
Deployment
Issues in Scalable
IslandMulticast
for Peer-to-Peer
Streaming

Xing Jin
Oracle USA

Ho-Shing Tang and S.-H. Gary Chan
The Hong Kong University of Science and Technology

Kan-Leung Cheng
University of Maryland

W
ith the prevalence of peer-

to-peer (P2P) technologies,

multimedia streaming has

become an important Inter-

net application. In a P2P-streaming system, co-

operative peers organize into an overlay

network via unicast connections. The peers

cache and relay data for each other, eliminating

the need for powerful servers. A popular P2P-

streaming system might consist of more than

tens of thousands of peers.1,2 To improve de-

livery efficiency, some P2P protocols make

use of Internet Protocol (IP) multicast. Al-

though global IP multicast is not yet available,

many local Internet networks are multicast-

capable.

These local multicast-capable domains, so-

called islands, are frequently interconnected

by multicast-incapable or multicast-disabled

routers. For example, in the Hong Kong area,

Hong Kong Broadband Network Limited has

deployed a network that covers more than

2,500 corporate buildings and approximately

one million residences. It offers digital televi-

sion service to subscribers via IP multicast.

The Scalable Island Multicast protocol,

which we introduced in other research reports,

integrates IP multicast into P2P overlay deliv-

ery.3,4 In SIM, hosts within an island communi-

cate with IP multicast and connect across

islands through unicast. Each host distributedly

joins an overlay tree and detects and joins its

multicast island, if possible. Each island in

SIM has a unique ingress host that receives

media content from outside the island and

multicasts within the island. Other hosts in the

island receive data via IP multicast from the in-

gress. In this article, we investigate the practical

deployment issues of the SIM protocol.

Network address translation

In SIM, hosts first form a low-delay overlay

tree, then detect multicast islands and use IP

multicast if possible. In the following discus-

sion, a parent of a host refers to the host’s par-

ent in the overlay tree. We are interested in

building a tree with low end-to-end delay.

Clearly, the tree-construction mechanism

should be distributed and scalable, and the al-

gorithm should be simple, with low setup and

maintenance overheads. A practical problem

in setting up connections is that some hosts

might be behind network address translations

(NATs) and have only limited connectivity.

These hosts are called restricted hosts. A host

that is not behind any NAT is called public. A

restricted host can communicate only with

public hosts or other restricted hosts behind

the same NAT, while a public host can commu-

nicate with either a restricted host (with the

restricted host being the initiator of the con-

nection) or a public one. Hence, we integrate

the traditional Basic Contributor algorithm5

into our system to achieve NAT traversal. This

algorithm allows restricted hosts to upload

data to public hosts.

A new host must identify whether it’s public

or restricted before joining the tree. This identi-

fication can be achieved using the protocol,

Simple Traversal of User Datagram Protocol

through NATs (STUN).6 Afterward, each host

maintains a heap Hp to store its potential

parents. In the first iteration, the new host con-

tacts a publicly known rendezvous point to ob-

tain a list of public hosts in the system. It

measures the round-trip time (RTT) to these

hosts and inserts them into Hp in the increasing

Intelligent and Pervasive Multimedia Systems

The Scalable Island

Multicast protocol

integrates Internet

Protocol multicast

and overlay delivery

for media streaming.

1070-986X/09/$25.00 �c 2009 IEEE Published by the IEEE Computer Society72

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 5, 2009 at 23:04 from IEEE Xplore. Restrictions apply.

order of the RTT. In the next iteration, the new

host pops k hosts with the smallest RTT from

Hp (k is a system parameter). For each of the

popped hosts, if the new host has not sent a

NeighborQuery message to it before, the new

host sends the message.

If a host receives a NeighborQuery message

from a public new host, it replies with the IP

addresses of its public neighbors and informs

its restricted neighbors to contact the new

host. Hence, the new host can communicate

with all the neighbors of the queried host and

obtain the RTT to each of them. The new

host then inserts the neighbors into Hp accord-

ing to their RTT.

