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Abstract. We present the discrete beeping communication model, which as-
sumes nodes have minimal knowledge about their environment and severely lim-
ited communication capabilities. Specifically, nodes have no information regard-
ing the local or global structure of the network, do not have access to synchro-
nized clocks and are woken up by an adversary. Moreover, instead on communi-
cating through messages they rely solely on carrier sensing to exchange informa-
tion. This model is interesting from a practical point of view, because it is possible
to implement it (or emulate it) even in extremely restricted radio network envi-
ronments. From a theory point of view, it shows that complex problems (such
as vertex coloring) can be solved efficiently even without strong assumptions on
properties of the communication model.
We study the problem of interval coloring, a variant of vertex coloring specially
suited for the studied beeping model. Given a set of resources, the goal of interval
coloring is to assign every node a large contiguous fraction of the resources, such
that neighboring nodes have disjoint resources. A k-interval coloring is one where
every node gets at least a 1/k fraction of the resources.
To highlight the importance of the discreteness of the model, we contrast it against
a continuous variant described in [17]. We present an O(1) time algorithm that
with probability 1 produces aO(∆)-interval coloring. This improves anO(logn)
time algorithm with the same guarantees presented in [17], and accentuates the
unrealistic assumptions of the continuous model. Under the more realistic dis-
crete model, we present a Las Vegas algorithm that solvesO(∆)-interval coloring
in O(logn) time with high probability and describe how to adapt the algorithm
for dynamic networks where nodes may join or leave. For constant degree graphs
we prove a lower bound of Ω(logn) on the time required to solve interval color-
ing for this model against randomized algorithms. This lower bound implies that
our algorithm is asymptotically optimal for constant degree graphs.

1 Introduction

Communication models face the unavoidable tension between their practicality and
their potential for designing interesting yet provably correct algorithms. With enough
assumptions concerning the knowledge of the deployment environment and the commu-
nication capabilities of the devices used, it is not difficult to design efficient and elegant
distributed algorithms. However, it is often difficult (if not impossible) to translate these
algorithms to the real world. On the other hand, communication models which are clut-
tered with physical details encumber designing algorithms, and makes it significantly
more complicated to prove correctness or efficiency.



This motivates the study of models such as the discrete beeping model considered
in the present paper. This model makes little demands on the communication devices,
nodes need only be able to do carrier sensing and differentiate between silence and
the presence of a jamming signal. Carrier-sensing can typically be done much more
reliably and requires significantly less energy and other resources than transmitting and
receiving actual messages , see e.g. [7]. Besides requiring reliable carrier sensing, we
make almost no assumptions. In particular, we do not assume knowledge of the local
or global structure of the network or synchronized clocks. Further, we assume that an
adversary controls when processors are woken up.

We show that even such a “weak” model allows for interesting algorithms for non-
trivial tasks. In particular we focus on the problem of interval coloring, a variant of
classic vertex coloring. Given a set of resources, the goal of interval coloring is to as-
sign each node a large contiguous fraction of the resources such that neighboring nodes
have disjoint resources. A k-interval coloring is one where every node gets at least a
1/k fraction of the resources. Similar to vertex coloring, interval coloring is a useful
building block to establish a reliable Medium Access Layer (MAC), as it can be used
to e.g. compute time or frequency division multiple access (TDMA or FDMA) sched-
ules that avoid conflict between potentially interfering nodes. In some sense, interval
coloring is even better suited for these tasks than standard graph coloring. While in a
standard coloring, every node gets assigned a single color (a single slot or frequency),
in an interval coloring, we can assign larger intervals to certain nodes (e.g. to nodes
with a small degrees). An interval then corresponds to multiple consecutive colors in a
standard coloring context.

Moreover, by relying exclusively on carrier sensing, the beeping model becomes
specially well-suited for coordination tasks in wireless networks for various reasons, for
example: � Most prior work [1, 3, 4, 9, 11, 14, 18, 23, 25] on coloring assumes some
existing infrastructure to reliably exchange messages. If used as a building block to e.g.
compute a TDMA schedule, these algorithms suffer from a chicken-and-egg problem;
such colorings cannot be computed without a reliable MAC layer, however to achieve
a reliable MAC layer one first needs to compute a coloring. A coloring algorithm for
the beeping model would not suffer from this problem, since the model makes almost
no assumptions on the communication infrastructure. � The presence of a signal can be
reliably detected by carrier sensing at lower receiving power than would be required to
correctly decode a message. Hence, carrier sensing can be used to communicate more
energy efficiently and over larger distances than when transmitting regular messages.
For example, by default the NS2 [26] simulator uses a carrier sensing range that is more
than twice as large as the transmission range. Therefore, the beeping model (carrier
sensing) can directly be used to compute a 2-hop interval coloring of the communication
graph (for regular transmission), a necessity when using the coloring for a MAC layer
that avoids hidden terminal collisions. �Although IEEE 802.11 and Bluetooth share the
same frequency spectrum, they use incompatible modulation and encoding schemes.
However since carrier sensing only detects the presence of a signal, it is potentially
possible for a IEEE 802.11 radio to detect the presence of a Bluetooth jamming signal
and vice versa. Therefore, algorithms for the beeping model could be used to allow these



two seemingly incompatible devices to agree on a non-conflict transmission schedule
thereby allowing them to coexist in a non-destructive fashion.

Contributions. We assume that there is a common globally known period length
T . This is a parameter of the algorithms which captures the number of resources to be
shared (e.g. the number of available frequencies in FDMA). The paper has three main
contributions.

