main users, roles, and goals, 

any potential providers for Web services, and any requirements on the deployed 

infrastructure and interfaces.  

2. Goal description: using the requirements documents above relevant goals are 

identified and semantically described in IRS-III. During this process any required 

supporting domain ontologies will either be created from scratch or existing 

ontologies will be re-used.  

3. Web service description: descriptions of relevant Web services are created within 

the IRS. Again, any domain ontologies required to support the Web service 

descriptions are either defined or re-used as necessary. 

4. Mediator description: mismatches between the ontologies used, and mismatches 

within and between the formal goal and Web service descriptions are identified 

and appropriate mediators created.  

All of the above steps are carried out by the SWS application developer. The first two 

steps are user/client centric and therefore involve discussions with the relevant client 

stakeholders and domain experts, whereas step 3 will require dialogue with the Web 

service providers and domain experts. Steps 2 and 3 are mostly independent and in the 

future we expect libraries of goals and Web services to become generally available to 

support reuse. Steps 2, 3 and 4 are supported by means of IRS-III clients that provide 

a set of tools for defining, editing and managing a library of semantic descriptions, as 

well as for grounding the descriptions to services. As a result, we obtain a semi-

automatic knowledge acquisition process for the development of our applications. 

6 e-Government Applications 

In this section, we demonstrate the feasibility and applicability of our approach by 

describing two compelling use cases in the e-Government domain: Change of 

Circumstances (Section 6.1) and Emergency Management System (Section 6.2). In the 

first one, the developed application integrates multiple datasets in order to 

automatically notify the change of a citizen situation. In the second one, the 

developed application supports emergency planning and management personnel by 

retrieving, filtering, and presenting data from a variety of legacy systems to deal with 

a specified hazardous situation. Both use case descriptions follow the generic 

application architecture introduced in Section 5.1, although the technical emphasis 

varies: the first one details the development of SWS descriptions for setting up a 

specific application; the second one highlights the use of SWS descriptions within a 

specific application.  

6.1 Change of Circumstances 

The application has been developed to solve a specific use case problem at Essex 

County Council (ECC). Whenever the circumstances in which a given citizen lives 

change, he/she might be eligible for a set of services and benefits provided by ECC 

and other governmental agencies together with public service providers. An example 

of such a change of circumstances is, if an elderly, partly disabled woman moves in 



together her daughter. This changes the circumstances of both, the mother and the 

daughter. For instance, the mother might no longer receive a “meals on wheels” 

service, whereas the daughter might get financial supporting for caring her mother. 

Starting from existing legacy systems, the aim is to provide integrated functionalities, 

such as: change patient details within multiple legacy systems, change patient pending 

equipment orders, list of all services for a patient, stop providing service to patient 

and assess equipment to patient. 

6.1.1 Legacy System Layer 

Generally, even very simple process in a change of circumstances requires the 

interaction of many different government agencies. Each agency has different legacy 

systems in place to keep track of citizen records, provided services, third-party service 

providers, etc. In our prototype, the following two data sources provided by two 

different departments (at two distinct governmental levels) were considered: 

• Citizen Assessment (Community Care Department of the ECC): this relates to 

information about citizens registered in ECC for assessment of services and 

benefits (e.g. meals on wheels; someone goes and cleans the house; someone 

goes and stays with the patient, etc). This information is stored in the SWIFT 

database. 

• Order Equipment (Housing department of the Chelmsford District Council): this 

relates to information about equipment (e.g. stair lift, wheel chair, crutch, etc) 

which is provided to citizens registered in Essex. This information is stored in the 

ELMS database. 

Both SWIFT and ELMS are relational databases that are independently developed and 

use different data formats to store the same information - e.g. they both hold personal 

details of the patients. Our prototype accesses two testing databases that exactly 

replicate the schemata of the two real systems and contain dummy data of the same 

quality – i.e. both databases contain records with errors, duplicates, inconsistent 

records. As a result, the two databases used in the prototype mimic the behavior and 

properties of the real systems.  

Figure 5 depicts the database schema of the ELMS system. 

 
Figure 5. The database schema of the ELMS system.



 

Specific SQL queries provide for each of the tables of the two databases CRUD style 

functionalities; for instance functionalities for creating, reading, updating and deleting 

records.  

6.1.2 Service Abstraction Layer  

On top of the two legacy systems, we developed a set of Web services that perform 

the SQL queries introduced in the previous section and the basic operations 

introduced above. We created 8 Web services from the SWIFT database and 19 Web 

services from the ELMS database. The Web services were deployed and stored into 

the SAP Exchange Infrastructure (SAP XI) [27]. Moreover, we developed some Web 

services - implemented in a mixture of Common Lisp and OCML [23] – to support 

application-specific operations (e.g. merging results of distinct database queries).  

6.1.3 Semantic Web Service layer 

To provide the SWS descriptions (Section 5.1) and the required supporting domain 

ontologies - steps 2, 3, and 4 of our development methodology (Section 5.2) - we 

devised two teams composed of SWS developers and domain experts. Each team 

worked on a distinct domain: Citizen Assessment and Order Equipment. The 

following tables summarise the resulting ontologies. 

 

 
User Oriented Domain Ontologies 

e-Government-upper-level-ontology 
(Citizen Assessment Team,  

Order Equipment Team) 

It is an upper ontology for representing commonly 

accepted concepts, such as organization, person, citizen, 

etc. It has been used as the starting point for developing 

domain-specific user-oriented ontologies 

Change-of-circumstances-citizen-ontology 
(Citizen Assessment Team) 

It extends the concepts introduced in the e-Government 

upper level ontology by introducing domain-specific 

concepts, such as address, assessment, health problem 

and benefit.  

Change-of-circumstances-equipment-ontology 
(Order Equipment Team) 

It extends the concepts introduced in the e-Government 

upper level ontology by introducing domain-specific 

concepts, such as order, care-item, equipment and 

supplier. 

 
Service Oriented Domain Ontologies 

SWIFT-service-ontology 
(Citizen Assessment Team) 

It mainly represents concepts which map entities of the 

SWIFT database schema.  