If a host receives a NeighborQuery message

from a restricted new host, it replies with

the addresses of all its public and restricted

neighbors. The purpose of responding with

restricted neighbors is to detect whether these

hosts and the new one are behind the same

NAT. If they are, the restricted neighbors

could communicate with the new host. Fur-

thermore, the queried host asks its restricted

neighbors to report their public neighbors to

the new host. The new host then communi-

cates with all the returned hosts and obtains

the RTT to each of them. Finally, the new

host inserts into Hp the hosts whose RTT from

the new host is available.

After the new host obtains the RTT to all the

returned hosts, it pops k closest ones from Hp.

The iteration repeats until the improvement

in the smallest RTT is lower than a certain

threshold, or the number of iterations exceeds

a certain value t. At the end of the process,

the new host selects from its current m closest

hosts the one with the highest forwarding

bandwidth as its parent, where m is a tunable

system parameter. If the new host is public,

its heap Hp might contain some restricted

hosts. Because only the restricted host can initi-

ate the connection between a public and a

restricted host, the new host should keep the con-

nection between them after RTT measurement.

Furthermore, a restricted host can select

only a public host or another restricted host

behind the same NAT as its parent. If all public

hosts in the system are occupied, new re-

stricted hosts will not be able to join the over-

lay tree. Therefore, we require public hosts to

preferentially select restricted hosts as the

parents. Given a public new host, its measured

RTT from a restricted host is multiplied by a

constant a(a < 1).

Figure 1 shows an example of host joining in

the overlay tree. Suppose k ¼ 2 and P is a new

host. P first obtains a list of public hosts from

the rendezvous point, say, C, D, E, and F.

P then pings all these hosts and inserts them

into Hp. Suppose that C and D are the two clos-

est hosts. In the following, if P is a public host,

it pings C’s public neighbors (that is, A, F, and

G) and D’s public neighbors (that is, B and I).

Furthermore, D has a restricted neighbor H.

D will informH to ping P. In this way, P can ob-

tain the RTT to all the neighbors of C and D.

P then inserts all the neighbors into Hp and

completes this iteration. In the next iteration,

it pops the two closest hosts from Hp and

sends NeighborQuery messages to them. Such

iteration stops if any of the stopping conditions

is satisfied.

In another case, if P is a restricted host, when

it sends NeighborQuery messages to C and D,

both C and D will reply with their public neigh-

bors (that is, A, F, G, B, and I). Furthermore,

D has a restricted neighbor H. D informs H to

set up a connection with P and asks H to report

its public neighbors other than D (that is, J) to P.

P then measures the RTT to all the returned

hosts. And the hosts with available RTT are

inserted into Hp. Note that H might not be

able to set up a connection with P because they

might not be behind the same NAT. Afterward,

a new iteration starts.

Finally, if a host leaves, its children must re-

join the tree and find new parents. A rejoining

host sends a NeighborQuery message to

its grandparent and starts joining from its

grandparent.

A

B C

D E F G

H I

P

J

Restricted host

Public host

New host

Figure 1. An example of

joining the overlay tree

in Scalable Island

Multicast.

Ja
n
u
a
ry
�
M
a
rch

2
0
0
9

73

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 5, 2009 at 23:04 from IEEE Xplore. Restrictions apply.

Fault tolerance and loss recovery

During streaming, a host can suffer packet

loss for various reasons. A path might be

congested or fail. A host’s parent might unex-

pectedly leave the system. In addition, there is

potential for application-level loss. That is, a

streaming application usually has a playback

deadline by which data delivery and loss recov-

ery have to be accomplished. Data packets

received after the deadline are useless and

regarded as a loss.

In other work, we proposed a scheme to re-

cover from temporary packet loss due to back-

ground traffic.4 In this method, each host in

SIM must identify a few other hosts as its

recovery neighbors. A host’s recovery neigh-

bors must satisfy, at the least, the following

requirements:

� not reside in the host’s subtree,

� not be the host’s ancestor, and

� not reside in the same island as the host.