First, we significantly improve a result from [17] for a continuous variant of the
beeping model. The authors of [17] describe an algorithm that solves O(∆)-interval
coloring in O(log n) periods is described in [17]. Specifically they assign every node
v a Ω(1/dmax(v)) fraction of the resources, where dmax(v) is the largest degree in the
1-neighborhood of v. We describe a simpler algorithm that improves the results of [17]
by computing an interval coloring with the same properties in a constant number of
periods. Our result highlights the unrealistic assumptions behind the continuous model.

Second, we give a discrete variant of the beeping model and describe a Las Vegas
randomized interval coloring algorithm for the discrete model. The algorithm computes
a O(∆)-interval coloring in O(log n) periods with probability 1− 1

n . Furthermore, we
describe how to adapt the algorithm to work in a dynamic graph setting where nodes
can join and leave arbitrarily. A new node obtains an interval at most O(log n) periods
after joining the network, and a node only recomputes its interval if the size of its
neighborhood becomes drastically smaller. The correctness proof of both the static and
dynamic versions of the algorithm rely on a balls and bins analysis.

Finally, for a local broadcast model with constant size messages, we prove a lower
bound ofΩ(log n) time against randomized algorithms that solveO(∆)-vertex coloring
(or O(∆)-interval coloring). For the discrete beeping model this implies a lower bound
of Ω(log n) periods for constant-degree graphs and Ω(log n/∆) for general graphs.
Moreover, if we restrict the number of beeps per period toO(1) it yields a lower bound
of Ω(log n/ log∆) for general graphs.

Related Work. Using carrier sensing for distributed computation is not novel. Schei-
deler et al. [21] considered a model where in addition to sending and receiving mes-
sages, nodes can perform physical carrier sensing, and described how to approximate
the minimum dominating set problem under this model. Flury and Wattenhofer [7]
demonstrate how to use carrier sensing as an elegant and efficient way for coordina-
tion in practice.

Our beeping model is a discretized variant of the desynchronization model first in-
troduced by [6]. Degesys et al. [6] considered only complete graphs, and proved the
eventual convergence of a biologically inspired algorithm DESYNC to a ‘desynchro-
nized state’ and conjectured a running time of O(n2). Degesys and Nagpal [5] exper-
imentally studied the performance of DESYNC in multi-hop topologies. They proved
that a desynchronized state exists for 2-colorable graphs and Hamiltonian graphs, and
posed the open problem of proving that a desynchronized state exists for all graphs.
Later Motskin et al. [17] studied interval coloring under the same desynchronization
model. In addition to assuming the continuous variant of the model, [17] assumes that
nodes have knowledge of their own degree and that they are able to exchange this in-
formation to compute the maximum neighbor degree over their 1-hop neighbors. It is



not clear how nodes should obtain the maximum degree among their neighbors without
reliably transmitting messages. Further, as we show in Section 4, their assumptions are
too strong and allow for constant time solutions. This motivates studying the strictly
weaker discrete beeping model.

Coloring the nodes of a graph is one of the most fundamental combinatorial op-
timization problems in computer science and has therefore been widely studied, also
in a distributed context. The work on distributed coloring algorithms started with the
seminal work of Linial [14] and includes a large number of papers (see e.g. [1, 3, 4,
9, 11, 13, 18, 23, 25]). The best bounds are known for randomized algorithm and they
are O(

√
log n + log∆) for (∆ + 1)-colorings (i.e., the number of colors needed by

the sequential greedy algorithm) and O(
√

log n) for O(∆)-colorings [11, 25]. Interest-
ing in the context of TDMA schemes for wireless networks might be [12] where it is
shown how to compute a coloring where each node with degree d obtains an Ω(1/d)-
fraction of the colors in a single communication round (i.e., nodes just need to learn the
identifiers of all neighbors). Coloring in unstructured radio networks (with collisions)
was considered by [16], where a randomized algorithm to compute O(∆)-colorings in
O(∆ log n) rounds is described (later improved in [24] toO(∆+ log∆ log n) rounds).
In addition to the theoretical work on distributed coloring, there are many papers that
describe some variant of coloring in order to compute TDMA schedules or similar MAC
schemes (see e.g. [2, 8, 10, 15, 19, 20, 27]).

2 Model and Definitions

We consider a wireless network model that is as primitive as possible. In contrast to
standard communication models, nodes cannot exchange messages reliably (message
passing) or unreliably (unstructured radio networks), instead nodes rely entirely on car-
rier sensing. At any particular time, a node can be in beeping or listening mode. When a
node is listening, it can only distinguish between silence or the presence of one or more
beeps. This model is weaker than collision detection since nodes cannot distinguish be-
tween a single beep and a collision of two or more beeps. Moreover, a beep conveys
less information than a bit, and although one could conceive coding schemes to encode
bit messages using beeps, this would require additional overhead and be susceptible to
collisions, thus we focus on different techniques.

We assume that nodes wake up asynchronously and the wake-up pattern is deter-
mined by an adversary. Upon waking up, a node does not know anything about the
structure of the communication network, not even an estimate of its size. Similarly,
nodes do not know their neighbors in the communication network or have an estimate
of the size of this set. Furthermore, nodes do not have unique identifiers and the struc-
ture of the communication network is not restricted in any way (e.g. by requiring it to
be a unit disk graph, a bounded independence graph, or any other special type of graph
considered in the wireless networks literature [22]). Every node has access to a local
clock, where the local clock of every node advances at the same rate and has no drift,
however we do not assume clocks to be synchronized.

