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Deploying Sensor Networks With Guaranteed
Fault Tolerance

Jonathan L. Bredin, Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Daniela Rus

Abstract—We consider the problem of deploying or repairing a
sensor network to guarantee a specified level of multipath connec-
tivity (�-connectivity) between all nodes. Such a guarantee simul-
taneously provides fault tolerance against node failures and high
overall network capacity (by the max-flow min-cut theorem). We
design and analyze the first algorithms that place an almost-min-
imum number of additional sensors to augment an existing net-
work into a �-connected network, for any desired parameter �.
Our algorithms have provable guarantees on the quality of the so-
lution. Specifically, we prove that the number of additional sen-
sors is within a constant factor of the absolute minimum, for any
fixed �. We have implemented greedy and distributed versions of
this algorithm, and demonstrate in simulation that they produce
high-quality placements for the additional sensors.

Index Terms—Approximation algorithms, augmentation, graph
algorithms, sensor networks.

I. INTRODUCTION

S ENSOR-NETWORK applications owe much of their pop-
ularity to broad and rapid deployment, frequently into haz-

ardous environments. We use a robotic helicopter to deploy sen-
sors to monitor outdoor environments and provide network con-
nectivity for emergency response scenarios [1], [2]. Such rapid
deployment, especially under extreme circumstances, exposes
sensors to additional chance of failure and placement errors.
Sensors may not be placed in exactly their desired locations
because of wind or inaccurate localization. Sensors may fail
from impact of deployment, fire or extreme heat, animal or ve-
hicular accidents, malicious activity, or simply from extended
use. These failures may occur upon deployment or over time
after deployment: extensive operation may drain some of the
nodes’ power, and external factors may physically damage part
of the nodes. Additionally, hazards may change devices’ posi-
tions over time, possibly disconnecting the network. If any of
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these initial deployment errors, sensor failures, or change in
sensor positions cause the network to be disconnected or lack
other desired properties, we need to deploy additional sensors
to repair the network.

In an example application, a network of cameras monitors the
safety of a building compound. Each sensor does local image
analysis to detect events such as motion within its field of view.
Upon such events, sensors send images to a base station for more
complex analysis such as tracking. This application relies on
the network’s ability to support a given amount of information
flow. The application also illustrates that not all the nodes in
the network require the same amount of communication. For
example, the nodes along the trajectory of the tracked object will
transmit more images and thus use more power to communicate.
This means that their communication ability will be diminished
and they may become depleted of power. In such a case, the
network will have to be extended with new nodes to sustain the
desired information flow.

Given the dynamic environment, it is desirable to have proce-
dures to establish network properties, such as connectedness, in
the event that multiple devices fail. We are interested in devel-
oping an algorithm that can run regularly in the background, to
suggest repairs to a deployment mechanism once connectivity
properties disappear. Upon the detection of network failures, our
algorithm computes the locations where an approximately min-
imum number of additional nodes need to be deployed in the
network using a ground or flying robot. This results in a goal-di-
rected approach for automated maintenance and repair of a net-
work which optimizes the use of the powerful mobile node (e.g.,
the robot helicopter) tasked to do this operation by deploying
additional sensors.

More specifically, to support both fault tolerance and ca-
pacity, we focus on the vertex-connectivity of the network. The

-connectivity property has been studied extensively before
in the context of wireless networks; see [3], [4], and their
many citations. In the worst case, a -connected network re-
quires node failures to disconnect the network. Additionally,

-connectivity ensures a high overall transport capacity of the
network, by the max-flow min-cut theorem.

Given a desired value of , we present and analyze a generic
algorithm that determines how to establish -connectivity by
placing additional sensors geographically between existing
pairs of sensors. Here, in order for the problem to be well-de-
fined, we assume that the sensors’ locations are known (either
directly by the sensors via GPS, or by an external agent’s
survey and measurement) and that sensor communication is
defined by the unit-disk graph model, so that we can predict
how the communication graph changes as we add sensors.
Solving this problem with a minimum number of additional
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sensors is NP-hard [5]. Our approach is to transform the net-
work repair problem to one of selecting the minimum-weight

-vertex connected subgraph of the complete graph underlying
the sensor network and then applying existing graph-theoretic
approximation methods. Our proposed algorithm provides a
bound on the solution quality that is within a constant factor
of the optimal solution, for any fixed . (More precisely, the
approximation ratio is , where is the best
approximation ratio for a related problem [6], [7].)

Due to limited communication or computational resources
available to nodes, our proposed provable approximation al-
gorithm for optimal -connectivity repair may be difficult to
implement on a physical sensor network. This limitation may
not be significant because the algorithm can usually be run oc-
casionally and in the background, so there is little need for
a “real time” algorithm. Nonetheless, our characterization of
the problem complexity shows how to further approximate the
problem. We develop alternative methods for determining a low-
cost -connected graph that are simpler, faster, and able to run
in the distributed sensor network. The modularity of our base
algorithm allows us to trade computational speed for solution
accuracy. In an experimental study, we implement in simula-
tion the use of greedy and distributed algorithms and show that,
in practice, the solution quality produced by these fast methods
is not far from optimal.

Attaining -connectivity has recently been studied in the con-
text of power assignment, where instead of adding sensors the
goal is to assign the sensors’ communication power to ensure

-connectivity and minimize overall power consumption. This
problem is also NP-hard. Ramanathan and Rosales-Hain [8]
consider the special case of 2-connectivity and provide a cen-
tralized spanning-tree heuristic for minimizing the maximum
transmit power in this case. Bahramgiri et al. [3] generalize the
cone-based local heuristic of Wattenhofer et al. [9], [10] in order
to solve the general -connectivity setting. However, both of
these works are heuristics and do not have provable bounds on
the solution cost [11]. Lloyd et al. [12] present an 8-approxi-
mation algorithm for 2-connectivity, but they do not consider
general -connectivity. Hajiaghayi et al. [11] present a con-
stant-factor approximation algorithm for -connectivity for any
fixed . Recently, different sets of authors (see, e.g., [13]–[16])
used the notion of -connectivity and the results of [3], [11] to
deal with the fault-tolerance issues for static and dynamic set-
tings.