ELMS-service-ontology 
(Order Equipment Team) 

It mainly represents concepts which map entities of the 

ELMS database schema. 

 
SWS Description Ontologies 

Change-of-circumstances-citizen-basic-SWS 
(Citizen Assessment Team) 

It contains goal, Web service and mediator 

descriptions which define basic and complex SWS on 

top of SWIFT database. The respective domain 

ontologies are: Change-of-circumstances-citizen-

ontology and SWIFT-service-ontology 



Change-of-circumstances-equipment-basic-SWS 
(Order Equipment Team) 

It contains goal, Web service and mediator 

descriptions which define basic and complex SWS on 

top of ELMS. The respective domain ontologies are: 

Change-of-circumstances-equipment-ontology and 

ELMS-service-ontology 

Change-of-circumstances-citizen-complex-SWS 
(Citizen Assessment Team) 

It contains goal, Web service and mediator 

descriptions which define complex SWS, integrating 

functionalities of both domains. These descriptions 

refer to the Change-of-circumstances-citizen-ontology 

as domain ontology and make use of Citizen 

Assessment and Order Equipment basic SWS. 

 

Figure 6 shows the graphical representation of the dependencies (i.e. “inheritance”) 

among ontologies: WSMO is the top ontology; white boxes represent the domain 

ontologies (user and service oriented); gray boxes represent the ontologies containing 

SWS descriptions. It is important to note the absence of dependencies that cross the 

two different domains. Only the bottom ontology (Change-of-circumstances-

citizen-complex-SWS) crosses the two domains; this ontology defines appropriate 

mediators to deal with mismatching. 

 

Figure 6. The ontologies of the Change of Circumstances scenario. 

To illustrate the development process, we first consider a SWS description of the 

Order Equipment domain: Find Item ELMS by Impairment and Weight. The 

latter is a complex operation which is decomposed into three basic operations: two 

queries of the ELMS database and intersecting the two obtained outputs (Figure 7).  

 

Figure 7. The Find Item ELMS by Impairment and Weight functionality 



Each ellipse in Figure 7 represents a goal which has to be accomplished by simple or 

integrated functionalities. Specifically, the three goals on the right are accomplished 

by functionalities provided by Web services available at the service abstraction layer. 

Such goals have to be automatically orchestrated to accomplish the main goal on the 

left. Figure 8 depicts, as example, the IRS-III browser interface for describing the 

main goal above and the resulted OCML code [23]. The goal defines two inputs 

(has-input-role) and one output (has-output-role). The inputs (weight and 

impairment) are classes of the Change-of-circumstances-equipment-

ontology. The output is a list of equipments (item-list). Every equipment 

description in the list is an instance of the catalogue-data class of the ELMS-

service-ontology.  

 

 

generates 

Figure 8. Snapshot of the IRS-III editor and the generated OCML code. 

Such a class maps the respective ELMS database schema (Figure 5). At runtime – 

when the goal is invoked to be accomplished - the instances of the input classes are 

selected through the user interface of the application, while the instances of the 

catalogue-data class are created on-the-fly - i.e. lifted from the syntactic to the 

semantic level - from the results of Web service invocations.  

For each goal, the respective Web service and mediator descriptions have been 

created.  Figure 9 below represents the Find Item ELMS by Impairment and 

Weight functionality introduced in Figure 7 in terms of goal, mediator and Web 

service descriptions. The Web service that accomplishes the main goal (Get-

equipment-assessment-goal) defines the orchestration as the sequence of three 

sub-goals. In our approach the orchestration is defined at the semantic level as 

follows: 

  
(DEF-CLASS GET-EQUIPMENT-ASSESSMENT-WEB-SERVICE-INTERFACE-ORCHESTRATION 

 ((HAS-BODY  
   :VALUE ((ORCH-SEQUENCE 
               FIND-ITEMS-MATCHING-WEIGHT-GOAL 
               FIND-ITEMS-MATHCING-IMPAIRMENT-GOAL 
               LIST-INTERSECTION-GOAL) 
           (ORCH-RETURN (ORCH-GET-GOAL-VALUE LIST-INTERSECTION-GOAL)))))) 

(DEF-CLASS GET-EQUIPMENT-ASSESSMENT-GOAL (GOAL) ?GOAL 
  ((HAS-INPUT-ROLE :VALUE HAS-MAX-CLIENT-WEIGHT 
                   :VALUE HAS-CLIENT-IMPAIRMENT) 
   (HAS-OUTPUT-ROLE:VALUE HAS-SUITABLE-ITEMS-LIST) 
   (HAS-MAX-CLIENT-WEIGHT :TYPE NUMBER) 
   (HAS-CLIENT-IMPAIRMENT :TYPE IMPAIRMENT) 
   (HAS-SUITABLE-ITEM-LIST :TYPE ITEM-LIST))) 



 

Each sub-goal, invoked through the orchestration, is accomplished by the respective 

Web service. Conversely to the main Web service, these Web services ground to 

syntactic Web services - at the service abstraction layer - and they thus define 

choreography, as follows: 

 
(DEF-CLASS FIND-ITEMS-MATCHING-WEIGHT-WEB-SERVICE-INTERFACE-CHOREOGRAPHY 
    (CHOREOGRAPHY) 

  ((HAS-GROUNDING  
     :VALUE (GROUNDED-TO-WSDL ONLY-OPERATION 
            ("c:/CatalogueEntryByWeightInterfaceOut.wsdl" 
               "CatalogueEntryByWeightInterfaceOut" 
               "CatalogueEntryByWeightInterfaceOut" 
               "http://sap.com/research/dip/wp9/elmdb" 
               "SAP" 
               ((has-client-weight "CatalogueEntryByWeightRequest-Type")) 
                 "CatalogueEntryResponseType"))) 
   (HAS-GUARDED-TRANSITIONS :VALUE 
             ((RULE1 
                (INIT-CHOREOGRAPHY) 
               THEN 

                   (SEND-MESSAGE 'ONLY-OPERATION))))   

 

Moreover, Figure 9 outlines the linking roles of WG and GG mediators in our 

approach: a goal to the Web services that may accomplish it; two sub-goals within an 

orchestration. More detailed descriptions about the use of WG and GG mediators, 

during discovery, selection and mediation phases, are presented in the next use case. 