The communication network is modeled as an undirected graph G = (V,E), |V | =
n, where the set V of nodes of G represents the set of wireless devices. There is an



edge {u, v} ∈ E if and only if u can listen to a beep emitted by v and viceversa. For
a node u ∈ V , let N(u) :=

{
v ∈ V

∣∣ {u, v} ∈ E} be the set of neighbors of u, and let
d(u) = |N(u)| be its degree. We denote by ∆ = maxv∈V d(v) the maximum degree of
the graph. A phase refers to a time point (in the continuous model) or a time slot (in the
discrete model) measured relative to the beginning of the last period. We will use phases
to capture the time at which different beeps are heard with respect to the local clock of
each node. Given a set S of phases, we define S[a, b] to be the subset of phases in the
range [a, b] in S. To correctly account for ranges that cross the period boundary, we give
a formal definition. Let τ be the period length (in the continuos model the period length
is T time units, while in the discrete model the period length is Q time slots), and let
x = a mod τ and y = b mod τ . If x ≤ y, S[a, b] = {p ∈ S | x ≤ p ≤ y}, otherwise
S[a, b] = {p ∈ S | p ≥ x ∨ y ≥ p}.

If tu represents the time of occurrence of some event with respect to node u we
use t̊u to represent the time of occurrence of the event in a global reference frame. For
example, consider neighboring nodes u and v, and suppose that node u executes some
event eu at local time tu which is instantaneously observed by node v at local time tv .
Since we do not assume synchronized clocks, then in general tu 6= tv , however t̊u = t̊v .

We say that an event happens almost surely if it happens with probability one, an
event happens with high probability if it occurs with probability at least 1 − 1

n . Let
U(a, b) denote the continuous uniform distribution in the range [a, b] and U[a..b] denote
the discrete uniform distribution in the range [a..b].

We believe the model described is simple enough to be implemented or simulated in
real hardware. However it is still complex enough to allow for the design of interesting
algorithms with strong theoretical guarantees. We consider two variants of the basic
model, a continuous version and a discrete version.

Discrete Model. Time is divided into slots of length µ, where µ depends on the
physical characteristics of the wireless devices and of the communication medium.
There is a known integer Q > 0 that denotes the number of slots per period, and is
related to the number of resources available. Hence, the period length is T = Qµ. Al-
though we do not assume synchronized clocks, we assume that slots boundaries are
synchronized, i.e., all nodes start new slots at the same time. Note that at the cost of
small constant factors and more technical arguments, all results obtained in this paper
can also be achieved in a model with unsynchronized slot boundaries.

In each slot s, each node v can either listen or beep for the whole duration of s. If a
beep is emitted by node u at slot s, it is heard by any neighboring node v ∈ N(u) that
is in listening mode in slot s. In particular the operation listen[m] puts the node in
listening mode for the next m slots and returns the set of slots where it detected a beep.
The operation beep emits a beep for the duration of the current slot.

Continuous Model. All nodes share some period length T and a beep can be in-
finitely short (i.e., a unit impulse function). If a beep is emitted by node u at time t,
it is heard by any neighboring node v ∈ N(u) that is in listening mode at time t. In
particular the operation listen(δ) puts the node in listening mode for the next δ units
of time and returns the set of time points where it detected beeps. The operation beep

emits an infinitely short beep. We discuss the shortcomings of this variant in Section 4.



3 Interval Coloring

One of the central motivations behind vertex coloring in distributed environments is to
use it as a building block for MAC protocols. In this setting the number of colors used
translates to the number of communication channels used, and thus fewer colors imply
higher throughput. In general we are interested in efficient (polylog or better) algorithms
that produce vertex colorings withO(∆) colors, where∆ is the maximum degree. How-
ever, most known distributed algorithms for coloring are based on the assumption that
there is already an infrastructure to reliably transmit messages with neighboring nodes,
which makes them unsuitable for MAC protocols. This motivates studying coloring in
the beeping model. We focus on interval coloring, a variant of vertex coloring specially
well suited for the beeping model.

Given an ordered set of resources, an interval coloring assigns each node an interval
(contiguous fraction) of resources such that neighboring nodes do not share resources. A
k interval coloring is one where every node gets at least a 1/k fraction of the resources.

In particular, we focus on the case where the set of resources to be shared is time (i.e.
computing a TDMA schedule). The discrete beeping model assumes all nodes agree on
a period of length T , which is composed ofQ slots of length µwhere slot boundaries are
synchronized. However, the lack of synchronized clocks implies the periods of different
nodes are not aligned, and hence the first slot of a period for node u could be in the
middle of the period for node v. Therefore, although nodes agree on the set of resources
to be shared (Q time slots), they do not agree on an ordering of these resources. To
sidestep this problem we will require interval coloring to output a tuple 〈pv, Iv〉 for each
node v, where pv is the offset with respect to the period start of node v, and Iv is the
interval length. These tuples should be such that for every pair of neighbors {u, v} ∈ E,
the intervals [p̊v − Iv, p̊v] and [p̊u − Iu, p̊u] are disjoint for every period. Analogous to
O(∆)-vertex colorings, we are interested in O(∆)-interval colorings, where each node
gets assigned at least a Ω(1/∆) fraction of the resources.