Our problem has been considered before only in the special
case , where the problem has applications in VLSI de-
sign and evolutionary/phylogenetic tree constructions in com-
putational biology. See [17] for a description of these and other
applications, and [18] for early work on the theory of general
graphs. The best approximation algorithm to our knowledge for
our context of unit-disk graphs is a 5/2-approximation algorithm
by Du et al. [19], again only for the case .

We proceed by introducing some definitions, notation, and
models we will use for our algorithm. Section III presents an
algorithm that takes the subgraph-repair problem as a modular
black box to establish -vertex connectivity in a network
by adding new nodes geographically between existing ones.
Whereas the algorithm is natural, the analysis in Section IV

providing an approximation bound is complicated. We present
in Section V practical distributed modifications to our algo-
rithm and implement one on computationally limited platforms
upon which the ideal approximation algorithms would be dif-
ficult to implement. Section VI supports the heuristics through
experiments whose simulations compare the performance of
our simplified algorithms with our algorithm using optimal
subgraph repair. The experiments show that our methods are
superior to deployment according to additional random sam-
pling. Finally, we conclude in Section VII with discussion of
improvements to our algorithm relying on tighter analysis to
derive a polynomial-time approximation scheme.

The conference version of this paper inspired or has been
used in several follow-up papers, e.g., [4], [20]–[40]; see also
[41]–[43].

II. PRELIMINARIES AND MODELS

In this paper, we consider static symmetric multihop ad hoc
wireless networks with omnidirectional fixed-power transmit-
ters that typically arise in the context of sensor networks. This
model is considered by Blough et al. [44], Calinescu et al. [45],
Kirousis et al. [46], and others in their works on connectivity.
The model has many practical consequences; for example, many
existing routing protocols can easily be accommodated by this
model, in particular because links are bidirectional. Further-
more, many of the restrictions imposed by this model can be
relaxed at the cost of additional communication. We summarize
the main features of the model here.

An ad hoc wireless network consists of a set of mobile de-
vices (e.g., sensors) equipped with radio transceivers. In gen-
eral, each radio transmitter can be assigned a power setting and
an orientation that define the reception area of its transmissions.
We assume that all transmitters have a common, fixed maximum
power setting, and refer to that as the communication radius.
We also assume that the transceivers are omnidirectional in the
sense that they transmit and receive in all directions equally.
Both of these assumptions are satisfied by most wireless net-
works. We also assume that the signal propagation is uniform in
all directions, so in particular there are no radio-opaque obsta-
cles.

We make the further assumptions that our networks are static
and that all communication links are bidirectional or symmetric.
In a static network, the devices are stationary. If a device moves,
the topology of the network can change in ways out of our con-
trol. In the symmetric link model, if a device can receive trans-
missions from a device , then also has enough maximum
power to transit to device . In practice, most wireless networks
experience problems from asymmetries, but the symmetric re-
striction simplifies routing protocols. We assume that the nodes
in our networks tune down their effective ranges to the lowest
common range.

Given these assumptions, we can model our wireless network
as a unit-disk graph, , where each vertex represents
a device and is assigned two-dimensional coordinates. Two ver-
tices are connected by an edge if and only if their distance is
at most the communication radius. For simplicity of exposition,
we normalize the coordinate assignment so that the communi-
cation radius is 1. The unit-disk graph model is widely used,
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Fig. 1. An example unit-disk graph.

e.g., in the past theoretical work on connectivity [19] as well as
in certain practical scenarios with carefully engineered radios
[47].

In this paper, we suppose that the network is multihop,
meaning that the mobile devices cooperate to route each others’
messages. Thus, we are interested in multinode communication
paths between the source and destination of a message. In
anticipation of node failures resulting, e.g., from power failure
or power depletion of a mobile node, we are also interested
in finding multiple disjoint communication paths between any
source/destination pair.

We consider the following problem, given a sensor network
represented as a unit-disk graph, we wish to compute and deploy
the minimum number of additional devices to ensure that the
resulting unit-disk graph satisfies the fault-tolerance constraint
called vertex -connectivity. A graph is vertex -connected if
there are at least vertex-disjoint paths connecting every pair
of vertices, or equivalently, the graph remains connected when
any set of at most vertices is removed. Hence, our goal is to
make the network resilient to node failures. In the problem we
consider, we are given such a plane unit-disk graph and our goal
is to deploy the minimum number of additional sensors to ensure
one of two fault-tolerance constraints on the resulting unit-disk
graph: either there should be paths in the new network between
every pair of original sensors, or there should be paths in the
new network between every pair of (old or new) sensors. We
call the first constraint partial -connectivity and the second
constraint full -connectivity.

Fig. 1 shows an example unit-disk graph that is not 3-con-
nected. The largest component of the graph is 1-connected as it
can be separated with the removal of the vertex marked a, for
example. The graph in Fig. 2 shows the same graph with addi-
tional vertices to establish 3-connectivity among vertices from
the original graph.

Our problem has been considered before only in the special
case , where the problem has also found application in
VLSI design and evolutionary/phylogenetic tree constructions
in computational biology. See [17] for a description of these
and other applications. The problem is NP-hard even for

Fig. 2. The example unit-disk graph from Fig. 1 with added vertices, marked
with dashed circles, to establish 3-connectivity among the original (solid) ver-
tices. The new vertices lie closely enough to each other to ensure 3-connected-
ness for the entire graph. We omit drawing edges between the added vertices for
clarity.

[5]. The best approximation algorithm to our knowledge is a
5/2-approximation algorithm by Du et al. [19], again only for
the case .

