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Abstract—Mobile robots can be used in many applications, such
as carpet cleaning, search and rescue, and exploration. Many
studies have been devoted to the control, sensing, and commu-
nication of robots. However, the deployment of robots has not
been fully addressed. The deployment problem is to determine the
number of groups unloaded by a carrier, the number of robots in
each group, and the initial locations of those robots. This paper
investigates robot deployment for coverage tasks. Both timing
and energy constraints are considered; the robots carry limited
energy and need to finish the tasks before deadlines. We build
power models for mobile robots and calculate the robots’ power
consumption at different speeds. A speed-management method is
proposed to decide the traveling speeds to maximize the traveling
distance under both energy and timing constraints. Our method
uses rectangle scanlines as the coverage routes, and solves the
deployment problem using fewer robots. Finally, we provide an
approach to consider areas with random obstacles. Compared
with two simple heuristics, our solution uses 36% fewer robots for
open areas and 32% fewer robots for areas with obstacles.

Index Terms—Coverage, deployment, energy constraints, mo-
bile robots, timing constraints.

I. INTRODUCTION

MOBILE robots can be used in many applications, such
as carpet cleaning, lawn mowing, hazard detection, and

exploration of unknown areas. Multiple robots may work col-
lectively to accomplish a common task, for example, searching
and rescuing survivors in an urban area after an earthquake. Ex-
isting studies about mobile robots focus mostly on enhancing
individual robots’ capability, such as sensing, obstacle detec-
tion and avoidance, localization, motion planning, or interac-
tions with human controllers. Few studies have been conducted
for the initial deployment of mobile robots. In this paper, robots
are transported by large carriers, such as trucks, from where the
robots are stored into working fields. The deployment problem
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is to decide: 1) the number of groups unloaded by the carriers;
2) the number of robots in each group; and 3) the initial location
of each group. After deployment, the robots execute coverage
tasks. Coverage is a common problem for search, exploration,
and cleaning. In the deployment problem, two important is-
sues need to be considered: energy constraints and timing con-
straints. Energy constraints are critical to mobile robots because
they usually carry batteries with limited capacity. For instance,
a Honda humanoid robot can walk for only 30 min with a bat-
tery pack [2]. Makimoto et al. [28] predict that “the robot will
provide the biggest challenges for the low power electronics
in the future.” Meanwhile, many tasks have timing constraints.
For example, after a disaster, survivors usually need to be res-
cued within 24 hrs; otherwise, the chance of survival diminishes
rapidly. Another example is to detect and destroy landmines
before troops arrive. Energy constraints and timing constraints
can be conflicting optimization goals. It is well known that ve-
hicle fuel efficiency (km per liter) drops dramatically at very
high speeds. In other words, meeting the timing constraints by
moving at a high speed may reduce energy efficiency. Conse-
quently, it is crucial to consider both energy and timing con-
straints together.

We can use survivor detection after an earthquake as an ex-
ample to explain the deployment problem. Mobile robots can
move under rubble and find survivors. Each robot is equipped
with sensors to detect survivors. When a survivor is found, the
robot sends wireless signals to inform rescuers. Before an earth-
quake, these robots are stored in an emergency response center.
After an earthquake, the robots are transported by a carrier to
the earthquake site and help rescuers find survivors. Deploying
robots is the process of transporting the robots into the field,
and robots moving (scattering) from the unloading location to
their individual starting locations for coverage. The unloading
time and robot scattering time are the overheads of deployment.
The deployment problem is to decide the groups of robots un-
loaded by the carrier and their initial locations. The answers to
these questions are affected by each robot’s energy capacity, the
deadline, the moving speed, and the obstacles. A desirable de-
ployment strategy should meet the following goals: 1) it uses the
minimum number of robots to cover a given area; namely, it can
cover the maximum area with the same number of robots; 2) it
can cover the area within the energy and the timing constraints.