Hardness of Interval Coloring. Discrete interval coloring is strongly related to ver-
tex coloring. For each node v let 〈pv, Iv〉 be the tuple output by an interval coloring
at node v. The definition of interval coloring implies that for any two neighbors u and
v it holds that p̊v 6= p̊u. Therefore, we can define a valid vertex coloring by assign-
ing to each node v the color cv = p̊v (mod Q). Observe that if Q ∈ Θ(∆), this is a
O(∆)-vertex coloring. Hence, even in executions where all nodes have either synchro-
nized clocks or wakeup at the same time, aO(∆)-interval coloring is at least as hard as
O(∆)-vertex coloring.

4 Continuous Interval Coloring

We essentially use the same model as Motskin et al. [17], and adhering to it we also
assume each node v knows its own degree d(v) and the maximum degree of its 1-hop
neighbors dmax(v). Motskin et al. [17] described a randomized algorithm that solves
continuous interval coloring and terminates with high probability in a logarithmic num-
ber of periods. In contrast, we present a randomized algorithm that solves the same



problem but terminates almost surely in a constant number of periods. While describing
the algorithm we expose the flaws of this model that make such an algorithm possible.

Algorithm Description. Since nodes can emit an infinitely short beep at any point
in time, then if two nodes choose to beep at random times in the interval [0, T ], their
beeps will collide with probability zero (i.e. the probability that two samples from a
continuous uniform distribution are equal is zero). We will exploit this property with the
greedy algorithm BEEPFIRST, described in detail in Algorithm 1. Informally speaking,
the BEEPFIRST algorithm searches for the first available time where a node can beep
while respecting a buffer of size bv around existing beeps. To ensure that no two nodes
choose the same time to beep, the buffer size and starting time are randomized with a
continuous variable.

More precisely, the algorithm has a parameter ε ∈ (0, 1) which affects the size of
the resulting intervals. In the initialization state, each node v sets its interval length to
Iv = (1−ε)T/2(dmax(v)+1) and chooses εv ∈ U[0, ε] to randomize its start time and
set its buffer length to bv = (1− εv)T/2(d(v) + 1).

In the searching state, nodes listen for one full time period T recording the phases
at which beeps are heard. If a node hears no beeps in this first period it sets pv = 0
and goes to the stable state. Otherwise nodes search for the first phase pv such that (i)
in the previous period no other node beeped in the interval [pv − bv, pv + bv], and (ii)
in this period no other node beeps on the interval [pv − bv, pv]. Once such a phase is
found, nodes beep to reserve it and listen for whatever remains of the period, switching
to the stable state. Once a node becomes stable, it remains stable thereafter, beeping at
the same phase every period.

Algorithm 1 BEEPFIRST running at node v
1: εv ← U(0, ε) . Initialize
2: Iv ← (1− ε) T

2(dmax(v)+1)
, bv ← (1− εv) T

2(d(v)+1)

3: listen(εv) (* randomized start time *)
4: S ← listen(T ) . Search
5: pv ← 0
6: while ∃ beep in S[pv − bv, pv + bv] do
7: tv ← pv
8: pv ← bv+ time of last beep in S[pv − bv, pv + bv]
9: S ← S ∪ listen(pv − tv)

10: end while
11: beep, listen(T − pv) . Stable
12: loop
13: listen(pv), beep, listen(T − pv)
14: end loop

For each node v in the searching state, the separation between beeps heard by v is
at most 2bv , otherwise it would have exited the search state. Assume in a period node v
hears at most one beep from each neighbor (the same result can be proved without this



assumption with a slightly more technical argument). Therefore node v hears at most
d(v) beeps in one period, which means that after time d(v)2bv < T in the searching
state node v finds a proper phase to beep and enters the stable state.

Lemma 1. The searching state of BEEPFIRST lasts less than one period.

By construction node v will select pv = 0 or pv = pu + bv where pu is the phase of
node u. However, recall that both the starting time and the buffer length are randomized
using a continuous probability distribution. Therefore, with probability one, no two
nodes will ever select the same phase. (The same argument is used by Motskin et al.
[17] to prove that neighbors “pick the exact same start time with probability 0”.) Which
is captured by the following proposition.

Proposition 2. Given a pair of nodes u and v (where u 6= v) at any point during the
execution of BEEPFIRST almost surely p̊u 6= p̊v .

From Proposition 2 it follows that given two neighboring nodes, one selects an ear-
lier phase than the other. This fact can be leveraged to show that the intervals produced
by BEEPFIRST do not overlap.

Lemma 3. Let u and v be two neighboring nodes in a stable state of BEEPFIRST, then
their intervals do not overlap (p̊u /∈ [p̊v − Iv, p̊v + Iv]).

We can tie Lemmas 1 and 3 together in the following theorem.

Theorem 4. The BEEPFIRST algorithm computes a O(∆)-interval coloring almost
surely in O(1) time.

Observe that if instead of setting the interval length in the initialization phase, we de-
layed it until the stable phase by setting it to the largest value such that [pv−Iv, pv+Iv]
does not contain any beeps, we would get a slightly stronger result which does not
require knowledge of dmax(v). The BEEPFIRST algorithm hints at two flaws in this
model (i) It assumes knowledge of d(v) and dmax(v), where neither is trivial to com-
pute. (ii) The algorithm’s correctness relies on computation with arbitrary real numbers
and sampling from continuous probability distributions.