An important related problem is, given a weighted com-
plete graph and a number , to find minimum-weight

-vertex-connected subgraph of . This problem can be
viewed as analogous to our problem of -fault tolerance but
for wired networks. Frank and Tardos [48] and Khuller and
Raghavachari [49] were among the first authors who worked
on this problem. The problem is NP-hard, and there are by
now several polynomial-time approximation algorithms with
guaranteed performance ratios. An -approximation algorithm
is a polynomial-time algorithm whose solution cost is at most

times the optimal solution cost. Kortsarz and Nutov [6]
developed a -approximation algorithm. At the heart of this
algorithm is a combinatorial algorithm of Gabow [50] whose
running time is (an improvement to an algorithm
of Frank and Tardos [48]). They also develop better approxima-
tion algorithms for small , specifically, an approximation ratio
of for . Cheriyan et al. [7] improved the
approximation ratio with an -approximation algorithm,
provided that the number of vertices in the graph is at least .
This algorithm is based on an iterative rounding method and the
ellipsoid algorithm applied to a linear-programming relaxation
of exponential size, and hence is not very practical.

Our algorithms will use as a subroutine any one of these ap-
proximation algorithms for minimum-weight -connected sub-
graph. We suppose that the subroutine we use has an approx-
imation ratio of , and state our own approximation ratio in
terms of . This generality allows us to choose an algorithm
according to practicality, or to chose a future improvement to
the state-of-the-art for this problem, and understand the impact
on the final approximation ratio. Note that a better approxima-
tion algorithm, with performance ratio [6], is
known if the graph weights satisfy the triangle inequality, but
the weighted complete graphs we consider do not satisfy this
property. Algorithm 1 presents the formal operation.
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III. ALGORITHM CONNECTIVITY REPAIR

In this section, we describe our algorithm for minimizing the
number of additional sensors to guarantee -connectivity. The
algorithm is relatively simple, building on approximation algo-
rithms for minimum-weight -vertex-connected subgraph. This
modular design allows us to use several candidate algorithms
for finding -connected subgraphs and achieve a range of trade-
offs between quality and performance. In particular, we can use
a constant-factor approximation algorithm for -connected sub-
graphs and obtain a constant-factor approximation algorithm for

-connectivity repair, for any fixed . The analysis of this al-
gorithm is complicated because we need to prove that the sim-
plicity of the algorithm does not prevent it from finding more
intricate, better solutions; this topic is addressed in the next sec-
tion.

The algorithm divides into two cases. Our description con-
centrates on the main case that the number of original sensors
is at least the desired connectivity . The second case that
is simpler and we consider it later.

First, we compute a weighted complete graph on the same
set of vertices as the given graph . The weight on an edge

is one less than the ceiling of the Euclidean distance
between the two points and : . This
weight is zero if and are already connected by an edge in the
unit-disk graph , and otherwise it is the number of additional
sensors required to connect and by a straight path.

Second, we run an -approximation algorithm to find an ap-
proximately minimum-weight -vertex-connected subgraph of

this weighted complete graph . See Section II for a sum-
mary of known theoretical approximation algorithms for this
problem; see Section V for more practical implementations, in-
cluding a greedy approach and a fast distributed algorithm. Note
that our constructed graph likely does not satisfy the triangle
inequality: if is connected, then there is a zero-weight path
between every pair of vertices, so the triangle inequality
would require that all edges have weight 0, which is
rarely the case in . Therefore, we can only use approxima-
tion algorithms for general graphs.

Third, we translate the chosen edges in the -vertex-con-
nected subgraph of into a placement of new sensors. This
step depends on the desired fault-tolerance constraint. For par-
tial -connectivity, we simply place sensors along the line seg-
ment connecting the endpoints of each edge of weight , spaced
a unit distance apart. For full -connectivity, we place clus-
ters of collocated sensors along the line segment connecting
the endpoints of each edge of weight , spacing the clusters a
unit distance apart. (Of course, in practice, these clusters can
be spread out in a small neighborhood of a point instead of all
being placed at the same point, at only a small additional cost.)
In addition, for each edge of weight , we place ad-
ditional sensors at each endpoint of the edge.

In the case that , the graph has fewer than ver-
tices and therefore has no -connected subgraph. We run the
algorithm for to compute an approximately minimum
number of additional sensors that connect the sensors. Then we
replicate each original and additional sensor times by adding

more copies.
Fig. 3 demonstrates an example of how the approximation

algorithm establishes 3-connectivity to the network formed by
the six peripheral vertices. The dark edges have no cost as the
original graph already supports them. The k-connected-sub-
graph routine chooses the light edges to establish 3-connectivity
and the approximation places new vertices, marked with dashed
circles, along the chosen edges. The optimal solution places a
single point, drawn as gray, in the graph center.

IV. ANALYSIS

The main difficulty in the analysis of our algorithm’s per-
formance ratio is that the Steiner points—i.e., additional points
other beyond the input points—can be placed in infinitely many
possible locations. In particular, there may be some locations
to place a Steiner point that simultaneously interconnect several
pairs of original points. Our algorithm does not search for such
“hub locations,” nor will it notice that it found one if it hap-
pens to use one. Another, more subtle problem along the same
lines is that it is not always optimal to connect pairs of original
points by straight sequences of Steiner points. Rather, it may
be beneficial to connect several original points by straight lines
to common Steiner points. This issue is precisely what makes
Euclidean Steiner tree NP-hard, in contrast to minimum span-
ning tree. A third challenge is that our objective is to (approx-
imately) minimize the number of added sensors, not the total
number of sensors. In particular, if the graph is already -con-
nected, any approximation algorithm must not add any sensors,
because otherwise the ratio to the optimal cost of 0 would be in-
finite. Thus, we need to exploit the existing connectivity among
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Fig. 3. An illustration of the approximation algorithm’s performance in estab-
lishing full 3-connectivity. Solid vertices exist in the input at the peripheral and
establish the heavy edges for zero cost. The algorithm chooses to add the thinner
edges and places additional sensors, marked with dashed circles, along the new
edges. The optimal repair adds only the shaded vertex. We omit the optimal so-
lution’s edges to avoid clutter.

the original sensors, because we cannot afford to pay for it again.
This more difficult objective prevents us from using structures
whose cost depends on the number of original sensors. (Other-
wise we could repeat a minimum spanning tree on the original
sensors times, which would be a trivial approximation
on the total number of sensors.) These issues prevent us from
using standard approximation algorithms and analysis based on
e.g., minimum spanning trees.