To achieve quick recovery, the scheme esti-

mates recovery latency from each of its

recovery neighbors. Whenever a loss occurs,

the host sends a retransmission request to the

recovery neighbor that has the smallest recov-

ery latency. If the retransmission fails again,

the host turns to the recovery neighbor with the

second smallest recovery latency, and so on.

In bandwidth-limited networks, a single in-

coming path might not provide an adequate

delivery rate. If this occurs, the corresponding

host will suffer persistent and often serious

packet loss. In the above method for recovering

temporary packet loss, we estimate recovery

latency according to source-to-host delay

along the tree. But if a large number of hosts

in the system have to consistently fetch data

from recovery neighbors, the data flows in the

overlay will become chaotic. Accordingly,

the estimated recovery latency will become use-

less and the overall recovery efficiency won’t be

high. To address this problem, we extend the

recovery scheme to a pull-based recovery.7,8

First, each host in the system joins the tree

and selects recovery neighbors, as discussed

previously. A host encountering persistent

packet loss triggers pull-based recovery. It

sends requests to all its recovery neighbors,

which respond with their buffer maps. The

buffer map of a host records packet availability

in the host’s buffer.

Once we have buffer maps from all recovery

neighbors, we can determine the packet-

scheduling sequence. That is, for each missing

packet, we know the recovery neighbors pos-

sessing the packet. We need to identify one

recovery neighbor to conduct packet retrans-

mission so that the packet can be fetched as

quickly as possible. Suppose host j is a recovery

neighbor of host i. Let RTTj be the round-trip

delay between j and i. Let pj be the transmission

delay of a data packet from j to i. Clearly, if

i sends a retransmission request to j (after i has

analyzed j’s buffer map and knows that j pos-

sesses the designated packet), i will receive the

retransmission after (RTTj þ pj) time. We call it

the retransmission latency from j. Here we as-

sume the transmission delay of a retransmission

request message is negligible.

Clearly, the lower retransmission latency we

can achieve, the better. Therefore, we designed

a packet-scheduling algorithm, as shown in

Figure 2. The algorithm tries to find a recovery

neighbor with the smallest retransmission la-

tency for each missing packet. Note that in

line 7, we increase the value of RTT# by p#.

This is because if recovery neighbor # is

selected to retransmit the packet, any follow-

ing retransmission has to wait until this

retransmission ends. On the other hand, at

the beginning of each execution of the algo-

rithm, the RTT values refer to the original

round-trip delay between hosts.

After identifying the recovery neighbors for

all missing packets in the buffer map, host i

sends retransmission requests to the correspond-

ing recovery neighbors. The packet-scheduling

INPUT: D-number of packets in a buffer map;
 For each recovery neighbor j, we know its buffer map,
 and:
 RTTj-round-trip delay between j and i;
 pj-transmission delay of a data packet from j to i.
OUTPUT: rn[t]-selected recovery neighbor for packet t

1: for t = 1 to D do

2: if packet t is already in i’s buffer map then

3: continue

4: end if

5: identify the set of recovery neighbors that possess packet t
6: select recovery neighbor j from the above set s.t.
 j = argminj {RTTj + pj|∀j ∈ above set}
7: RTTj ← RTTj + pj
8: rn[t] ← j

9: end for

Figure 2. Packet

scheduling at host i.

IE
E
E
M
u
lt
iM

e
d
ia

74

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 5, 2009 at 23:04 from IEEE Xplore. Restrictions apply.

process is then periodically performed at the

host.

Implementation issues

We implemented and deployed SIM on the

Home Media Center Platform of the Hong

Kong Applied Science and Technology Re-

search Institute. On the platform, an end user

can watch programs on a TV connected to the

network via a set-top box (STB). Media content

delivery and audiovideo compression and de-

compression are conducted through the STB.