5 Discrete Interval Coloring

We now turn our attention to a more realistic model where beeps occur at discrete times
and have a minimum length, thus the probability distributions involved are discrete and
finite. We present a Las Vegas randomized algorithm for O(∆)-interval coloring that
terminates with high probability in O(log n) periods. This requires Q ≥ ∆ and in
particular we assume Q = κ∆ where κ is a large enough constant (κ ≥ 3/η suffices,
for η to be fixed later).

Algorithm Description. The JITTERANDJUMP algorithm relies on three key in-
sights: (i) The number of beeps heard by a node is a good estimate of its degree. (ii) By
adding a small random jitter to every beep, neighboring nodes which beep at the same
slot can detect the collision with constant probability. (iii) If a node jumps into a random



slot which is surrounded by “enough” empty slots it finds a non-overlapping interval as-
signment with constant probability.

The detail pseudo-code is presented in Algorithm 2, in the following paragraphs
we give an informal description. All nodes executing are initially uncolored, and they
become colored when they believe to have found a non-overlapping interval. Except for
the first period (where nodes listen without beeping), all nodes beep once per period.
Therefore in a single period a node can hear at most two beeps per neighbor, and it
follows that if d̃v is the number of beeps observed by node v during a period, then
1 ≤ d̃v ≤ 2d(v).

To resolve collisions, if node v has decided to beep at the slot pv , it chooses at
random jitterv ∈ U[0..1], and beeps at pv + jitterv instead. If a colored node detects
a beep one slot before, or two slots after its own beep, it becomes uncolored.

Each node v sets the buffer length bv = η Q

d̃v+1
to a fraction of the period propor-

tional to its degree estimate, where η is a sufficiently small constant (we will show that
any η ≤ 1/16 suffices). Using the information collected in the previous period, node v
computes a set of free slots Fv . A free slot s ∈ Fv is one where no beep was heard in
the bv + 2 slots preceeding it, and the bv + 1 following it. An uncolored node v selects a
slot pv to beep uniformly at random from the set of free slots Fv . If after beeping node
v determines no other node is in the interval [pv − bv, pv] it becomes colored.

Algorithm 2 JITTERANDJUMP running at node v
1: coloredv ← false
2: S ← listen[Q]
3: d̃v ← max(|S|, 1)
4: bv ← η Q

d̃v+1

5: loop
6: if not coloredv then
7: Fv ← {p | S ∪ {pv} [p− bv − 2, p+ bv + 1] = ∅}
8: pv ← UFv

9: end if
10: jitterv ← U[0..1]
11: S ← listen[pv + jitterv − 1] ∪ beep ∪ listen[Q− pv − jitterv]
12: Iv ← max s s.t. S[pv − s, pv] = ∅
13: d̃v ← max(|S|, 1)
14: bv ← η Q

d̃v

15: if S[pv − bv, pv + bv] = ∅ then
16: coloredv ← true
17: else if S[pv − 1, pv + 2] 6= ∅ then
18: coloredv ← false
19: end if
20: end loop

Two neighboring nodes are colliding if they beep at the same slot. Every period,
each nodes selects independently at random a jitter which affects where they beep. It is



possible to show that two collided nodes will detect the collision and become uncolored
with constant probability (proof omitted).

Lemma 5. If neighboring nodes u and v collide in JITTERANDJUMP, they become
uncolored in the next period with probability at least 1

2 .

By adjusting κ and η appropriately, it is possible to guarantee that the number of
free slots observed by each node is a constant fraction of the number of slots.

Proposition 6. If κ ≥ 4/η and η ≤ 1/3 then |Fv| ≥ (1− 3η)Q for every node v.

We have already established that the degree estimate is an upper bound on the real
degree; we also show that with constant probability it is a lower bound on the number
of uncolored nodes. To do so we use the following result concerning the classical balls
and bins problem (proof omitted).

Theorem 7. When placing m balls randomly into n bins, if n ≥ m ≥ 12 then with
probability more than 1

2 the number of occupied bins is at least m4 .

Using this result we can prove the following lemma.

Lemma 8. With probability 1
2 the number of beeps observed by a node is at least a

quarter of the number of its uncolored neighbors.

Proof. Fix node v and let P ⊆ N(v) be its uncolored neighbors. We want to show
P
[
d̃v > |P |/4

]
≥ 1

2 .
Each node u ∈ P beeps at random in Fu and if κ ≥ 4/η then from Proposition 6

|Fu| ≥ (1 − 3η)Q = (1 − 3η)κ∆. If we let η ≤ 1/16 then κ ≥ 1/(1 − 3η) and thus
|Fu| ≥ ∆.

On the other hand, the probability of collisions (and a lower degree estimate d̃v)
is increased if ∀u,w ∈ P Fu = Fv . In other words, if |P | ≤ ∆ beeps are randomly
distributed in |Fv| ≥ ∆ slots, and assuming enough beeps theorem 7 implies that with
probability 1

2 the number of occupied slots is |P |/4.

To argue termination we partition nodes into good and bad nodes. Informally, a
good node is one which, modulo the jitter, continues to beep at the same slot in the rest
of the execution.

Definition 1. Node v is good if it is colored and there does not exist a neighboring
node u ∈ N(v) with a phase pu such that |p̊u − p̊v| ≤ 1; otherwise v is bad.

By definition, once a node becomes good no neighboring node is colliding with it.
Since nodes listen before beeping and always beep at slots which were previously unoc-
cupied, it is not surprising that once a node becomes good it remains good thereafter
(proof omitted).