Again we first consider the main case that .
Lemma 1: For any set of original and Steiner sensors, there

is a subgraph of the induced unit-disk graph such that:
1) for each edge of incident to at least one Steiner sensor,
we can assign it to one of its Steiner endpoints such that each
Steiner sensor is assigned at most edges; and 2) for any set

of less than vertices, two vertices are connected in if
and only if they are connected in .

Proof: We construct by considering the Steiner sensors
in an arbitrary order, and showing by induction that it suffices to
connect each Steiner sensor to at most original sensors and/or
Steiner sensors that come earlier in the order. Let
denote the Steiner sensors, ordered arbitrarily. For each

, let denote the graph on all original sensors and just the
first Steiner sensors . Thus, . We will
define a subgraph of for each , such that
satisfies the two properties of the lemma with respect to (i.e.,
substituting and for and ). Thus, will serve as
the desired .

In the base case, consists of just the original sen-
sors, and the desired properties hold trivially: the first property
because there are no Steiner sensors, and the second property
because . For the induction step, suppose we have al-
ready constructed and we wish to construct . Each
differs from the previous only in that it includes an addi-
tional vertex and some incident edges, and we will construct

similarly to differ from only around . Thus, for
to satisfy the first property we need only that the degree of

in is at most ; then we can assign all of these edges to .
We divide the neighbors of in into six groups by dividing
the unit disk centered at into six equal pie wedges of angle
60 . (The neighbors of in are precisely those sensors in
the unit disk centered at .) Then we select arbitrary neigh-
bors from each of the six groups (or we select the entire group if
it has size less than ), and make those or fewer vertices the
neighbors of in . Certainly has degree at most in ,
so the first property holds. The key property of this construction
is that all vertices in the same group are connected by edges in

, because each pie wedge has diameter 1.
Finally we must show that satisfies the second property

that, for any set of less than vertices, two vertices are con-
nected in if and only if they are connected in .
Consider some set of less than vertices. Because is a
subgraph of , we need to show only that two vertices and
connected in are also connected in . (Thus, in par-
ticular, the vertices and under consideration are not in .) If

contains , then and ,
so by the induction hypothesis on and are connected
in . Now we consider the case that does
not contain . If and are connected by a path in that
does not visit , then that path also exists in , so by
induction the vertices are connected in and thus in the
supergraph . (In particular, if contains , then this case
applies.) Otherwise, we know that any path connecting and
in visits , and, thus, in particular any such path visits
a vertex in the unit disk centered at immediately before and
after the path visits other vertices in the unit disk centered at

.
Let be the first vertex along a path connecting and in

that is inside the unit disk centered at , and let be
the last vertex along the same path that is inside the unit disk
centered at . (Note that might be , and might be .)
Because and are connected by a path that does not visit

, by the previous case they are connected in , and
similarly and are connected in . We cannot have

and in the same pie wedge of the unit disk, because then
they would be connected via an edge in and thus connected
in and by induction connected in , so there
would have been a path connecting and that does not use .

Now we argue that and are connected in ; by a
symmetric argument and are connected in , and
thus and are connected in . If (which hap-
pens precisely when ), then they are trivially connected.
Otherwise, is in one of the six pie wedges surrounding . If
there are at most vertices in the pie wedge containing , then

has edges to all of them in , and, thus, in particular there is
an edge between and . Otherwise, among the neighbors
of in in the pie wedge containing , at least one neighbor

must be in because has size less than . Because
and are in the same pie wedge, they are connected by an

edge in so by induction connected in . Adding the
edge between and to this path, we find that and are
connected in . Therefore, and are connected in .

This lemma shows that and the constructed subgraph are
essentially the same in terms of connectivity. The next lemmas
show how to remove Steiner points from again without losing
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any connectivity. We consider separately each “Steiner com-
ponent” defined as follows. The Steiner component rooted at a
Steiner sensor is formed by growing a set of vertices and edges
in starting with and stopping after we reach any original
sensors. The Steiner component includes the edges connecting
pairs of sensors in the component provided at least one of the
endpoints is a Steiner sensor. (Equivalently, a Steiner compo-
nent is a connected component of the induced subgraph of
on the Steiner sensors, together with the edges connecting these
Steiner sensors to original sensors and these original sensors.)

Lemma 2: If has at least original vertices and is vertex
-connected, then the number of original vertices in each Steiner

component is at least .
Proof: The set of original vertices of a Steiner component

forms a cut in unless that Steiner component is all of .
In either case we must have at least original vertices in the
Steiner component.

Every Steiner component has a spanning tree in
which the original sensors are leaves of .

Lemma 3: The number of edges in an Eulerian tour of the
spanning tree of a Steiner component in is at most

times the number of Steiner sensors in .
Proof: The number of edges in the Eulerian tour is exactly

twice the number of edges of . Each of these edges can be
assigned to one of the Steiner sensors in , and by Lemma 1, the
number of assignments is at most times the number of Steiner
sensors in . Therefore, the number of edges in the Eulerian tour
is at most times the number of Steiner sensors in .

For any integer and any positive integer , the
Harary graph 1 is the -connected graph on vertices

where each is connected via an edge to the
preceding vertices and the suc-
ceeding vertices .

We consider the following procedure for replacement of a
Steiner component . First, we remove the Steiner sensors in

. Second, we take an Eulerian tour of the spanning tree .
Third we construct a Harary graph on the original sen-
sors in ordered by the order in which the Eulerian tour visits
these leaves of . (By Lemma 2, , so the Harary
graph exists.) We view the edges of this graph as edges in the
weighted complete graph , and add these edges to our graph
wherever they do not already exist,2 and translate each edge of
weight into a sequence of sensors equally spaced along the
line segment connecting the endpoints. The resulting graph is
no longer a unit disk graph: some edges come from the original
unit-distance constraint, and others edges come from . Once
we replace all Steiner components in , we obtain a subgraph
of with no Steiner sensors.