 

 

Figure 9. Structure of the SWS descriptions created for the Find Item ELMS by 

Impairment and Weight functionality 

The resulting Find Item ELMS by Impairment and Weight SWS 

description accomplishes the requested functionality (goal) by integrating services of 

the same legacy system. Note that each legacy system is an autonomous entity within 

the given scenario and the provided Web services abstract from the underlying 

technology. Therefore, we would not have any central control on the involved parties 

and detailed information about the respective technologies. For example, we could not 

require a new SQL query of the ELMS database that can simply implement the Find 

Item ELMS by Impairment and Weight functionality.  



The effectiveness of a SWS-base approach becomes clearer when integrating services 

from multiple distributed autonomous entities. In this case, we need to deal with the 

distinct viewpoints of each involved party. To prove this aspect in the current 

scenario, we consider a further complex SWS description: Assess Equipment to 

Patient. The latter is part of the Change-of-circumstances-citizen-

complex-SWS ontology and integrates functionalities of both domains. It is 

decomposed into two complex operations (Figure 10). 

 

 

Figure 10. The cross-domain Assess Equipment to Patient functionality. 

The first operation is the aforementioned Find Item ELMS by Impairment and 

Weight. The second operation filters the equipments retrieved in the first operation 

by checking if the current case worker – an employee of the Community Care 

Department – is entitle to provide the equipments to the user. The following listing 

shows the goal and orchestration definitions of the Assess Equipment to 

Patient functionality.  

 
(DEF-CLASS ASSESS-EQUIPMENT-TO-PATIENT-GOAL (GOAL) ?GOAL 
  ((HAS-INPUT-ROLE :VALUE HAS-CITIZEN-WEIGHT 
                   :VALUE HAS-CITIZEN-DISEASE 
       :VALUE HAS-CASE-WORKER-CODE) 
   (HAS-OUTPUT-ROLE:VALUE HAS-SUITABLE-ITEMS-LIST) 
   (HAS-CITIZEN-WEIGHT :TYPE NUMBER) 
   (HAS-CITIZEN-DISEASE :TYPE DISEASE) 
   (HAS-CASE-WORKER-CODE :TYPE NUMBER) 

      (HAS-SUITABLE-ITEM-LIST :TYPE ITEM-LIST))) 
 
(DEF-CLASS ASSESS-EQUIPMENT-TO-PATIENT-WEB-SERVICE-INTERFACE-ORCHESTRATION 

 ((HAS-BODY  
   :VALUE ((ORCH-SEQUENCE 
               GET-EQUIPMENT-ASSESSMENT-GOAL 
               CHECK-EQUIPMENT-CASE-WORKER-GOAL) 
       (ORCH-RETURN (ORCH-GET-GOAL-VALUE CHECK-EQUIPMENT-CASE-WORKER-GOAL)))))) 

 

As in the previous SWS description, the new functionality has been created by 

simply stating the sequence of goals to accomplish into an orchestration description. 

Note that the first goal of the orchestration is the goal depicted in Figure 8. 

Conversely to the previous SWS description, however, the first goal of the sequence 

refers to the Order Equipment domain ontologies, while the second one - as well as 

the main goal – refers to the Citizen Assessment domain ontologies. Particularly, the 

inputs of the main goal refer to citizen and disease classes, while the inputs of 

the first goal refer to client and impairment classes, respectively. Moreover, the 

first goal adopts the ELMS catalogue-data in the output list of equipments, while 

the second and main goals use the SWIFT care-item in the respective list of 

equipments. To map between the two domains and thus solve the mismatches, we 

make use of OO-mediators. As described in Section 4.2, OO-mediators are linked to 



the goal through the used-mediator relation and define mapping rules to solve data 

mismatching. The mapping rules are valuated when the goal is invoked. The listing 

below shows as excerpt of the mapping rules for the catalogue-data and care-

item classes.  

 
(def-concept-mapping catalogue-data care-item) 
 
(def-relation-mapping catalogue-care-max-weight-mapping 
 ((has-max-citizen-weight ?care-item ?value) 
   If  
 (maps-to ?care-item ?catalogue-data) 
 (has-max-user-weight ?catalogue-data ?value))) 

 

The example above makes use of the primitives introduced in Section 4.2.4. More 

specifically, the definitions above link the has-max-user-weight slot of class 

catalogue-data in the source ontology to the has-max-citizen-weight slot of 

class care-item in the target ontology. The def-concept-mapping construct 

associates each instance of the catalogue-data class to a newly created instance of 

the care-item class and link them by generating instances of the relation maps-to 

internally. The def-relation-mapping construct uses the generated maps-to 

relation within a rule which asserts the value of the mapped catalogue max user 

weight to the value of the care item max citizen weight. 

As a result, we easily defined and reused SWS descriptions to implement an 

integrated functionality, abstracting from the underlying legacy systems, keeping the 

autonomy of involved parties and covering multiple heterogeneous domains. If new 

systems need to be integrated, we simply introduce the appropriate SWS descriptions 

and mediation facilities - when mismatches occur - likewise we have done in the 

second example of the present use case. Conversely, standard database techniques 

would necessitate that the different parties harmonise their database schemas or agree 

upon a unifying schema. The addition of a single new system would require a new 

consensus to be agreed upon.  

Further benefits of our approach are highlighted in the next use case. 

6.1.4 Presentation Layer 

The application is a service oriented portal for the employees of the Community Care 

department at ECC. Employees assist citizens to notify their changes of 

circumstances, and the system delivers the change to the different agencies involved 

in the process. In this way, citizens only have to inform the public administration once 

about their changes. The user interface uses the Java API of IRS-III to invoke the 

defined goals. The user selects the action to perform from a list of available goals. 

After the user has entered the required data, he/she triggers the execution of a goal 

and IRS-III performs the appropriate Web service - in the case of get equipment 

assessment, the three basic Web services are performed. 