Lemma 9. Once a node is good, it remains good for the rest of the execution.

We classify bad nodes further as colored and uncolored. First we consider the easier
case of colored bad nodes.



Lemma 10. A colored bad node becomes good or uncolored with probability ≥ 1
2 .

Proof. Fix a colored bad node v. Since it is bad and uncolored, then by definition a
nonempty set of its neighbors P ⊆ N(v) beep at the same slot as u.

If all nodes in P are uncolored, then they all jump to a random slot and node v be-
comes good. Otherwise there exists a colored node u ∈ P . However by Lemma 5 with
probability 1

2 in the next period both nodes detect the collision and become uncolored.

Now we consider uncolored bad nodes.

Lemma 11. An uncolored bad node becomes good with probability ≥ 1
2e
− 16η

1−3η .

Proof. Fix an uncolored bad node v. Let Bu be the event that node u choses to beep
in the interval [pv − bv, pv + bv]. In other words, Bu is the event that node u interferes
with the beep of node v. By definition P [Bu] ≤ 2bv

|Fu| , and from Proposition 6 |Fu| ≥
Q(1− 3η) and thus P [Bu] ≤ 2bv

Q(1−3η) ≤
2η

d̃v(1−3η)
.

Let Gv be the event that node v becomes good. Node v becomes good unless a
nonempty subset of its (uncolored) neighbors pick a slot that interferes with its beep.
Hence P [Gv] =

∏
u∈P P [¬Bu] where P ⊆ N(v) are the uncolored neighbors of v.

Let Pv be the event that the number of beeps observed by v is at least one quarter of
the number of its uncolored neighbors, that is d̃v ≥ |P |/4. We show that conditioned
on Pv , node v becomes good with constant probability.

P [Gv|Pv] =
∏
u∈P

P [¬Bu|Pv] =
∏
u∈P

(1− P [Bu|Pv]) ≥
(

1− 8η

|P |(1− 3η)

)|P |
≥ e−

16η
1−3η

Where the last inequality holds for sufficiently small η ≤ 1
16 . Finally from Lemma 8

we have P [Pv] ≥ 1
2 , hence P [Gv] ≥ P [Gv|Pv]P [Pv] ≥ 1

2e
− 16η

1−3η .

From Lemmas 10 and 11, after two periods a bad node becomes good with con-
stant probability. Therefore the probability that a node remains bad drops off exponen-
tially with the number of periods. Using standard arguments one can show that a bad
node becomes good with high probability after 6

e
− 16η

1−3η

log n ∈ O(log n) rounds.

We now show that each node is assigned a “large” fraction of the slots.

Lemma 12. Let v be a good node, then Iv ≥ η Q
2dmax(v)+1 .

Proof. Consider the period when v became colored. By construction in that period
node v observed no beeps in the interval [pv − bv, pv], thus Iv ≥ η Q

d̃v+1
in that period.

Fix a node u ∈ N(v). Node u will only select to beep in phases that respect a buffer
of size bu+2 = η Q

d̃u+1
+2 before the beep of node v. So independent of the jitter, node

v will never observe a beep of u within within bu of its phase. Finally, since ∀u ∈ V it
holds that d̃u ≤ 2dmax(v), and hence Iv ≥ η Q

2dmax(v)+1 in all subsequent periods.

This leads to our main theorem.

Theorem 13. The JITTERANDJUMP algorithm computes a O(∆)-interval coloring
with high probability in O(log n) periods.



5.1 Dynamic Graphs

We turn our attention to dynamic graphs, where nodes and edges are added and removed
throughout the execution. Adding nodes or edges is analogous to waking up, which is
already handled gracefully by JITTERANDJUMP. However this is not the case for node
or edge removals. In particular, once the algorithm has stabilized to an O(∆)-interval
coloring, the interval of each node is not guaranteed to increase, even if sufficiently
many nodes leave and the new maximum degree becomes ∆′ � ∆.

A natural solution would be to go back to an uncolored state when the degree es-
timate falls below a certain threshold. However, colliding nodes can cause the degree
estimate to drop artificially, even when no nodes or edges are removed. Moreover in
some cases, the colliding nodes are not aware of each other and can remain collided
forever despite jittering. For example in a star graph, from the center’s perspective the
spokes may be colliding, but the spokes have no means of detecting the collision.

Algorithm description (modifications to JITTERANDJUMP). Regardless of the state,
each node v picks a second phase p′v at random from the free slots Fv . As before, node
v will beep at pv + jitterv , but additionally also beep at p′v . Let Sv(i) be the set of slots
where node v heard a beep in period i. We define d∗v(i) = maxj∈[i−r,i]) |Sv(j)| as the
maximum number of beeps over a moving window of the last r periods. At period i we
update the degree estimate by taking the maximum of the current beep count and d∗v(i)
( d̃v = max(d̃v, d

∗
v(i))). Finally, if d∗v(i) <

d̃v
16 we set d̃v = d∗v(i) and uncolor node v.

Since nodes beep twice at every period then for every period i, Sv(i) ≤ 4d(v). In
executions where the degree estimate doesn’t decrease, the analysis of Section 5 still
holds, albeit with slightly different constants. To prove correctness we need to show
that with sufficiently high probability the degree estimate will decreases if and only if
the degree drops by a large enough factor.