Lemma 4: The total weight of edges of that replace a
Steiner component is at most times the
number of Steiner sensors in .

Proof: Each edge in the Harary graph connects two orig-
inal sensors that are within distance at most in the order

1In fact, Harary graphs are normally defined differently when � is odd. We
round up to the Harary graph for the next even value of � in order to obtain the
desired approximation bound in this paper.

2We avoid the addition of multiple edges, but in fact single edges and multiple
edges are equivalent for our purposes of vertex �-connectivity.

defined by the Eulerian tour. We charge the weight of this edge
to the path of the Eulerian tour that connects these two orig-
inal sensors. The weight of the edge is at most the number of
edges in the path of the Eulerian tour because the edge in
represents a shortcutting of the path taken by the Eulerian tour.
We distribute the charge on the path of the Eulerian tour to the
subpaths connecting consecutive original sensors in the Eulerian
tour. Each subpath is charged at most times, one for each
edge of the Harary graph that spans that subpath. By Lemma 3,
the number of edges in the Eulerian tour is at most times
the number of Steiner sensors in . Therefore the total weight
of the replacement is at most

times the number of Steiner sensors in .
Lemma 5: If is vertex -connected, then replacement of

all Steiner components in results in a vertex -connected
subgraph of .

Proof: We claim that replacement of a Steiner component
preserves vertex -connectivity. Let denote the
Steiner components in . For each , let denote

after replacement of the first Steiner components. Thus,
is -connected.

Assume by induction that is -connected. Consider any
set of less than vertices in whose removal disconnects
two vertices and in . By the induction hypothesis,
there is a path connecting and in . Let and

be the first and last vertex along that path that belong to
Steiner component . Thus, and are both original vertices
and therefore also present in . Also, and are connected
by the same subpath in , as are and . Because the
replacement Harary graph is -connected, removal of cannot
disconnect it, so and are connected in the Harary graph and
thus in . Therefore, and are connected in .
The result follows by induction.

Theorem 6: In the case , the algorithm is a polynomial-
time -approximation on the minimum number of added
sensors to attain vertex -connectivity of the entire unit-disk
graph.

Proof: Consider the optimal set of added sensors that
results in a vertex -connected unit-disk graph . We construct

as in Lemma 1, and then perform a replacement of each
Steiner component. By Lemmas 1 and 5, the resulting subgraph
of is vertex -connected. By Lemma 4, the total weight of
the subgraph of is at most times the number
of Steiner sensors in . The minimum-weight -connected
subgraph of can have only smaller weight, so is also at most

times the number of Steiner sensors in . Our
algorithm finds an -approximation to the minimum-weight

-connected subgraph, and then for every edge of weight
, adds sensors. (This replication

guarantees vertex -connectivity of the entire graph because the
removal of less than vertices cannot disconnect the subgraph
of , nor can it disconnect the sensors that constitute an edge
of .) Therefore the number of sensors added by the algorithm
is less than times the optimal number
of added sensors used in .

In the second case that , the replication guarantees
vertex -connectivity of the entire graph because the removal
of less than vertices still leaves at least one copy of the orig-
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inal spanning tree which is connected. We apply the anal-
ysis to show that the number of added sensors for 1-connectivity
is times the optimal. The optimal number of added sen-
sors for 1-connectivity is certainly a lower bound on the optimal
number of added sensors for -connectivity. The replication of
these sensors costs an additional factor of . The replication of
the original sensors uses additional sensors, which can
be charged to the optimal number of added sensors for -con-
nectivity, which is at least 1 because the original graph cannot
be -connected. Therefore we obtain an approximation ratio of
at most .

Corollary 7: For any fixed , our algorithm is an
-approximation on the minimum number of added sensors

to attain vertex -connectivity of the entire unit-disk graph.
The analysis bounds the number of vertices used to establish

-connectivity in the network through considering only points
lying on edges in the complete weighted graph representing
the network. Thus, it leads us to simpler algorithms to achieve

-connectivity that do not have to consider Steiner points. We
discuss such an algorithm next.

V. PRACTICAL IMPLEMENTATIONS

In this section we present practical implementations of the
-connectivity repair algorithm analyzed in the previous sec-

tion. All the algorithms that we consider are based on the k-con-
nectivity-repair outline given in Algorithm 1, but they use dif-
ferent subroutines for k-connected-subgraph (line 9). The guar-
anteed -approximation algorithms for -connected subgraphs
[6], [7] are based upon solving linear programs, and implemen-
tation may be difficult on computationally and communication-
constrained sensor network nodes. Furthermore, because those
algorithms are designed to optimize worst-case behavior, it is
unclear how they compare to other algorithms on average-case
instances. We implement simple greedy and distributed algo-
rithms for k-connected-subgraph, and show that the resulting
approximation factors in practice are much smaller than the
worst-case bounds.

Our two practical algorithms are both based upon greedy ap-
proaches that choose inexpensive repairs. While the straightfor-
ward greedy approach is conceptually simple, it is difficult to
implement in a distributed environment. To address such diffi-
culty, we present and implement a distributed algorithm, similar
in spirit to Garcia-Molina’s invitation leader-election algorithm
[51], where network nodes elect leaders to make decisions how
to merge -connected subnetworks.

A. Greedy Approach

Algorithm 2 illustrates a greedy solution to k-connected-sub-
graph. The algorithm consists of two phases. We begin with an
empty subgraph of the specified graph . In the first phase, the
algorithm repeatedly adds edges from the graph in in-
creasing order by weight . The first phase ends once the
subgraph is -connected. In the second phase, the algorithm re-
peatedly attempts to remove edges from the subgraph,
in decreasing order by weight , but putting the edge
back if it was necessary for -connectivity. Experimentally, this
pruning stage can remove 58–85% of the added edges. The re-
sulting subgraph is therefore a -connected subgraph of , and

Fig. 4. An example of poor performance by the greedy algorithm to establish
2-connectivity. The greedy algorithm places the dashed nodes at the same posi-
tion as the existing nodes, whereas the optimal repair places the gray nodes to
construct a circuit.

we expect that the weight of the chosen edges is reasonably
small.