Robot deployment is a complex problem. The traveling
speeds of robots are an important factor in deployment. If the
robots travel faster, they consume more power but can finish
the task sooner. We build a power model for mobile robots,
including the power of motors, sensors, and microcontrollers.
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With the power model, we propose a speed-management
method that can maximize the traveling distance under energy
and timing constraints. We consider three kinds of deployment
overhead: unloading time; dispersing time; and overlapped area.
An efficient deployment algorithm can reduce the overhead and
fleet size (number of robots used) to cover the same area. Three
kinds of overhead are balanced to find an efficient solution
to this problem. For example, when we increase the group
size (number of robots in each group) and reduce the number
of groups, unloading time can be saved, but the dispersing
time increases to cover a larger area. We develop an algorithm
named the Space Partition Area Coverage Algorithm (SPACA);
it determines the groups of robots and their initial locations
for minimizing total deployment overhead. Two probability
models are developed to describe obstacles in the environment.
The first models scattered obstacles, and the second models
clustered obstacles. We derive an empirical rule to calculate
the additional distance each robot needs to travel for detouring
around obstacles. The rule is validated through simulations.
Our approach is compared with two other deployment strate-
gies. One strategy unloads all robots at the same location. The
second strategy unloads the same number of robots in multiple
locations. Our method uses 36% fewer robots than these two
strategies in open areas, and 32% fewer in areas with obstacles.

This paper has three major contributions: 1) it develops en-
ergy models of mobile robots considering multiple components
and provides a speed-management method; 2) it presents an
efficient deployment algorithm to reduce the overhead and
the fleet size; and 3) it demonstrates an approach to adjust
the deployment strategy in environments with obstacles. The
rest of this paper is arranged as follows. We first introduce
some related work in Section II, and then formally define
the robot deployment problem in Section III. Power models
for two different robots and a speed-management method are
developed in Section IV. Section V presents our deployment
strategies. In Section VI, we provide an approach to handle en-
vironments with obstacles. After presenting simulation results
in Section VII, the paper is concluded in Section VIII.

II. RELATED WORK

Mobile robots can be used in many applications. Carpet
cleaning [24] and entertainment [21] are two kinds of applica-
tions that we may encounter at our homes. Mobile robots are
also used for pickup and delivery tasks [17]. Multiple robots
can work together to accomplish a task, and communication
among them is important for cooperation purposes. Das et al.
[11] evaluate three communication protocols in supporting
many-to-one communication for mobile robots. Rybski et al.
use small robots for reconnaissance and surveillance [37].
Exploration using mobile robots has been studied by many
researchers. Zelinsky [48] uses a quad-tree data structure to
model the environment and presents an adaptive path-planning
algorithm for a robot exploring an unknown environment.
Batalin et al. [5] present an algorithm to cover an area using
markers. Their algorithm does not require localization. Gon-
zalez et al. [19] design a coverage algorithm combining spiral
paths and backtracking to completely cover an area. Taylor
et al. [43] model the environment by boundary graphs and

present their vision-based path-planning algorithms. Mobile
robots can also be used in extraterrestrial explorations. Matthies
et al. [29] build a small rover as a testbed for Mars exploration.
They discuss localization, obstacle detection, and path plan-
ning; they also evaluate the performance of the robot executing
these operations. In recent years, many researchers investigate
simultaneous localization and mapping (SLAM) using mobile
robots. SLAM is a problem closely related to exploration.
Dellaert et al. [13] present a linear algorithm to detect 2-D
structures and motions; this algorithm provides initial estimates
for multirobot SLAM. Chang et al. [7] use a logarithmic
map-partition method to reduce the computational complexity
for SLAM. Mobile robots are also used for search and rescue
applications. Davids et al. [12] introduce the application of
mobile robots in search and rescue in urban areas. Schreiner et
al. [38] discuss the research issues in landmine detection using
robots. Tadokoro et al. [42] investigate the requirements for
rescue robots based upon an analysis of an earthquake which
happened in Kobe, Japan. Baltes et al. [3] demonstrate a binary
space-partition method for robot rescue; this method is useful
for path planning in a dynamic environment. Zhang et al.
[49] use a probabilistic method in searching landmines. Their
algorithm computes probabilistic distributions of the landmine
locations, and uses the distributions to direct the robot’s search.