Each STB has 1 Mbyte of memory for storing

program footprints, 5 Mbytes of memory

for program execution, and 32 Mbytes of

space for storing media segments. To support

efficient media-content processing, separate

memory space is dedicated to the audiovideo

encoder and decoder. Moreover, each STB has

a 300-MHz CPU and a hard disk with more

than 100 Gbytes of storage. The STB runs an

embedded Linux operating system. More

details about the STB can be found at http://

www.astri.org/.

On the Home Media Center platform, some

STBs serve as the media sources. A source cap-

tures TV signals through an audiovideo input.

It encodes video into H.264 format and audio

into Advanced Audio Coding format, respec-

tively. H.264 is the latest video standard devel-

oped by the International Telecommunications

Union and MPEG.9 It provides a more efficient

video-compression algorithm compared to its

precursor, the H.263 standard. In our experi-

ments, a normal stream has a frame rate of 25

frames per second (fps), with one I-frame fol-

lowed by 24 P-frames. For such a stream, H.263

and H.264 encodings have bit rates of around

1,200 and 500 kilobits per second (Kbps), respec-

tively. The video and audio streams are then

encapsulated into packets and transmitted

through networks. Other STBs have the SIM soft-

ware installed. They retrieve packets from net-

works, decode packets, and output TV signals

to TV sets via the audiovideo output.

In addition to deploying SIM on STBs, we

implemented a SIM prototype on Windows

and Linux platforms and deployed it in our

campus network. Figure 3 shows the system

Client
Client

Network address
translator router

Multicast island

Multicast island

Client

Client

Client

Client

Client

Capture Encode Send

Capture Encode Send

SIM server: channel 1,2,3

SIM server: channel 4,5,6

Ethernet card 1

Ethernet card 2

STUN server

Figure 3. An overview

of the Scalable Island

Multicast architecture.

Ja
n
u
a
ry
�
M
a
rch

2
0
0
9

75

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 5, 2009 at 23:04 from IEEE Xplore. Restrictions apply.

architecture. Each SIM server is responsible for

a certain number of channels. It captures TV

signals, encodes streams, and sends streams to

the network. A STUN server is deployed for

NAT detection. Clients (or end users) receive

streaming data from their neighbors or the

server. They form islands and make use of IP

multicast, if possible. We use a TV tuner card

to capture TV signals at the server side and en-

code the stream into H.264 format. We use the

MP3 standard to compress the audio using a bit

rate of around 100 Kbps. The server independ-

ently encodes and transmits video and audio,

which is synchronized at the client before

playback.

A host in the system receives data from its

parent as well as recovery neighbors (if needed).

However, if the host’s bandwidth is limited, its

receiving rate will be accordingly limited and

multiple-path delivery won’t help. In this

case, the host must accept only the most im-

portant packets and skip the less important

ones. A video stream encoded by our method

consists only of I-frames and P-frames. An

I-frame is a standalone frame that can be played

back by itself; while a P-frame is predicted from

its immediately previous frame. As a result, if

the immediately previous frame of a P-frame

is lost, the P-frame will be useless. The group

of frames leading with an I-frame and ending

with P-frames is called a group of pictures

(GoP). Clearly, the importance of frames in a

GoP sequence decreases from the first I-frame

to the last frame. Therefore, a host with a lim-

ited receiving rate can skip a certain number

of trailing P-frames in each GoP until the remain-

ing frames can be transmitted at the current

receiving rate. It then requires only the remain-

ing frames from its parent or recovery neighbors.

In the SIM prototype, an end user can switch

between multiple channels. Each channel

forms its own SIM tree for data delivery. A

user can watch two channels at the same

time. One is displayed as normal and another

is displayed in a smaller picture for preview.

To achieve this functionality, each channel

encodes a normal stream and a preview stream.

The normal stream has a frame rate of 25 fps,

which is one I-frame followed by 24 P-frames.

The preview stream has a frame rate of 1 fps,

which is one I-frame.

Simulation results on transit-stub

topologies

In this section we present simulation results

on Internet-like topologies and experimental

results on PlanetLab (see http://www.planet-lab.

org). We generate 10 transit-stub topologies

with Georgia Tech’s Internetwork Topology

Generator.10 Each topology is a two-layer hier-

archy of transit and stub domains. The transit

domains form a backbone and all the

stub domains are connected to the backbone.