From proposition 6 the number of free slots is |Fv| ≥ (1 − 3η)Q = (1 − 3η)κ∆,
and since κ ≥ 1

1−3η then |Fv| ≥ ∆. Given that a node v has d(v) neighbors, and
each neighbor beeps at least once per period in a random slot (at most twice), we are
interested in the probability that the beeps observed account for a constant fraction of
the neighbors. This is essentially the same scenario described by lemma 8 which can be
viewed as an occupancy problem. Using theorem 7 we can show that with probability
at least 1

2 the number of beeps observed is at least d(v)/4.
Hence, at every period i we have |Sv(i)| ≥ d(v)/4 with probability ≥ 1

2 . Since
the degree estimate is computed using the information of the last r periods, the degree
estimate decreases only if in the last r periods the beep count observed was below
d̃v/16. However, unless the real degree has decreased by a constant factor, this happens
with probability less than 1

2

r. On the other hand, if the real degree decreases by a large
enough factor, the degree count observed for the next r periods will be at most four
times the real degree, which will cause the degree estimate to decrease with certainty
after r periods.

Finally,y setting r ∈ O(log 1/ε) the same argument used before can be used to
prove the algorithm described computes an Ω(T/∆)-interval coloring in O(log 1/ε)
periods with probability 1− ε.



6 Lower Bound

We consider a stronger model, namely standard synchronous local broadcast with mes-
sages of constant size. During each slot a node sends a message of constant size and
receives the set of messages sent by its neighbors. Assume every node v knows its own
degree d(v), the maximum degree ∆ and the size of the network n, but does not have
unique IDs. All nodes start the execution (wakeup) simultaneously.

The rest of this section is devoted to proving the following theorem.

Theorem 14. Under the model described, in less than O(log n) slots it is impossible
to compute a O(∆)-interval coloring or a O(∆)-vertex coloring with high probability.

Proof. LetGi = (Bi, Ei) be a graph on four vertices, with vertex setBi = {ai, bi, ci, di}
and edge set Ei = {(ai, bi), (bi, ci), (ci, di), (ai, ci), (bi, di)}. Define G as the cycle
graph generated by pasting together n/4 copies ofGi, where ∀i ∈ [0, n4 −1] we connect
component Gi with component Gi+1 mod n

4
by adding the edge (di, a(i+1 mod n

4 )). G
is a 4-regular graph of size n and inside every component Gi the vertices bi and ci have
the same closed neighborhood.

Let sku be the state of node u at slot k, and let mk
u be the message sent by node u in

slot k. Regardless of its state, a node can only choose to send a message amongst a set
of constant size of possible messages, let c be the size of this set.

Consider a component Bi, and assume the states of bi and ci are identical at slot k.
Since their closed neighborhood is identical, if they send the same message at slot k,
they will receive the same set of messages and remain in identical states at slot k + 1.
Formally, if skbi = skci and mk

bi
= mk

ci then sk+1
bi

= sk+1
ci .

Moreover, if bi and ci are in the same state at slot k, they choose what to send
according to the same probability distribution, in particular let pi (where i ∈ [1, c])
be the probability of sending the ith message. By definition

∑c
i=1 pi = 1, and thus by

Cauchy-Schwarz we have
∑c
i=1 p

2
i ≥ 1

c
We prove a lower bound on the probability that bi and ci remain in the same state in

the next slot:

P
[
sk+1
bi

= sk+1
ci | skbi = skci

]
≥ P

[
mk
bi = mk

ci | s
k
bi = skci

]
=

c∑
i=1

p2i ≥
1

c

Therefore, if nodes bi and ci start at the same state (s0bi = s0ci ) the probability that they

remain in the same state after ` slots is P
[
s`bi = s`ci | s

0
bi

= s0ci
]
≥ 1

c

`. If we let ` =

logc
n
4 then P

[
s`bi = s`ci | s

0
bi

= s0ci
]
≥ 4

n , and thus P
[
s`bi 6= s`ci | s

0
bi

= s0ci
]
≤ 1− 4

n .
Since there are no unique identifiers, initially all nodes have the same state (∀u, v ∈

V , s0u = s0v), and the probability that after ` slots every component Bi has s`bi 6= s`ci is:

P
[
∀Bi, s`bi 6= s`ci

]
=

n/4∏
i=1

P
[
s`bi 6= s`ci

]
≤
(

1− 4

n

)n
4

≤ 1

e

Therefore there exists a pair of neighboring nodes that remain in the same state after
` slots with constant probability.



P
[
∃(u, v) ∈ E s.t. s`u = s`v

]
≥ P

[
∃Bi s.t. s`bi = s`ci

]
= 1−P

[
∀Bi, s`bi 6= s`ci

]
≥ 1−1

e

Moreover, since G is a 4-regular graph, it should ensure interval lengths of size
Ω(Q/4) ∈ Ω(Q). Finally, if two nodes in the same state select intervals of size Ω(Q)
slots out of a total of Q slots, the probability that they select overlapping intervals is
greater than a constant. Therefore with constant probability after Ω(log n) slots there is
a pair of neighboring nodes which do not have an O(∆)-interval coloring.

Observe that if instead of solving interval coloring we were considering vertex col-
oring, the probability that two neighboring nodes select the same color out of ∆ avail-
able colors is also a constant, and thus with constant probability a pair of neighboring
nodes select the same color. Which concludes the proof.

In light of the upper bound ofO(log n) periods presented in Section 5, the previous
bound is asymptotically tight for constant degree graphs. Since each period has Q ≥
∆ slots this implies a lower bound of Ω(log n/∆) periods for general graphs. If we
additionally assume each node beeps at mostO(1) times per period, the same argument
yields a lower bound ofΩ(log n/ log∆) periods for general graphs, since for each node
the probability of beeping in the same slot as a neighbor is 1/κ∆.