6.2 Emergency Management System 

In an emergency situation, multiple agencies need to collaborate, sharing data and 

information about actions to be performed. However, many emergency relevant 

resources are not available on the network and interactions among agencies or 

emergency corps usually occur on a personal/phone/fax basis. The resulting 

interaction is therefore limited in scope and slower in response time, contrary to the 

nature of the need for information access in an emergency situation.  

Emergency relevant data is often spatial-related. Spatial-Related Data (SRD) is 

traditionally managed with the help of Geographical Information Systems (GIS), 

which allow access to different layers of SRD such as highways, transportation, postal 

addresses index, land use, etc. GIS support decision making by facilitating the 

integration, storage, querying, analysis, modeling, reporting, and mapping of this data.  

Following several interviews with SRD holders in ECC, it was decided to focus the 

scenario on a real past emergency situation: a snowstorm which affected the M11 

motorway on 31st January 2003.  

6.2.1 Legacy Systems Layer 

The Emergency Management System (EMS) aggregates data and functionalities from 

three different sources:  

• Meteorological Office: is a national UK organization which provides 

environmental resources, such as weather forecast, snow and pollution data.  

• ViewEssex: is a collaboration between ECC and British Telecommunications 

(BT) which has created a single corporate spatial data warehouse. As can be 

expected ViewEssex contains a wide range of data including data for roads, 

administrative boundaries, buildings and Ordnance survey maps, as well as 

environmental and social care data.  

• BuddySpace: is an Instant Messaging client facilitating lightweight 

communication, collaboration, and presence management [10] built on top of the 

instant messaging protocol Jabber4. The BuddySpace client can be accessed on 

standard PCs, as well as on PDAs and mobile phones which in an emergency 

situation may be the only hardware device available. 

6.2.2 Service Abstraction Layer 

We distinguish between two classes of services: data and smart. The former refer to 

the three data sources introduced above, and they are exposed by means of standard 

Web services: 

• Meteorological services: provide weather information - e.g. snowfall level - over 

a given rectangular spatial area.   

                                                           
4 Jabber. http://www.jabber.org/ 



• ViewEssex services: return detailed information on specific types of rest centre. 

For example, getHospitals is a Web service that returns a list of relevant 

hospitals within a given circular area. 

• BuddySpace services: allow presence information on online users to be accessed.  

Smart services represent specific emergency planning reasoning and operations on the 

data provided by the data services. They are implemented in a mixture of Common 

Lisp and OCML [23] and make use of the EMS ontologies. In particular, we created a 

number of services that filter the data retrieved from ViewEssex according to 

emergency-specific requirements: e.g. rest centres with heating system, hotels with at 

least 40 beds, easy accessible hospital, etc. The used criteria were gained from our 

discussions with emergency officers of ECC. 

6.2.3 Semantic Web Service Layer 

The following tables summarise the ontologies reflecting the client and provider 

domains to support SWS descriptions. 

 
Service Oriented Domain Ontologies 

Meteorology Domain Ontology 

It contains the concepts used to semantically describe the 

services attached to the data sources of the Met-Office 

domain, such as snow and rain. 

 

Emergency Planning Domain Ontology 

 

It contains the concepts used to semantically describe the 

services attached to the data sources of the ViewEssex 

domain, such as hospitals and supermarkets.  

 

Jabber Domain Ontology 

 

It contains the concepts used to semantically describe the 

services attached to the data sources of the Jabber 

domain, such as session and preferences. 

 

As in the previous use case, we introduced lifting operations to get the information 

provided by Web services up to the semantic level. These lisp functions automatically 

extract data from SOAP/XML messages and create instances of the domain 

ontologies. The mapping information between syntactic data types and ontological 

classes is defined at design time by developers.  

 
User Oriented Domain Ontologies 

GUI Ontology 

It contains GUI and user-oriented concepts. It maps the 

ontology elements which will be displayed to the 

elements of the particular user interface which is used. 

Note that although the choice of the resulting syntactic 

format depends of the chosen lowering operation, 

concepts from the GUI ontology are used in order to 

achieve this transformation in a suitable way. 

Archetypes Ontology 

It is a minimal ontological commitment ontology aiming 

to provide a cognitively meaningful insight into the 

nature of a specialized object; for example, by conveying 

the cognitive (“naïve”) feeling that for example an 

hospital, as a “container” of people and provider of 

“shelter” can be assimilated to the more universal 

concept of “house”. The latter can be considered as an 

archetypal concept, i.e. based on image schemata and 

therefore supposed to convey meaning immediately. It is 



moreover assumed that any client, whilst maybe lacking 

the specific representation for a specific basic level 

concept, knows its archetypal representation.  

Spatial Ontology 

It describes geographical concepts of location, such as 

coordinates, points, polygonal areas and fields. It also 

allows describing spatial objects as entities with a 

location and a set of attributes. 

Context Ontology 

It allows describing context n-uples which represent a 

particular situation. In the emergency planning 

application, context n-uples have up to four components, 

the use case, the user role, the location, and the type of 

object. Contexts are linked with (WSMO-) goals; i.e. if 

this type of user accesses this type of object around this 

particular location, these particular goals will be 

presented. Contexts also help to inform goals, e.g. if a 

goal provides information about petrol stations in an 

area, the location part of the context is used to define this 

area, and input from the user is therefore not needed. 

 

The purpose of the GUI, Archetypes and Spatial ontologies is the aggregation 

of different data sources on, respectively, a representation, a cognitive and a spatial 

level. Therefore we can group them under the appellation aggregation ontologies. 

They allow the different data sources to be handled and presented in a similar way. 

Inversely to the lifting operations, lowering operations transform instances of 

aggregation ontologies into syntactic documents to be used by the server and client 

applications. This step is usually fully automated since aggregation ontologies are, by 

definition, quite stable and unique.  
 

SWS Description Ontologies 

Met-Office SWS 
It contains goal, Web service and mediator descriptions 

which define SWS on top of the Met Office database. 

 

Emergency Planning SWS 

 

It contains goal, Web service and mediator descriptions 

which define SWS on top of the ViewEssex GIS system.  