Each topology has four transit domains and

280 stub domains. On average, a transit do-

main contains 10 routers and a stub domain

contains eight routers. Each topology consists

of 2,280 routers and about 11,000 links. A

group of N hosts are randomly put into the net-

work. A host is connected to a unique stub

router with 1-millisecond delay, while the to-

pology generator gives the delays of core links.

We set the distribution of islands as follows.

From the stub domains that consist of at least

one host, we randomly select some and set them

to bemulticast-capable.We definemulticast ratio y

as the ratio of the number of multicast-capable

stub domains to the number of stub domains

that consist of at least one host. We define is-

land size S as the number of stub domains in

an island. In the real Internet, routers in a mul-

ticast island are frequently close to each other.

Therefore, in our simulations, only the stub

domains connected to the same transit router

can form a multicast island. Furthermore, we

define restricted host ratio g as the ratio of the

number of restricted hosts to the total number

of hosts. We assume that there is an average of

two hosts behind a NAT.

We set the SIM parameters as follows. Each

new host obtains several (at most 10) randomly

selected hosts from the rendezvous point when

joining. A new host will repeat the pinging iter-

ations for a maximum of six times and in each

iteration will ping a maximum of 10 hosts (that

is, t ¼ 6 and k ¼ 10). Each host has a degree

bound equal to its normalized edge bandwidth.

We do not implement loss recovery in the sim-

ulations. We use the following metrics to eval-

uate the protocol:11

� Relay delay penalty (RDP).Defined as the ratio

of the overlay delay from the source to a

given host to the delay along the shortest

unicast path between them.IE
E
E
M
u
lt
iM

e
d
ia

76

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 5, 2009 at 23:04 from IEEE Xplore. Restrictions apply.

� Link stress. Defined as the number of copies

of a packet transmitted over a certain physi-

cal link.

� Resource usage. Defined as
PL

i¼1 di � si, where

L is the number of links active in data trans-

mission, di is the delay of link i, and si is the

stress of link i. Resource usage is a metric of

the network resource consumed in data

delivery.

Figure 4a shows the performance of SIM

with different group sizes N. As N increases,

the average RDP generally increases, with

some fluctuation in values. This increase is

not surprising because with more hosts in the

system, the overlay tree becomes deeper.

Hence, the average distance to the tree root

increases with the group size. On the other

hand, the average stress doesn’t regularly in-

crease or decrease with the group size. A possi-

ble reason is that stress computation is affected

by the number of IP multicast paths, as IP multi-

cast always achieves an average stress of 1.0. In

addition, resource usage keeps increasing as

the group size increases. Clearly, the more

hosts in the tree, the more network resources

the tree consumes.

Figure 4b shows the performance of SIM

with different restricted host ratios g. As g

increases, all three metrics increase. From

g ¼ 0 to g ¼ 0.9, RDP, stress and resource

usage have increased by 47, 104, and 222 per-

cent, respectively. These metrics show that

the existence of restricted hosts might seriously

impair delivery efficiency. A promising point

from the figure is that our NAT solution can

successfully traverse NATs. Even with 90 per-

cent of hosts behind NATs, SIM can still build

a connected overlay tree. Therefore, for a net-

work with many restricted hosts, we might de-

ploy only a few public hosts and servers to

connect all of them. In addition to conducting

these tests, we have tuned other SIM parame-

ters and compared our protocol with other

overlay protocols elsewhere.4

Experimental results on real networks

We deployed 26 Home Media Center STBs

to evaluate SIM. Half of the STBs are in our

campus network, and the other half are in

the Applied Science and Technology Research

Institute company network. The system has

three multicast islands, consisting of six,

four, and three STBs, respectively. Other STBs

are not in any islands. The coding parameters

follow the STB description earlier in this article.

The streaming bit rate is around 500 Kbps. We

record the system performance in the steady

state.