References

1. B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition and
locality in distributed computation. In Proc. of 30th Symposium on Foundations of Computer
Science (FOCS), pages 364–369, 1989.

2. B. Balasundaram and S. Butenko. Graph domination, coloring and cliques in telecommu-
nications. In M.G.C. Resende and P.M. Pardalos, editors, Handbook of Optimization in
Telecommunications, pages 865–890. Springer, 2006.

3. L. Barenboim and M. Elkin. Distributed (∆+ 1)-coloring in linear (in ∆) time. In Proc. of
the 41st ACM Symposium on Theory of Computing (STOC), 2009.

4. L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in polylogarithmic
time. In Proc. 29th ACM Symposium on Principles of Distributed Computing (PODC), 2010.

5. J. Degesys and R. Nagpal. Towards desynchronization of multi-hop topologies. In Proc. 2nd
IEEE Conference Self-Adaptive and Self-Organizing Systems (SASO), pages 129–138, 2008.

6. J. Degesys, I. Rose, A. Patel, and R. Nagpal. Desync: self-organizing desynchronization and
TDMA on wireless sensor networks. In Proc. 6th Conference on Information Processing in
Sensor Networks (IPSN), page 20, 2007.

7. R. Flury and R. Wattenhofer. Slotted programming for sensor networks. In Proc. 9th Con-
ference on Information Processing in Sensor Networks (IPSN), 2010.

8. S. Gandham, M. Dawande, and R. Prakash. Link scheduling in sensor networks: Distributed
edge coloring revisited. In Proc. of 24th IEEE Conference on Computer Communications
(INFOCOM), pages 2492–2501, 2005.

9. A.V. Goldberg, S.A. Plotkin, and G.E. Shannon. Parallel symmetry-breaking in sparse
graphs. SIAM Journal on Discrete Mathematics, 1(4):434–446, 1988.

10. T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for wireless sensor
networks. In Proc. of 1st Int. Workshop on Algorithmic Aspects of Wireless Sensor Networks,
pages 45–58, 2004.



11. K. Kothapalli, M. Onus, C. Scheideler, and C. Schindelhauer. Distributed coloring in
o(
√
logn) bit rounds. In Proc. of 20th IEEE Parallel and Distributed Processing Symposium

(IPDPS), 2006.
12. F. Kuhn. Local multicoloring algorithms: Computing a nearly-optimal TDMA schedule in

constant time. In Proc. of 26th Symp. on Theoretical Aspects of Computer Science (STACS),
2009.

13. F. Kuhn. Weak graph coloring: Distributed algorithms and applications. In Proc. of 21st
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2009.

14. N. Linial. Locality in distributed graph algorithms. In SIAM Journal on Computing, pages
193–201, 1992.

15. S. Mecke. MAC layer and coloring. In D. Wagner and R. Wattenhofer, editors, Algorithms
for Sensor and Ad Hoc Networks, pages 63–80, 2007.

16. T. Moscibroda and R. Wattenhofer. Coloring unstructured radio networks. In Proc. 17th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 39–48, 2005.

17. A. Motskin, T. Roughgarden, P. Skraba, and L. Guibas. Lightweight coloring and desyn-
chronization for networks. In Proc. 28th IEEE Conference on Computer Communications
(INFOCOM), 2009.

18. A. Panconesi and A. Srinivasan. On the complexity of distributed network decomposition.
Journal of Algorithms, 20(2):581–592, 1995.

19. S. Ramanathan. A unified framework and algorithm for channel assignment in wireless
networks. Wireless Networks, 5:81–94, 1999.

20. I. Rhee, A. Warrier, J. Min, and L. Xu. DRAND: Distributed randomized TDMA schedul-
ing for wireless ad-hoc networks. In 7th ACM Symp. on Mobile Ad Hoc Networking and
Computing (MOBIHOC), pages 190–201, 2006.

21. C. Scheideler, A. Richa, and P. Santi. An o(log n) dominating set protocol for wireless ad-hoc
networks under the physical interference model. In Proc. 9th ACM Symposium on Mobile
Ad Hoc Networking and Computing (MOBIHOC), pages 91–100, 2008.

22. S. Schmid and R. Wattenhofer. Algorithmic models for sensor networks. In Proc. 14th
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), 2006.

23. J. Schneider and R. Wattenhofer. A log-star distributed maximal independent set algorithm
for growth-bounded graphs. In Proc. of 27th ACM Symposium on Principles of Distributed
Computing (PODC), 2008.

24. J. Schneider and R. Wattenhofer. Coloring unstructured wireless multi-hop networks. In
Proc. 28th ACM Symposium on Principles of Distributed Computing (PODC), pages 210–
219, 2009.

25. J. Schneider and R. Wattenhofer. A new technique for distributed symmetry breaking. In
Proc. 29th ACM Symposium on Principles of Distributed Computing (PODC), 2010.

26. USC/ISI. Network Simulator 2 (NS2). URL http://www.isi.edu/nsnam/ns/.
27. X. Zhang, J. Hong, L. Zhang, X. Shan, and V.O.K. Li. CP-TDMA: Coloring- and probability-

based TDMA scheduling for wireless ad hoc networks. IEICE Transactions on Communi-
cation, E91-B(1):322–326, 2008.