Mobile robots usually carry rechargeable batteries; therefore,
energy conservation is important. A mobile robot has several
major components: sensors; motors; microcontrollers; and
computers. Some studies concentrate on motion planning to
reduce the motor’s power consumption. Sun et al. [41] find
energy-efficient paths using topography information of the
ground. We present an energy model for mobile robots and dis-
cuss the energy properties of three different coverage methods:
scanline; spiral; and square spiral [32]. Barili et al. [4] describe
the concept of controlling the velocities to save energy for a
mobile robot. Their work does not consider the relationship
between path planning and velocity control. Katoh et al. [22]
demonstrate an approach for energy conservation by creating
elliptic paths and focus on space manipulators for flying robots.
Duleba et al. [15] discuss nonholonomic energy-efficient mo-
tion planning based on the Newton algorithm. Yamasaki et al.
[47] develop control algorithms to reduce the motion power of
humanoid robots. Some studies analyze energy breakdowns for
mobile robots [34], [35]; they investigate the power of sensors,
controllers, and communication. However, little research fo-
cuses on energy-conservation techniques for these components.
One of them is the paper by Liu et al. [25] on power-aware
scheduling algorithms for a Mars rover. Their method considers
free solar energy and schedules the rover’s operations to use
the solar energy and battery efficiently.

The deployment problem is important to multirobot ap-
plications. However, only a few existing studies discuss the
deployment problem. Simmons et al. [39] study coordination
techniques among a group of robots. They demonstrate the
effectiveness of their method by deploying robots from the
same location to their individual destinations. Their paper fo-
cuses on control and coordination. Rybski et al. [37] use large
“ranger” robots to transport and deploy small scout robots. The
rangers can travel up to 20 km, greatly extending the search
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range of scouts. Chang et al. [8] study the energy and time
properties of different dispatching algorithms for ant-like robot
systems. Yamaguchi [46] discusses adaptive formation control
for mobile robots to keep their relative positions. A related
problem is the fleet-size problem, which determines the number
of robots needed for a task. An efficient deployment strategy
can reduce the overhead and use fewer robots to accomplish
the same task. Our earlier work presents a probabilistic model
to determine the fleet size to satisfactorily serve requests with
timing and energy constraints [31]. The requests are modeled
by random processes. However, the paper does not consider the
initial deployment. One of our previous works [33] presents an
efficient deployment strategy to reduce the overhead and the
fleet size for areas without obstacles.

In recent years, several studies have been conducted on node
deployment for sensor networks. Meguerdichian et al. [30] dis-
cuss several coverage problems in sensor networks. Their al-
gorithms can identify a path that is least covered. Deploying
more sensor nodes along this path can improve the sensor cov-
erage. Howard et al. [20] present a deployment algorithm that
incrementally deploys nodes based upon information gathered
by previously deployed nodes. Zou et al. [50] use virtual forces
to determine the positions to redeploy or relocate sensor nodes
for better coverage. Poduri et al. [35] assume all sensor nodes
are mobile and maintain a certain number of neighbors for each
node. Cloqueur et al. [9] present a strategy that determines the
number of sensors deployed in each step until the desired cov-
erage is achieved. Wang et al. [44] design several algorithms for
mobile sensor nodes to move after an initial deployment to in-
crease the coverage. Xing et al. [45] discuss several geographic
routing algorithms for sensing covered networks. Sensor cov-
erage in sensor network is different from the robot coverage
discussed in this paper. Sensor coverage assumes sensors are
mostly static and observe the environment, while robot coverage
in this paper assumes the robots move and sweep the area by
their sensors.

Our research is different from previous studies in the fol-
lowing ways: 1) this paper develops efficient deployment
strategies for mobile robots. The robots cooperatively cover an
unknown area; 2) our paper considers both energy and timing
constraints. We build power models for mobile robots and
manage their speeds to maximize the traveling distance; 3) the
algorithm can reduce three types of overhead with a smaller
fleet size; and 4) we model environments with obstacles and
estimate the additional distances the robots need to travel for
covering an area with obstacles. An empirical rule is estab-
lished from simulation results. With this rule, the deployment
algorithms can be extended to environments with obstacles.

III. PROBLEM DEFINITION

Deployment is a complex problem. For simplicity, we make
the following assumptions in this paper.

1) All robots are the same; they have the same amount of
initial energy .

2) Each robot is equipped with sensors. The sensing range
is from the robot’s center; is called the sensing dis-
tance. The sensed region is a square of
from the robot’s center. The area covered by one robot

is the product of and this robot’s traveling distance.
This is an approximation of the sensing regions of real
sensors. For example, a sonar ring can sense an approx-
imate region of a circle, and we can use an inscribed
square of this circle to approximate the sensing region.
The adoption of a square-sensing region is to simplify
the analysis of scanline coverage, mentioned next.