 

BuddySpace SWS 

 

It contains goal, Web service and mediator descriptions 

which define SWS on top of the BuddySpace instant 

messaging system. 

 

 

Figure 11. The use of semantics within the Semantic Web Service Layer 



Figure 11 outlines how the ontologies and SWS descriptions stored within the SWS 

library of IRS-III link the user interface (Application) to the Met Office, ECC 

Emergency Planning, and BuddySpace Web services (WSs). Starting from the 

application, counterclockwise, the italics words in the picture represent the main 

operations performed within IRS-III. The Web service descriptions make use of 

domain ontologies - Meteorology, ViewEssex and Jabber – whilst the goal encodings 

rely on the GUI, archetypes and spatial ontologies. Mismatches are resolved by 

mediation services linked to WG and GG mediators.  

Figure 12 shows an example of the created SWS descriptions: Get-Polygon-

GIS-data-with-Filter-Goal represents a request for available shelters within a 

given area.  The user specifies a polygon area and the shelter type (e.g. hospitals, inns, 

hotels). The results obtained by querying ViewEssex need to be filtered in order to 

return shelters correlated to emergency-specific requirements only. The problems to 

be solved in this example include: (i) discovering and selecting the appropriate 

ViewEssex Web service; (ii) meditating the difference in area representations 

(polygon vs. circular) between the user goal and available Web services; (iii) 

composing the retrieve and filter data operations. 

 

 

Figure 12. A portion of WSMO descriptions for the EMS prototype. 

We outline below how the SWS representations in Figure 12 address these problems. 

• Web service discovery and selection: when the Get-Circle-GIS-Data-Goal 

is invoked, IRS-III discovers all of Web services that can solve it by means of the 

WG-mediator (Section 4.2.1). Each semantic description of ViewEssex Web 

service defines the Web service capability - i.e. the class of shelter provided by 

the Web service. The listing below reports an example of kappa expression 

defining a capability assumption:  

 
(DEF-CLASS GET-ECC-HOSPITALS-WEB-SERVICE-CAPABILITY (CAPABILITY) ?CAPABILITY 
  ((USED-MEDIATOR :VALUE GET-GIS-DATA-MEDIATOR) 
   (HAS-ASSUMPTION:VALUE 
     (KAPPA(?WEB-SERVICE) 
           (= (WSMO-ROLE-VALUE ?WEB-SERVICE'HAS-SPATIAL-OBJECT-QUERY) 
              'HOSPITALSQUERY)))) 



 

If the Web service provides the class of shelters defined in one of the inputs of 

the goal, IRS-III selects it (Section 4.2.2). In the example above, the Web service 

is selected if the request class of shelters is hospital (‘hospitalquery). 

• Area mediation and orchestration: the Get-Polygon-GIS-data-with-

Filter-Goal is associated with a unique Web service that orchestrates three 

sub-goals in sequence. The first one gets the list of polygon points from the input; 

the second one is the Get-Circle-GIS-Data-Goal described above; the third 

one invokes the smart service which filters the list of shelter data. The first and 

second sub-goals are linked by three GG-mediators which return the centre, in 

the form of latitude and longitude, and the radius of the smallest circle that 

circumscribes the given polygon. To accomplish this, we created three mediation 

services represented by three distinct goals: Polygon-to-Circle-Lat-Goal, 

Polygon-to-Circle-Lon-Goal, and Polygon-to-Circle-Rad-Goal. 

Each mediation service is performed by a specific Web service, exposing a Lisp 

function (the respective WG-mediator and Web service ovals were omitted to 

avoid cluttering the diagram). The results of the mediation services and the class 

of shelter required are the inputs to the second sub-goal. A unique GG-mediator 

connects the output of the second to the input of the third sub-goal, without 

introducing any mediation service. 

Additionally to the benefits of our approach introduced in Section 6.1.3, this use case 

highlighted the following aspects:  

• We created complex SWS descriptions on top of three distinct kinds of legacy 

system: database, GIS and instance messaging. The use of Web services allows us 

to abstract from the underlying technologies and ease thus their integration. 

• A given goal – e.g. Get-Circle-GIS-Data-Goal – might be achieved by 

several Web services. The most appropriate one is selected on the basis of the 

specific situation. The effective workflow – i.e. the actual sequence of service 

invocations – is known at run-time only. In existing Web service-based 

approaches the functionalities are mapped at design-time, when the actual context 

is not known. 

• The use of WG and GG mediators allows goal and process mediation and thus a 

smoothly crossing among services of distinct domains in the same workflow. The 

most appropriate mediation service is selected at run-time, according to the 

specific situation.  

• If new Web services will be available – for instance providing data from further 

GIS - new Web Service descriptions can be simply introduced and linked to the 

Get-Circle-GIS-Goal by the proper mediators - or reusing the existing one, if 

semantic mismatches do not exist - without affecting the current structure. In the 

same way, new filter services - e.g. more efficient ones - may be introduced.  

6.2.4 Presentation Layer 

The Emergency Management System (EMS) prototype is in effect a decision support 

system, which assists the end-user – currently the Emergency Planning Officer (EPO) 

– in assembling information related to a certain type of event, more quickly and 



accurately. The application’s user interface is based on Web standards. XHTML and 

CSS are used for presentation, while JavaScript (i.e. EcmaScript) is used to handle 

user interaction together with AJAX techniques to communicate with IRS-III. One of 

the main components of the interface is a map, which uses the Google Maps API [13] 

to display polygons and objects (custom images) at specific coordinates and zoom 

level. Each time an object is displayed by a user at a particular location, a function of 

the context ontology provides the goals which need to be displayed and what inputs 

are implicit. A screencast with an example of end-user interactions as well as a live 

version are available online5, to be used preferably with the Firefox Web browser. 

7 Lessons learned 

On the basis of challenges encountered - and the ways in which they were overcome -

we now summarize the lessons learned in terms of: identifying the suitable scenario, 

following the adequate development process, verifying the advantages of SWS over 

other technologies and outlining the open challenges. 