We define continuity index as the ratio of

the number of packets arriving in time to the

total number of packets. Figure 5 (next page)

shows the average continuity index at each

STB. The x-axis in the figure shows the IDs of

the STBs. Each STB has a unique ID, which

we sort according to their continuity index.

100 200 300 400 500 600 700

Group size (N)

(a)

Average resource
delay penalty (RDP)

R
e
so

u
rce

 u
sa

g
e
 (×

1
0

3)

Resource usage

Average stress

800 900 1,000

100 200 300 400 500 600 700 800 900 1,000

10

20

30

40

50

60

3.0

2.8

2.6

2.4

2.2

2.0

R
D

P
 a

n
d

 s
tr

e
ss

1.8

1.6

0.1 0.2
1.6

2.0

2.4

2.8

3.2

3.6

4.0

0.3 0.4 0.5

Restricted host ratio (γ)

R
e
so

u
rce

 u
sa

g
e
 (×

1
0

3)

R
D

P
 a

n
d

 s
tr

e
ss

0.6 0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

40

60

80

100

120

140

160

200

180

(b)

Figure 4. Performance

of Scalable Island

Multicast with

(a) different group sizes

(where S ¼ 1, y ¼ 0.5,

and g ¼ 0); and

(b) different restricted

host ratios (N ¼ 1,024,

S ¼ 1, and y ¼ 0.5) on

transit-stub topologies.

77

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 5, 2009 at 23:04 from IEEE Xplore. Restrictions apply.

As shown, the lowest and highest continuity

indexes are 0.989 and 0.9989, respectively.

Clearly, we have kept the packet-loss rate at a

low level. From the video-decoding viewpoint,

such a loss rate can be effectively masked by

interleaving or error-concealment techniques.

We also deployed the SIM prototype on Planet-

Lab and conducted experiments on the Plan-

etLab test bed. We randomly selected 66

PlanetLab nodes across the Internet. The

nodes form 40 multicast islands. Among

them, 22 islands have size one (that is, consist-

ing of only one host), 14 islands have size two,

three islands have size three, and one island

has size seven. Due to the public nature of

PlanetLab, no nodes are behind NAT.

To count packet loss, we divide streaming

data into a set of units. Each unit contains

500 packets and each packet is 1,400 bytes.

Given such a unit, we set the playback dead-

line to be the receiving timestamp of the

first packet minus the sending timestamp of

the first packet plus 10 seconds. For other

packets in the unit, if the receiving timestamp

is larger than the sending timestamp plus the

playback deadline, we mark the packet as

delayed (or lost). Otherwise, the packet arrives

in time.

In our experiments, we vary the streaming

bit rate from 100 to 500 Kbps. A node can select

several recovery neighbors according to the

network condition. In each experiment, we

set a public rendezvous point and a public

source node. Nodes then join the system one

by one, with an interval of around 10 seconds.

The system runs for 30 minutes after all nodes

join. Each node logs the statistics to a text file

every minute. We collect the text files at the

end of the experiment and analyze the system

performance in its steady state.

Figure 6 shows the average continuity index

with different streaming bit rates. In the

experiments, a node might dynamically

change the number of its recovery neighbors.

We summarize the performance of nodes with

a certain number of recovery neighbors.

When nodes have at least one recovery neigh-

bor, the continuity index remains above 0.984.

As a comparison, nodes without any recovery

neighbors have a much lower continuity

index, which shows that the normal tree-

based delivery is not resilient enough for

media streaming.

In most cases, when the number of recovery

neighbors increases, the continuity index

increases. This factor confirms our design prin-

ciple of loss recovery. With more recovery

neighbors, data recovery can be more efficient

and packet loss rate can be reduced. In Figure 6,

if we increase the streaming bit rate, the con-

tinuity index in the presence of recovery

neighbors doesn’t regularly increase or de-

crease. As a comparison, if we use a pure tree

topology with no recovery neighbors, the con-

tinuity index usually decreases when the

streaming bit rate increases, because the higher

1

0.988

0.990

0.992

C
o
n

ti
n

u
it

y
 i
n

d
e
x

0.994

0.996

0.998

1.000

3 5 7 9 11 13 15

Set-top box ID

17 19 21 23 25

Figure 5. Continuity

index achieved by

set-top boxes.