This greedy algorithm produces the same subgraph as the fol-
lowing less-efficient algorithm: start from the complete graph
as the subgraph, and repeatedly remove edges that do not
destroy -connectivity, in decreasing order by weight .
For , this algorithm (and hence the original greedy algo-
rithm) finds the minimum spanning tree; it is essentially dual to
Prim’s algorithm. Thus, the greedy algorithm generalizes a min-
imum-spanning-tree construction to , so we expect that it
does well.

The greedy algorithm, however, can have arbitrarily poor
performance, as depicted in Fig. 4 when the graph forms a
long narrow U-shaped chain to be repaired to 2-connectivity.
The greedy algorithm chooses to reinforce the existing links by
placing new nodes on top of existing ones. The optimal repair
places the two gray nodes to create a loop. Because the chain
can be arbitrarily long, but still require only a fixed number
of nodes to repair, the ratio of the worst-case greedy cost to
optimal is unbounded.

On the other hand, for the Steiner version where you only
have to -connect designated vertices, the algorithm can be

away from optimal. Consider, for example, two vertices
and that are connected by two paths, one path with
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edges of weight 0 and one edge of weight , and the other
path with edges of weight 1. The greedy algorithm for
removes the weight- edge and destroys the path of total
weight , leaving the path of total weight , for a ratio
arbitrarily close to .

B. Distributed Implementation

Algorithm 2 repeatedly tests for -connectivity—a time con-
suming operation.3 The algorithm also requires global knowl-
edge of the candidate edges.

To address both problems, we distribute a locally greedy al-
gorithm that grows and merges -connected components. The
distributed approach relies on a synchronous message passing
only in that all messages are either delivered or lost forever
within a fixed time limit. Each component elects a leader to com-
pute the cost of joining neighboring components. Two disjoint

-connected components form a larger -connected component
if bridged with vertex-disjoint edges. Members of a -con-
nected component report the cost of joining some number of
the closest other components. The leader chooses vertex-dis-
joint paths used to merge with each component. The assignment
can quickly be computed with an auction-based assignment im-
plementation [52], or using more-easily implemented heuristics.
Each leader then proposes merging with its lowest-cost counter-
part. A propositioned leader accepts the first offer that matches
its lowest computed cost.

When components are smaller then nodes, leaders merge
components by greedily creating -cliques.

The distributed algorithm relaxes the need for synchroniza-
tion, complete centralized knowledge of node distances, and

-connectivity testing. Each node, however, still requires an
upper bound of the distance to each other node, obtained either
by localization [53] or through bounding the distance through
inspecting a routing table. Additionally, the algorithm has no
pruning stage similar to the second stage of Algorithm 2, so we
expect it to generate heavier subgraphs.

1) Merging Subnetworks: We now show how the merging of
subnetworks produces a -connected networks.

Lemma 8: For , the -connected graph and the
-clique form a -connected supergraph when bridged so

that every vertex in has new neighbors in and
no two vertices in share neighbors in .

Proof: We prove Lemma 8 by contradiction. Suppose that
a graph, , is constructed in the manner of the lemma such
that it not -connected, so that its vertices can be partitioned
into non-empty sets and so that serves as a cut set
separating the vertices in and .

2) Claim: or .The claim
follows from noting that if both and contain elements of

, then could not have been -connected.
Without loss of generality, let . Thus,

, because is not empty.

3The runtime improves if the connectivity test first checks that the minimum
degree for each node is at least �. Noting that the minimum degree for each node
must match or exceed �, and knowing such failure eliminates the need for many
�-connectivity tests.

3) Claim: . The claim follows from the ex-
pansion that each and for each

.
Thus, and we arrive at a contradiction that must

be -connected.
Corollary 9: Given a -connected graph , the supergraph
constructed by adding one additional vertex connected to

distinct vertices in is also -connected.
Corollary 9 is sometimes referred to as the Expansion

Lemma.
Corollary 10: The supergraph constructed from two disjoint

-connected graphs bridged with vertex-disjoint edges is
-connected.
4) Protocol: Leader nodes alternate between two modes: in-

vitation and listening. In the invitation mode, a leader requests
from its followers bridges to other subnetworks, and issues a
merge invitation to other leaders. An invitation will only be ac-
cepted if the recipient is in listening mode and the invitation
includes the recipient’s current group size. If the invitation is
accepted the recipient relinquishes leadership and broadcasts
for every group member, the member’s new leader. Through a
gossip network, a leader can determine whether its invitation
has been accepted, or timeout if it hears no such change in the
gossip network.

If is the expected time for a node issuing requests to find a
partner, the time spent waiting for requests, the time time
spent waiting for a replies to a request, and the probability that
a single message is delivered, then an upper-bound for can be
expressed as the recurrence

which simplifies to

If is fixed, is minimized when to zero, leaving the
optimal latent period to be

A gossip protocol informs the network of group membership
and group size. Only leader nodes may insert new gossip into the
network which uses a logical timestamp associated with each
subject to achieve consistency. A node receiving gossip about
a subject compares the message timestamp with the timestamp
for the subject. If the received timestamp is greater than the local
one, the node updates its local gossip knowledge and broadcasts
the gossip to its neighbors. If the received timestamp is less than
the local one, the node broadcasts its own gossip to the rest of
the network. Each node periodically broadcasts its own state to
ensure that changes are eventually recorded.

5) Message Complexity: We next bound the number of mes-
sages the algorithm requires to terminate.

Theorem 11: The distributed repair algorithm requires
point-to-point messages and broadcast messages to re-
pair a graph to -connectivity.
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Proof: The algorithm proceeds in rounds where each
leader requests to merge with another leader. During each
round, the algorithm merges at least two subnetworks, so the
algorithm terminates after at most rounds.