7.1 The scenario 

The first challenge is the identification of the proper scenario; i.e. a scenario where 

SWS technology can provide substantial benefits. On the basis of our experience, we 

can outline the following main features:  

• The scenario is a distributed and heterogeneous environment with a lack of 

centralized control, which provides a large amount of alternative – i.e. providing 

different functionalities in distinct situations - and competitive - i.e. providing the 

same functionalities in the same situation – services.  

• The services used in the scenario are connected to external environments and 

access to common data/resources already available on the Web.  

• The scenario involves multiple stakeholders - clients and service providers - that 

need to collaborate. They represent the heterogeneous viewpoints/domains to 

describe.  

• The scenario is not static, but subject to changes and evolutions. The dynamism 

may involve the viewpoint descriptions – e.g. government policies, citizen needs, 

agencies’ participation – or the service descriptions - e.g. changes in the service 

business process, or new services provided by existing or new partners.  

In our work, we preliminary identified a lot of promising service-oriented application 

fields, such as e-Procurement, school  admissions, libraries, health, GIS applications 

(e.g. emergency planning), change of circumstance, child care/children’s services, 

youth services, adult social care, benefits and revenues, and criminal justice 

initiatives. On the basis of existing legacy systems, services and datasets, resources, 

stakeholders’ requirements and needs within ECC, we refined the list reported above 

and chose the use cases described in Section 6. 

                                                           
5 http://irs-test.open.ac.uk/sgis-dev/

http://irs-test.open.ac.uk/sgis-dev/


7.2 The development process 

According to the features of the suitable scenario outlined in the previous section, we 

expect that, during the development process, new requirements may arise or some 

domain aspects may be better comprehended, new services need to be developed or 

integrated in order to cover existing lacks, and new datasets may be available in order 

to improve the existing information space. These aspects are common in almost every 

scenario, but they are particularly true when dealing with distributed and 

heterogeneous sources. Therefore, we aimed to design a pragmatic - in order to 

quickly lead to a working outcome – as well as flexible - in order to easily respond to 

possible changes or improvements and meet the multiple actors’ viewpoints – 

development process. The prototyping approach is a commonly used methodology to 

mach such requirements. Moreover, the semantic approach generally helps to address 

flexibility, since the changes mainly concern the semantic descriptions only - e.g. 

ontologies and SWS descriptions of the Semantic Web Service layer - and not the 

overall architecture of the system. The challenge was to identify an appropriate 

prototyping methodology which takes advantage of the decoupled nature of SWS 

descriptions (WSMO approach). As a result, we tailored a SWS-oriented prototyping 

development process composed of the following three straightforward phases: 

requirements capture, SWS description, evaluation (Figure 13).  

 

Figure 13. Main steps of the devised prototyping process. 

The first phase represents the step 1 of the methodology presented in Section 5.2. The 

second phase focuses on the semantic descriptions, and encloses the required 

flexibility of the process. This phase is decomposed into several activities that deal 

with the knowledge acquisition and representation of the multiple domains and actors’ 

viewpoints of the application context. Each activity can be independently iterated 

whenever an improvement or change only involves the respective domain/viewpoint. 

This phase represents the steps 2, 3 and 4 of the methodology presented in Section 

5.2. The last phase introduces the prototyping iterations of the whole application 

development process. The prototype has been shown to stakeholders (clients and 

service providers) and end-users. Prototype improvements and changes have been 

mainly based on their feedback. Finally, it is important to note that:  



• Along the whole development process, we keep a constant contact with the 

stakeholders and users. In the first phase, we mainly interview stakeholders’ 

manager and technical people. Then, we cooperate with domain experts (i.e. 

organization employees). Finally, we consult again the stakeholders and involve 

the end-users. In this way, we can address the barriers e) and f) identified in 

Section 3.2. 

• The structure of the second phase leads to a sound approach that separately 

focuses on each of the involved actors – i.e. their viewpoints and specific 

languages/terminology/skills - keeps organizations’ autonomy in the description 

of their domain and allows the cooperative development of the application. 

• The proposed methodology is not an e-Government specific formula. 

7.3 The verified added values 

The deployed applications highlighted advantages of adopting SWS over other 

technologies. In this section, we summarise the comparison with existing Web 

services-based and ontology-based approaches. Other technologies (e.g. standard 

database technologies), indeed, do not provide the adequate abstraction over 

heterogeneous and autonomous legacy systems (Section 6.1.3). 

• SWS vs. Web Services. By using Web Services, data and functionalities can be 

shared with anyone through the Internet. As introduced in Section 2, the supplied 

services are autonomous and platform-independent computational elements. The 

syntactic definitions used in these specifications allow fast composition and good 

results in term of application performance. However, they do not completely 

describe the capability of a service and cannot be understood by software 

programs. A human developer is required to interpret the meaning of inputs, 

outputs and applicable constraints, as well as the context in which services can be 

used. Moreover, Web Services lack in flexibility: for instance, if a new Web 

Service is deployed, the application developers need to re-model several syntax 

descriptions – introducing a cost - in order to integrate it.    

On the other hand, the SWS approach is able to model the background 

knowledge of a context together to the requested and provided capabilities, and it 

hence addresses automatic reasoning and reuse (Section 6.1.3). As a result, 

service invocation, discovery, composition and mediation are automated by 

adopting the best available solutions for a specific request and increasing the 

flexibility, scalability, and maintainability of an application. Moreover, the 

execution sequence of a complex SWS  (Sections 6.1.3 and 6.2.3) is not hard-

coded, and it is dynamically created by using a goal-based invocation: several 

Web Services may be associated with a goal, and only the best one will be 

discovered and invoked at runtime only (late binding); if a new service will be 

available, the developers simply will describe and then link it to an existing goal; 

if a service will change, only the specific semantic description will be affected, 

and not the whole process (Section 6.2.3).  

• SWS vs. other ontology-based approaches. Creating and managing ontologies is a 

bottleneck: understanding a domain, acquiring and representing knowledge, 

populating with instances and evolving ontologies are big tasks for the 



application developers. In complex domain such as e-Government, centralized 

ontologies would require an unrealistic development effort with no guarantee of 

satisfactory results. Moreover, government agencies deal with huge datasets (e.g. 

demographic, GIS, etc.) that cannot easily transposed to ontology’s instances. 