100

0.88

0.89

0.90

0.91

0.92

0.93

0.94

C
o
n

ti
n

u
it

y
 i
n

d
e
x

0.95

0.96

0.97

0.98

0.99

1.00

200 300

Streaming bit rate (Kbps)

400

4

3

2

1

0

500

Recovery
neighbors

Figure 6. Continuity

index with different

streaming bit rates

and different number

of recovery neighbors

(on PlanetLab).

78

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 5, 2009 at 23:04 from IEEE Xplore. Restrictions apply.

the streaming bit rate, the more contention

on the paths and links. As each node has

only one incoming path in a tree, such con-

tention will lead to packet loss at nodes. As

shown, delivery with recovery neighbors can

provide much better streaming quality than

tree-based delivery, especially for high-bit-

rate streaming. Loss recovery is essential for

P2P streaming.

Figures 7a and 7b show SIM’s continuity

index and control overhead. We define control

overhead as the ratio of control traffic to total

traffic. In Figure 7a, we show the average conti-

nuity index at different times, where each node

can have, at most, four recovery neighbors. The

time monitored is from the 10th to the 20th

minute. All nodes have joined the system

before the 10th minute and remain stable dur-

ing the monitoring time. As the figure indi-

cates, the continuity index is stable and kept

above 0.9926, showing not only that SIM can

provide stable, high-quality streaming but also

that it’s enough for a host to have four recovery

neighbors.

In Figure 7b, we show the control overhead

versus the number of recovery neighbors. The

control overhead is kept between 0.0246 and

0.0257, a metric that is comparable with other

approaches, such as CoolStreaming.7 Cool-

Streaming on average incurs 200 Kbytes of con-

trol traffic at a host for transferring 10 Mbytes

of data, which corresponds to the control over-

head of 0.02. The control overhead doesn’t nec-

essarily increase with the number of recovery

neighbors because there are other factors,

such as the number of children, affecting con-

trol overhead. The control overhead is hence

not proportional to the number of recovery

neighbors.

Conclusion

As practical streaming software, SIM has

demonstrated high scalability and high stream-

ing quality. In the future, we will continue

refining the system. For example, similar to

many other P2P streaming softwares, SIM has

a startup and playback delay of around 30 to

60 seconds. It’s our future goal to reduce the

delays to the level of a TV (around 5 seconds).

In addition, we will consider integrating

topology information into the SIM overlay

construction to further enhance delivery

efficiency. MM

Acknowledgments

The Hong Kong Research Grant Council

(611107) and Hong Kong Innovation and Tech-

nology Commission (GHP/045/05) supported

this work, in part.

References

1. Y. Tang et al., ‘‘Deploying P2P Networks for Large-

Scale Live Video-Streaming Service,’’ IEEE Comm.

Magazine, vol. 45, no. 6, 2007, pp. 100-106.

2. X. Hei et al., ‘‘A Measurement Study of a Large-

Scale P2P IPTV System,’’ IEEE Trans. Multimedia,

vol. 9, no. 8, 2007, pp. 1672-1687.

3. X. Jin, K.-L. Cheng, and S.-H. G. Chan, ‘‘SIM:

Scalable Island Multicast for Peer-to-Peer Media

Streaming,’’ Proc. IEEE Int’l Conf. Multimedia and

Expo (ICME), IEEE CS Press, 2006, pp. 913-916.

4. X. Jin, K.-L. Cheng, and S.-H. G. Chan, ‘‘Scalable

Island Multicast for Peer-to-Peer Streaming,’’

Hindawi J. Advances in Multimedia, vol. 2007,

article 78913, 2007.