3) The robots travel along scanlines to cover a 2-D area; the
time and energy for changing directions are not consid-
ered. In Section V-A, we explain in more detail why we
choose scanlines and neglect turnings.

4) Our algorithm adopts a divide-and-conquer strategy, and
requires little communication. When the carrier unloads
a group of robots, the tasks (areas) are assigned to indi-
vidual robots through wireless communication. After the
assignment, the robots do not communicate with each
other or with the carrier.

5) The carrier travels at a much higher speed than the
robots, so the carrier’s traveling time is negligible.
This assumption is justified because the carrier can be
a truck, a helicopter, or even an aircraft driven by a
human rescuer. The time to unload robots at the same
location is , where is a positive
constant. The item is the time to stop the carrier,
even if no robot is unloaded.

A. Traveling Speed

The sensor on each robot has a finite and constant sensing
range. Thus, a robot can cover a larger area if the robot can
travel a longer distance. A power model of a mobile robot has
been built in our previous work [32]. The power model
is a convex function of robot traveling speed . We use
to represent the maximum speed of the robot. The most en-
ergy-efficient speed, , is defined as the speed at which the
robot consumes the least energy to travel a unit distance, or

, . Moving at the speed

is the most energy-efficient, and the robot can travel the longest
distance with the same amount of energy, hence covering the
largest area. However, if we consider the timing constraints, this
may not be true. We use the symbol to denote the deadline, and

for the initial energy. All robots share the same deadline. For
example, the deadline is 24 hrs after an earthquake, regardless
of the time when a robot is deployed. The speed-management
problem is to determine the traveling speed at which each indi-
vidual robot can travel the longest distance under the timing and
energy constraints.

B. Robot Deployment

We consider only one carrier in this paper, but our method
can be extended to multiple carriers. At time , the carrier
starts moving to the first unloading site. The area has to be cov-
ered before the deadline . The carrier unloads robots at
different locations. At the th location , robots
are unloaded. The total number of robots used is .
The robots that are unloaded at the same location belong to the
same group. Let ( , ) be a robot that
is unloaded at the th location. The area covered by this robot is
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Fig. 1. Common component architecture of a robot.

denoted as . The area covered by the th group is .

The total area covered by all robots is .
The deployment problem is to find a solution that minimizes
the total number of robots for covering a given area of size
under the energy and timing constraints.

C. Obstacles

The robots have no map of the area to be covered. However,
we assume the density of obstacles is available. The obstacle
density is the ratio of area occupied by obstacles over the total
area; it may be estimated by sampling a small portion of the total
area or processing satellite images. In this paper, we estimate the
additional distance each robot has to travel for detouring around
obstacles. We use as the ratio; in an open area, the ratio is
one. Intuitively, rises as increases. When is too high,
however, a large portion of the area becomes inaccessible, and

may decrease.

IV. POWER MODELS OF ROBOTS AND SPEED MANAGEMENT

Fig. 1 shows a common architecture for mobile robots. This
architecture includes five major components: batteries; motors;
sensors; a microcontroller; and an embedded computer. The
most-often used energy sources are rechargeable batteries.
The batteries need to be recharged after exhaustion. In some
cases, such as rovers, solar-powered batteries are used. Motors,
sensors, microcontrollers, and embedded computers are energy
consumers. DC motors transform direct current into mechanical
energy, and are used in robots as actuators. As the robots be-
come more sophisticated, control, sensing, communication, and
computation consume higher portions of energy. Robots use
many kinds of sensors, such as encoders, vision, sonar, laser,
and infrared rangers. The microcontroller handles low-level
controls, such as directly controlling motors and polling read-
ings from sensors. At the same time, it provide a programming
interface for the embedded computer. The embedded computer
has better computation ability, and is in charge of high-level
controls, such as motion planning and coordination.

In the rest of this section, we will first model the power
consumption of different components and then experimentally
build power models for two different mobile robots. The first
one is called PPRK, developed at Carnegie Mellon University
(Pittsburgh, PA) [36]. The second robot is Pioneer 3DX by
ActivMedia (Amherst, NH). Pioneer robots are popular in
research communities [1], [16], [18].