We first count the messages sent to leaders by followers and
the merge proposals sent between leaders. Each round requires
that a leader node send one message to its preferred partner, and
each follower to send to its leader a constant number of mes-
sages representing links to bridge to another subnetwork. No
node sends more than a constant number of messages either as
a leader or follower, hence no node sends more than mes-
sages, and the algorithm requires messages to terminate.

After each merge operation, the leader must inform the rest of
the network of its erstwhile followers new group membership.
A node may change its membership no more than times,
thus there are broadcast messages required to repair a
network to -connectivity.

VI. EXPERIMENTAL RESULTS

We implement in simulation both the centralized greedy-re-
pair and the distributed solutions from the previous section to
compare their performance with a sampling-based and the op-
timal subgraph repair solutions. The sampling-based algorithm
scatters new vertices uniformly through the environment until
the original nodes are -connected, similar to the starting point
of [54], except that we do not require -connectivity to the addi-
tional nodes. For small graphs, we compare the repairs of each
of the three previous algorithms against the optimal placement,
restricted by Algorithm 1, that we compute through combina-
torial branch-and-bound search using Algorithm 2 as an initial
bound.

We test each algorithm on uniformly generated and grid
graphs that have had some portion removed to destroy 3-con-
nectivity. The first graph structures we consider have nodes
placed on a two-dimensional rectangular grid evenly spaced
one unit apart. With the exceptions of the corners, these graphs
are 3-connected. The second class of graphs are generated
through a Las-Vegas method. The vertices are uniformly placed
inside a fixed-size rectangular area until the resulting graph is

-connected.
The generated graphs are damaged by one of two methods,

uniform selection and geographic selection. The uniform
selection method takes size parameters and . Vertices
are uniformly selected and removed from a graph originally
containing vertices until there are fewer than vertices re-
maining and the graph is no longer 3-connected. The selection
process models network failures representing decay over time.

The geographic selection process selects a graph’s two most-
distant nodes, and . It repeatedly removes the node located
mid-way along the shortest remaining path. We test our al-
gorithms on augmented graphs that have had only enough nodes
removed so that -connectivity does not hold, as well as on
graphs that the process completely disconnected. The resulting
graphs model networks with geographically dependent failures.

We measure the number of vertices required to repair a dam-
aged graph to -connectivity, forgetting the vertices removed

Fig. 5. The cost, relative to optimal, to repair 4� 4 uniformly damaged grid
graphs to 3-connectivity. The figure plots mean repair cost of groups of 10 ex-
periments with error bars denoting the observed (biased) standard deviation.

Fig. 6. The cost, relative to the number of vertices remaining, to repair uni-
formly damaged 10� 10 grid graphs to 3-connectivity. The figure plots mean
repair cost of groups of 10 experiments with error bars denoting the observed
(biased) standard deviation.

from the original graph. For these experiments, we only guar-
antee that the original vertices are -connected, not the addi-
tional ones. Multiplying the cost by (for replication) provides
an upper bound on the cost of repairs guaranteeing that the addi-
tional vertices are also -connected. Empirically, however, addi-
tional vertices almost always lie closely enough to -connected
without extra duplication.

Fig. 5 plots the mean number of vertices added to uniformly
damaged graphs to re-establish 3-connectivity to 4 4 grids for
the greedy, distributed, and randomized implementations. Each
of the plotted values are normalized first by the number of ver-
tices in the damaged graph and then by the optimal cost to repair
the graph. The greedy algorithm frequently finds the optimal re-
pair for graphs with more than 30% of their vertices removed.

It is difficult to measure the optimal cost of larger graphs, but
we observe that the repair costs for uniformly damaged 10 10
grid graphs plotted in Fig. 6 scale similarly to the costs of 4 4
before normalization by the optimal.

Figs. 7 and 8 plot results for the same experiments on denser,
uniformly generated graphs. For comparison to optimal, we are
able only to look at uniformly distributed graphs in a 3 3 area,
sustaining at most 35% node removal. The original graphs have
on average 48 nodes, but some have as many as twice that. In
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Fig. 7. The cost of re-establishing 3-connectivity to uniformly damaged graphs
that were originally uniformly generated in a 3� 3 area. We plot the mean re-
pair cost per remaining vertex and (biased) standard deviation for groups of 36
experiments.

Fig. 8. The cost of re-establishing 3-connectivity to uniformly damaged graphs
that were originally uniformly generated in a 7� 7 area. We plot the mean re-
pair cost relative to optimal and (biased) standard deviation for groups of 10
experiments.

TABLE I
COST RELATIVE TO OPTIMAL FOR EACH ALGORITHM AND THE �

GOODNESS-OF-FIT SCORES WITH FIVE DEGREES OF FREEDOM

INDICATING THE SUM OF SQUARED DIFFERENCES

OF THE SAMPLE MEANS AND THE GRAND MEAN

repairing these graphs, it appears that costs relative to optimal
for three repair algorithms are independent to the portion re-
moved. Table I shows for each algorithm the mean cost rela-
tive to optimal and scores with five degrees-of-freedom. The

goodness-of-fit measure sums the squared error of the pre-
dicted performance, inferred from the mean across the experi-
ments using the same algorithm, and the observed performance.
The low scores give us little reason to question that algorithm
performance, relative to optimal, is independent to the portion
removed. We also plot experiments on 7 7 uniformly gener-
ated graphs that average 250 vertices in Fig. 8. Again the repair
costs increase similarly in both of the two scales. Fig. 9 demon-
strates the cost to re-establish 3-connectivity to graphs suffering
removal of half of their vertices as a function of the size of the

Fig. 9. The proportion of additional nodes required to restore 3-connectivity
to previously 3-connected networks that have had 50% of their nodes removed.
We also plot the best-fit regression for �������� 	 � 
� ���
 to illustrate the
trend.

Fig. 10. A typical graph-repair example. The destruction process removes
nodes A, B, and C. The greedy repair algorithm adds node Z.

network after removing nodes. Empirically, the cost decreases
with the size of the network, shown by the plotted regression
lines fitting the logarithm of the cost as a linear function of the
network size.