However, in the context of semantic-based applications, such a cost cannot be 

deleted, but it may be contained. 

SWS technology makes knowledge capture and maintenance process simpler and 

more efficient (Section 6.1.3). (a) The only knowledge which must be modeled is 

related to the exposed functionality of the Web service. This means describing 

the concepts used by the Web service only, such as inputs and output. Moreover, 

the instances of a concept are not defined a priori, but they are created at runtime 

– i.e. lifted after the execution of the Web service. This minimalist approach 

makes easy the management of ontologies – i.e. evolution and maintenance. (b) 

The knowledge capturing process is distributed among all of the stakeholders: 

each partner describes – and it is responsible for – its particular domain. In this 

way, the several viewpoints can be independently and concurrently described by 

the proper knowledge holders. Partners can also reuse their own existing 

ontologies. As a result, we obtain a model that reflects the e-Government 

structure and addresses the required lack of central control. 

Moreover, a WSMO based approach addresses interoperability among very 

heterogeneous knowledge sources and mediation among several viewpoints (users, 

multiple providers, etc.). WSMO mediators are mappings that solve existing 

mismatches and do not affect service descriptions. In our applications, we have 

gathered the following mediation requirements and solutions:  

• Data mediation: organizations have their own databases and hence different data 

formats for the same concept. Lifting at the semantic level these distinct data 

formats, the resulting instances can be mapped by means of either mediation 

services (Section 6.2.3) or mapping rules (Section 6.1.3).  

• Goal mediation: Multiple Web services can be linked to the same goal via 

mediators. In principle, goal and web service descriptions are provided by 

distinct organizations, and a mediation service is used to solve the existing 

mismatches (Section 6.2.3).  

• Process mediation: organizational processes behave in different ways according 

to their own set of operational procedures, requirements and constraints. Added 

value functionalities can be provided by composing several goal descriptions. 

Mediation between two goals in sequence may be necessary to solve exiting 

mismatches (Section 6.2.3).  

7.4 Open Challenges 

Since we are adopting a young technology and e-Government is a very complex 

domain, we are aware that not all of the existing issues are completely addressed. The 

main remaining challenges identified are: 

• SWS infrastructure. SWS technology is an ongoing research, and some of its 

main features - e.g. mediation, orchestration, non functional properties based 

discovery - are still under development. However, in order to respond to the 



needs of real-world applications, IRS-III already introduced some solutions. 

During the development of the presented applications, we continually improved 

and tested selection, choreography, orchestration and mediations of IRS-III. 

However, further use cases will highlight unconsidered aspects and allow us to 

improve IRS-III performances. Moreover, the choice of a specific SWS approach 

involves the adoption of its defined features; for instance, IRS-III uses client 

instead of service choreography, goal-based orchestration instead of goal and 

web service composition, etc. However, in a wide domain such as e-Government, 

some features may be adequate in a context but not in others, and several partners 

may adopt distinct approaches. The openness of IRS-III aims to address the 

interoperability of multiple SWS approaches. 

• Commercialization. The transition of the currently available systems into a stable 

and robust infrastructure is one of the major challenges that need to be solved, 

before a SWS-based solution can be deployed into a productive environment. 

However, the prototyping development (Section 7.2) of carefully targeted 

applications, with clear objectives stated, can lead to real-world operational 

systems. 

• Organizational and social aspects. The employees of governmental agencies 

usually perform their tasks well established procedures; the inappropriately-

handled introduction of new processes or applications may lead to the reluctance 

of use them. Active participation of stakeholders and end-users in the design and 

development processes allows developers to deploy applications that respect 

current procedures and, at the same time, ease the work of staff, leading to 

improved acceptance. As described in Section 7.2, our approach follows this 

idea; however, more detailed investigations on the approach/methodology to 

follow and social implications could be performed.   

• Privacy, Security, and Trust. As stated in Section 3.2, these are fundamental 

requirements in e-Government. At the syntax level, efficient solutions for 

addressing privacy and security issues already exist (e.g. SSL protocol and virtual 

private networks for protecting the communications, firewalls and digital 

certificates for avoiding malicious accesses and protecting data), or there is 

relevant ongoing research (e.g. enriching Web Services description with digital 

certificates and signatures). In the Change of Circumstances application, where 

citizen information had to be protected, we based on the security and privacy 

solutions provided by the adopted EAI system [27].  

The semantic level should extend the syntactic solutions by ontologically 

describing security and privacy policies of accessing data and processes. 

Moreover, trust-based discovery of SWS would be a crucial issue, in order to 

avoid invocation of malicious or unreliable services, for which there are no 

defined standards by which SWS may expose their policies and trust features. 

Most of existing approaches inherit methodologies from the peer-to-peer 

networks [21], [24]. Trust evaluation algorithms for SWS consider security 

issues, such as confidentiality, authorization, authentication, as rating statements 

[17],[19],[20],[21], or more generically Quality of Service performance 

properties [35], such as precision and accuracy of data, timeliness in executing a 

task, and security. The key to enabling a trust-based selection for SWS lies in a 

common ontological representation, where Web service and client perform their 



trust guaranties and requirements. In [12], we propose our trust managing 

approach based on IRS-III. Essentially, all participants can expose their trust 

guaranties and requirements by specifying trust policies. Since this work is still in 

progress, we do not apply it to the presented use cases. 

• Ease of use of SWS technology in e-Government. The full integration between e-

Government and SWS is not an easy task.  The following further requirements 

should be considered. (a) Government agencies usually do not directly use the 

SWS infrastructure to represent knowledge internally. For instance, organizations 

will likely adopt their own workflow paradigm to describe their processes [1].  

(b) Organization processes involve interactions with non-software agents, such as 

citizens, employees, managers, and politicians; thereby, component services 

cannot in general be executed in a single-response step, and may require to 

following an interaction protocol with humans that involves multiple sequential, 

conditional and iterative steps. For instance, a service may require a negotiation 

between the citizen and the provider. In our approach, the management of such 

an interaction is embedded in the Presentation layer, because IRS-III supports 

one-shot goal invocation only. 