A. Modeling of Power Consumption

1) Motion: Motors transform electrical energy into mechan-
ical energy. The power consumption of the motors is the sum

of the mechanical output power and the transforming loss. Let
be the robot’s mass, and the ground friction constant be .

When the robot travels with a speed of and an acceleration of
, it needs a traction force of . Therefore, the output

mechanical power is , where is the gravity con-
stant. The motion power can be modeled as a function of the
speed, the acceleration, and the mass:

(1)

where is the motion power, and is the transforming loss.
For DC motors, the power loss consists of armature loss, in-

ternal mechanical loss, and eddy-current loss. The power loss in-
creases as the speed increases, but this relationship is nonlinear.
For example, the eddy-current loss increases by the square of the
speed [23]. The motion power efficiency can be defined as the
inverse of the energy per unit distance, or . The efficiency
will increase first as the speed increases, and then decrease due
to the large power loss at a higher speed.

2) Sensing: Sensing power varies from different sensors and
sensing frequencies. We can denote the sensing frequency by

. For video cameras, it is the number of frames per second;
for laser rangers, it is the firing frequency. We conjecture that a
linear function can model the power consumption of sensors

(2)

where is the sensing power, and and are two positive
constant coefficients. Their values depend on the sensors used.
This model is validated by our experimental results.

3) Microcontroller and Embedded Computer: The micro-
controller periodically sends commands to motors and sensors,
polls sensors’ readings, and communicates with the embedded
computer. The microcontroller’s tasks are usually fixed, and the
power consumption of the microcontroller can be modeled by a
constant.

The embedded computer is more complex than the micro-
controller. Many studies have been devoted to simulation-based
methods to estimate its power consumption [6], [26], [40]. The
power consumption of the embedded computer may vary sig-
nificantly for running different programs.

B. Power Model of PPRK

PPRK has three DC motors, three infrared sensors, and one
microcontroller powered by four 1.2 V and one 9 V NiMH
rechargeable batteries. The power consumption of the PPRK
robot is divided into three parts: motion; sensing; and control.
We use a data acquisition (DAQ) card from National Instrument
Inc. (Austin, TX) to measure the current and the voltage. The
DAQ is connected to a laptop computer so that the measure-
ment facility can follow the robot while it is moving. Since the
sensing frequency cannot be easily changed, the total power of
sensing and control is measured constant at 0.998 W. We con-
trol the robot to move at constant speeds and measure the motion
power (the total power of the three DC motors). The robot car-
ries no additional load and moves on an indoor flat surface. The
results are shown in Fig. 2. The power increases slowly before
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Fig. 2. Motion power at different speeds of PPRK.

reaching speed 0.1 m/s, but it increases super-linearly when the
speed is larger than 0.1 m/s. The maximum speed of the PPRK
robot is 0.117 m/s, and the maximum power is 1.025 W. The
optimal speed is 0.110 m/s, at which the power is 0.869 W.
Including the sensing and control power, the energy efficiency at
speed is m/J. The energy ef-
ficiency at the maximum speed is

m/J or 1.9% lower than that at speed . We fit the data
by a fourth-degree polynomial, and the power model (including
the sensing and control power) is

(3)

C. Power Model of Pioneer 3DX

The Pioneer 3DX weighs about 9 kg, and can carry at most
a 22.5-kg load. The robot is powered by a 12 V lead-acid
rechargeable battery. The robot has two DC motors driving two
wheels. The DC motors are assembled with encoders. The robot
has two arrays of sonar sensors, one in the front and one in the
rear. Each array has eight transducers. A Hitachi H8S-based
microcontroller is used to control motors and sensors, and it
communicates with an embedded computer through a serial
port. The microcontroller has many peripheral chips to support
sonars, motors, joysticks, grippers, and bumpers. It is managed
by a real-time operating system called AROS. We use a laptop
computer to communicate with the microcontroller. The com-
puter is a DELL PP04S with Pentium M 1.2 GHZ CPU and
256 MB memory. It runs the Windows XP operating system.