The performance of the greedy repair algorithm is surprising
and requires some explanation. Fig. 10 shows an example of
a uniformly generated 3-connected graph. Nodes A, B, and C
are removed and the greedy repair algorithm takes the resulting
graph as input. The algorithm adds node Z. Node A is super-
fluous to preserving connectivity in the original graph; it resides
at the graph’s fringe. Because it resides in a densely populated
region, node B is redundant. Thus, these two node removals
require no attention for repair. The greedy algorithm replaces
node C with Z, re-establishing 3-connectivity.

Because many of the vertices uniformly selected to be re-
moved from the input graphs did not contribute to the graph’s

-connectedness, we also test the repair algorithms on geo-
graphically damaged graphs. To better ensure that removed
vertices contribute to connectivity, we uniformly generate
3-connected 10 10 unit-disk graphs, select the two most-dis-
tant vertices and , and remove a vertex in the middle of some
number the shortest - paths. Fig. 11 shows an example 3-con-
nected 10 10 unit-disk graph with two groups of vertices
marked for removal. The smaller, circular grouping denotes
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Fig. 11. An example of complete disconnection, represented by the larger
dashed region, and substantial vertex removal, denoted by the dashed circle.

TABLE II
REPAIR COST RELATIVE TO OPTIMAL OF REPAIRING UNIFORMLY GENERATED

3-CONNECTED3� 3 UNIT-DISK GRAPHS. THE TABLE REPORTS THE MEAN

AND OBSERVED STANDARD DEVIATION FOR 10 TRIALS. THE “COMPLETE”
ENTRY REPRESENTS GRAPHS THAT WERE COMPLETELY DISCONNECTED,

WHEREAS THE “SUBSTANTIAL” ENTRY SHOWS THE REPAIR COST OF REMOVING

ONLY ENOUGH VERTICES TO REMOVE �-CONNECTIVITY FROM THE GRAPH

a substantial disconnection that will affect -connectivity,
whereas removing the larger group completely disconnects the
graph.

Table II shows the repair costs of removing enough vertices
to completely disconnect pairs and removing only enough
edges to destroy -connectivity. The table shows the increase in
the number of vertices required to re-establish 3-connectivity,
relative to the optimal repair cost. As the greedy and distributed
algorithms can better localize the area to be repaired, they per-
form about 3 times better than the random repair algorithm.

VII. CONCLUSION

It would be interesting to extend our guaranteed worst-case
approximation algorithms to the case of partial -connectivity,
where there should be vertex-disjoint paths between every pair
of original sensors, but not necessarily between pairs involving
added sensors. This weaker goal is natural if only the original
sensors serve a useful purpose (e.g., carrying information), and
the added sensors only serve for additional connectivity between
them. We attack the weaker problem in the experiments, but usu-
ally the new points are -connected anyway—not too surprising
given that there exist density thresholds that probabilistically
guarantee -connectivity. Even minimum degree is enough
to probably give -connectivity [55]. But what about the worst
case? A variation of our approach may lead to efficient approx-
imation algorithms for this case as well. In the complete graph

, we replicate each edge times, and assign a weight to each

replicated edge equal to the original edge weight if it is positive,
or 1 if the original weight is zero. The point of this modification
is that, in the partial -connectivity model, repeating additional
sensors can increase connectivity between two vertices, unlike
regular -connectivity. For our approach to work, however, we
need a stronger version of the subroutine for finding the approx-
imate minimum-weight -connected subgraph that supports a
multigraph as input. Alternatively, we can subdivide each edge
and distribute the weight arbitrarily between the two halves, and
use a subroutine that finds the approximate minimum-weight
subgraph that is partially -connected on the specified set of
original vertices. There is evidence that this problem is signifi-
cantly more difficult than regular -connectivity [56]. If we had
either such subroutine, it would seem that the rest of our ap-
proach would lead to efficient approximation algorithms for par-
tial -connectivity.

Our analysis of the approximation ratio of our algorithm
is likely not tight; we believe that the same algorithm has an
asymptotically smaller approximation ratio than what we prove.
Our experimentation measuring worst-case behavior supports
this intuition. An example is the case of 1-connectivity, where
our algorithm simply short-cuts an Eulerian tour of a minimum
spanning tree. Chen et al. [17] proved that this algorithm has
a worst-case approximation ratio of precisely 4. In contrast,
our analysis for general proves an upper bound of somewhat
more than 4 in the case . The main advantage of our
approach and analysis is its generality, applying for arbitrary .

We conjecture that our approximation results can be further
strengthened to find a polynomial-time approximation scheme
(PTAS), i.e., an algorithm that attains an approximation ratio
of for any desired . We believe that such a PTAS
can be obtained using the techniques of Arora [57] and Mitchell
[58]. These techniques have been successfully applied to obtain
a PTAS for the related problem of finding the minimum-Eu-
clidean-length -connected subgraph [59]. Our conjecture is
wide open even for the case of . To the best of our knowl-
edge, the only related problem known to have a PTAS is the
easier problem of approximating the total number of sensors,
instead of the number of added sensors, for [17]. For
our problem and , the best known approximation algo-
rithm has an approximation ratio of 5/2 [19]. For our problem
and , our algorithms are the only known approximation
algorithms.

We also believe that our theoretical results can be extended to
the more general quasi unit-disk graph model (see, e.g., [60]).
In this model, two parameters determine connectivity:
two nodes of distance at most are guaranteed to be connected
in the graph, while two nodes of distance more than are guar-
anteed to be disconnected in the graph. Nodes whose distance
is between and may or may not be connected in the graph.
This generalized model handles a wide range of fading models;
for example, if instead of a unit-disk cutoff, we have a different
(e.g., star-shaped) cutoff, we can take the inscribed disk of ra-
dius and circumscribing disk of radius . Provided

, it seems that our algorithm remains an -approxi-
mation for any fixed .

In our current work, we are implementing the distributed
-connectivity repair algorithm on a mote network that inter-
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acts with a mobile robot. We are also developing improved
distributed versions of the -connectivity algorithm. One
interesting question to explore in practice is how often -con-
nectivity repair should be run for a given rate of node failure.
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