In order to address these issues, we argue that a more complex semantic layer – 

i.e. an explicit e-Government framework - needs to be modelled. In [15], we 

identify and model three knowledge levels: Constraints, describing the context 

that bounds the creation and evolution of services: legislations, policies, and 

strategies influencing the development and management of an e-Government 

service-supply scenario; Configuration, describing the context in which services 

are supplied: requirements, resources, actor’s role, business processes, and 

transactions of an e-Government service-supply scenario; Service delivery, 

adopting SWS technology as the base for the description, discovery, composition, 

mediation, and execution of (Web) services.   

• Standardization. Currently, there are not reference standards for (semantic) 

service oriented applications in e-Government. The e-Government community is 

still debating on the approach to follow between, as a broadly described option, 

standardization versus integration - i.e. focusing on interoperation among several 

existing approaches. We believe that our approach is open to both solutions and 

our results may contribute to the investigation of possible standards. 

8 Related Work  

In the last years, several projects applied SWS technology in the e-Government 

domain, but only a few of them show reusability and composability in real usage 

scenarios. The OntoGov project [25] develops a platform that will facilitate the 

consistent composition, reconfiguration and evolution of e-Government services. It 

focuses more on the service life cycle than the interoperability and integration issues. 

Services are described by means of a “meta ontology” that extends OWL-S [26] by 

introducing WSMO [36] features. Terregov [32] is a project at an early stage of 

development. It aims to address the issue of interoperability of e-Government 

services. Its architecture is composed by a framework and intelligent agents that will 



offer configuration and reconfiguration of service workflows by selecting competing 

Web Services on the basis of their performance, and composing dynamic workflows 

based on semantic descriptions. In order to represent e-Government processes, it 

adopts OWL-S for describing the behaviors of Web Services, and BPEL [4] workflow 

description language for their orchestration. WebSenior [22] uses ontologies to 

automatically generate Web Services customized to senior citizen’s needs and 

government program laws and regulations. Differently to both OntoGov and 

Terregov, WebSenior proposes a solution to a specific real usage scenario. This 

highlights the practical applicability of its approach, but limits the reusability and 

flexibility.  

No one of the mentioned approaches adopts mediation mechanisms to overcome 

data and process mismatches: they only propose centralized ontologies for 

representing the entire domain and thereby addressing interoperability. 

Further efforts on investigating multiple aspects of the application of semantic 

technologies in the e-Government domain are under way: BRITE [11] aims to enable 

interoperations in a transnational scenario among institutions that concert the 

registration of businesses in the European Union; FIT [29] will develop, test, and 

validate a self-adaptive citizen-oriented e-government framework; SAKE [30] will 

develop a holistic framework - and the supporting tools – that will be sufficiently 

flexible to adapt changing, diverse environment, and needs; and SemanticGov [34] 

will provide a WSMO-based infrastructure for Pan-European e-Government services. 

Since all of these projects started in 2006, they are still in their initial phase. 

9 Summary and Future Work 

In our work, we successfully established a close collaboration with a large local 

authority in UK in order to define a reusable SWS-based framework for deploying 

real-world applications in the e-Government domain. The aim is to dealing with 

complex scenarios, by easily interconnecting heterogeneous domains and allowing 

governmental agencies to cooperate and consume shared data in an easy way and 

without a centralized control. SWS technology promises to address interoperability 

and integration issues, and automate the development of service-oriented applications 

through semantic Web technologies (Section 2). 

The analysis of motivations, requirements, and expected results of matching SWS 

and e-Government research areas (Section 3) provided us the aspects to stress first in 

the design of our framework and then in the development of compelling use cases. 

To provide semantics and step towards the creation of added value services, we 

adopted IRS-III, an existing SWS broker (Section 4).  In our work, we enclosed IRS-

III into a 4-layers generic application architecture (Section 5.1) and devised a 

development methodology (Section 5.2) to propose a reusable framework for 

deploying SWS-based applications. The layering of the architecture proved to be very 

useful: (a) the development of ontologies and SWS descriptions could be decoupled 

from the implementation of the user interface and the deployment of Web Services; 

(b) using Web Services on top legacy systems, we abstracted from the technical 

details of involved legacy systems. The proposed methodology allowed the easy 



development of agile and flexible applications based on the idea of reuse. For 

instance, the methodology involves the ontological decoupling of the client’s context 

from the providers’ one. This led us to lower the cost of application deployment by 

introducing cooperative development and creating small ontologies focused on the 

specific service functionalities.  

Following our approach, we deployed two e-Government applications (Section 6):  

Change of Circumstances and Emergency Management System. In this way, we (a) 

tested the reusability and adaptability of our approach to different e-Government 

contexts, (b) proved how our framework addresses interoperability and integration 

issues, and (c) stressed all of the aspects associated with the development of SWS-

based applications: e.g. knowledge acquisition, discovery, composition, and 

mediation. Note that the development of the second application got benefits from the 

lessons learned in the development of the first one. In particular, we reduced the time 

of capturing requirements and describing SWS and obtained more qualitative results. 

On the basis of these considerations and the results obtained from the two 

applications introduced above, we reported the main lessons learned (Section 7). We 

outlined a general scenario where SWS technology can provide substantial benefits; 

detailed our prototyping development process and highlighted the active role of 

stakeholders and end-users; summarized the verified added values of SWS over other 

technologies; and pointed out the open challenges that will drive our future work. 

The analysis of related work (Section 8) showed that the application of SWS in e-

Government is a really interesting topic, but a few projects provide real-world 

applications yet. Since e-Government community claims for creating compelling 

prototypes, establishing visible standards, stable and mature technologies, and 

convincing business cases, we believe that our work may contribute to raising 

awareness of the potential benefits of SWS in e-Government. Perhaps more 

importantly, the lessons learned may be also used to (a) guide the efforts of new e-

Government applications/projects; (b) influence the e-Government standards 

environment and the e-Government strategic environment so as to encourage take up 

of SWS technologies. 
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