5. A. Ganjam and H. Zhang, ‘‘Connectivity Restric-

tions in Overlay Multicast,’’ Proc. ACM Networking

and Operating System Support for Digital Audio and

Video (Nossdav), ACM Press, 2004, pp. 54-59.

6. J. Rosenberg et al., STUN—Simple Traversal of User

Datagram Protocol (UDP) through Network Address

Translators (NATs), IETF RFC 3489, March 2003.

7. X. Zhang et al., ‘‘CoolStreaming/DONet: A

Data-Driven Overlay Network for Peer-to-Peer

Live Media Streaming,’’ Proc. IEEE Conf. Computer

0
0.020

0.022

0.024

0.026

0.028

0.030

10 11 12 13 14 15 16

Time (minutes)

C
o
n

ti
n

u
it

y
 i
n

d
e
x

C
o
n

tr
o
l
o
ve

rh
e
a
d

(a)

(b)

17 18 19 20
0.980

0.984

0.988

0.992

0.996

1.000

1 2

Number of recovery neighbors

3 4

Figure 7. Scalable

Island Multicast

(a) continuity index

and (b) control

overhead (streaming

bit rate is 500 kilobits

per second on

PlanetLab).

Ja
n
u
a
ry
�
M
a
rch

2
0
0
9

79

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 5, 2009 at 23:04 from IEEE Xplore. Restrictions apply.

Comm. (Infocom), IEEE CS Press, 2005, pp. 2102-

2111.

8. V. Fodor and G. Dan, ‘‘Resilience in Live Peer-to-

Peer Streaming,’’ IEEE Comm. Magazine, vol. 45,

no. 6, 2007, pp. 116-123.

9. R. Schafer, T. Wiegand, and H. Schwarz, ‘‘The

Emerging H.264/AVC Standard,’’ EBU Technical

Rev., Jan. 2003.

10. E. Zegura, K. Calvert, and S. Bhattacharjee,

‘‘How to Model an Internetwork,’’ Proc. IEEE Conf.

Computer Comm. (Infocom), IEEE CS Press, 1996,

pp. 594-602.

11. Y.H. Chu et al., ‘‘A Case for End System Multi-

cast,’’ IEEE J. Selected Areas Comm., vol. 20, no. 8,

2002, pp. 1456-1471.

Xing Jin is a member of technical staff in the Systems

Technology Group, Oracle USA. His research interests

include overlay networks, Internet topology infer-

ence, and multimedia networking. Jin has a PhD in

computer science and engineering from The Hong

Kong University of Science and Technology

(HKUST). He was awarded the Microsoft Research

Asia Fellowship in 2005. He is a Junior Editor of the

Journal of Multimedia, and the editor of the Canadian

Journal of Pure and Applied Sciences. Contact him at

xing.jin@oracle.com.

Ho-Shing Tang is working toward an M.Phil. at the

Department of Computer Science and Engineering

at HKUST. His research interests include peer-to-

peer systems and multimedia streaming. Tang has a

B.Eng. in computer science and engineering from

HKUST. He was awarded the Academic Achievement

Medal from HKUST in 2006. Contact him at

wilsont@cse.ust.hk.

S.-H. Gary Chan is an associate professor in the De-

partment of Computer Science and Engineering at

HKUST. His research interests include multimedia

networking, peer-to-peer technologies, streaming,

and wireless communication networks. Chan has a

PhD in electrical engineering from Stanford Univer-

sity. He is a member of Tau Beta Pi, Sigma Xi, and

Phi Beta Kappa. He is a senior member of the IEEE

Computer Society. Contact him at gchan@cse.ust.hk.

Kan-Leung Cheng is working toward a PhD in the

Department of Computer Science at the University

of Maryland, College Park. His research interests in-

clude protocols, algorithms, and architectures for net-

working systems. Cheng has an M.Phil. in computer

science and engineering from HKUST. Contact him

at klcheng@umd.edu.

80

IE
E
E
M
u
lt
iM

e
d
ia

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 5, 2009 at 23:04 from IEEE Xplore. Restrictions apply.