We measure the motion power of the robot when the robot
moves straight at constant speeds. We also change the load of
the robot. Fig. 3 shows the motion power of the robot runs at dif-
ferent speeds. In this figure, the lower set of data and the fitting
line are for the robot without load; the upper set of data is for the
robot with a 9-kg load. The motion power increases linearly as
the speed increases. This figure does not show the super-linear
increase at a higher speed, because in our experiments, speeds
are lower than the maximum speed from the robot’s specifica-
tions. The specified maximum speed can not be achieved in our
experiments because the robot limits the motors’ speed. The two

Fig. 3. Motion power at different speeds of Pioneer 3DX.

Fig. 4. Sonar sensors’ power consumption.

motion power models (without load and with 9-kg load, respec-
tively) are:

(4)

(5)

Fig. 4 shows the total power consumption of the two sonar
arrays at different sensing frequencies. The sonar sensing power
model is

(6)

The static power is 0.51 W, 76.9% of the total sensing power
when the sensing frequency is 40 Hz. The power consumption
increases as the sensing frequency increases; the power con-
sumption at 10 Hz (point A) is 38.2% lower than that at 100 Hz
(point B).

The power consumption of the microcontroller is very stable
at 4.6 W (including power consumption of the Hitachi H8S and
some peripheral control circuits) from our measurements. The
power consumption of the embedded computer is estimated in
the range of 8–15 W. These values are estimated by dividing the
battery capacity by the time the computer can run with a fully
charged battery when running different programs.
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We assume the robot uses a fixed sensing frequency (25 Hz),
the power of the microcontroller is constant at 4.6 W, and the
power of the embedded computer is constant at 12 W. The robot
moves without a load. The power of this robot is

. Therefore, the power model of this
robot is

(7)

Since the power is a linear function of the speed, the maximum
energy-efficient speed is equal to the maximum speed .

D. Speed Management

Speed management determines a robot’s speed as a function
of time. The purpose of speed management is to prolong
the traveling distance under timing and energy constraints.
Let be a robot’s speed at time ; the traveled dis-
tance is . Speed management finds such that

. The solution has to satisfy

three constraints: 1) ; 2) ; and 3)
. To decide the speed function , we need

to understand the properties of power function . The robot
power is a monotonically increasing function of the speed,
since the robot consumes more power at a higher speed. In
general, it is a convex function of the speed
[10], [32]. Notice that the power model of the Pioneer robot is
a linear function. This is because the maximum speed in the
experiments has not reached the point where the energy loss is
comparable with the output mechanical power.

We prove that each robot should use a constant speed; the
speed is determined by the energy capacity of the battery and
the remaining time before the deadline.

Lemma 1: If the , the robot can travel the longest
distance at the most energy-efficient speed .

Proof: We use to represent the remaining energy at
time , and . Also notice that the function is
nonnegative. The power is the derivative of consumed energy
in terms of time; therefore, . The dis-
tance

. Since the definition
of is

the distance
. The given condition

of this lemma means that the robot can travel at
speed and run out energy before, or at least at, the deadline;
in other words, the energy constraint is tighter than the timing
constraint. Under this condition, the equalities are valid when
the robot travels at the constant speed , and the maximum
distance is .

Lemma 2: If , the robot can travel the longest
distance at the maximum speed .

Proof: The given condition means that the robot can travel
at the maximum speed and still have energy left at the dead-
line; namely, the timing constraint is tighter. Since the robot
traveling at the highest speed can travel the longest distance

, this lemma is obviously true.
The first two lemmas are intuitive and determine the robot’s

speed for two extreme cases. When the energy is between the
two extreme cases, the solution is not so obvious. The following
lemma indicates that the robot should use a constant speed be-
tween and .

Lemma 3: If , there exists a speed
such that the robot can travel the longest

distance and exhaust the energy at the deadline. The value of
satisfies .

Proof: Since , the robot should exhaust the en-
ergy at the deadline; otherwise, the remaining energy is wasted.
If , the robot may increase the speed to consume
more energy and travel farther. Therefore, we should achieve

and . The power function is a
convex function of the speed . By Jensen’s inequality [14],

, where the above bar means average. The av-
erage speed is , and the average value
of power is . Therefore,

.
Under the condition , there exists a

speed satisfying equation .
This can be proved by the monotonic increasing property of
the power function . Continuing the last formula in the
last paragraph, we have . Also by
the monotonic property, . Therefore, the
traveling distance . The equality holds when

, . This shows that if the robot travels at the
constant speed , it can travel the longest distance. In this case,
the robot will exhaust the energy exactly at the deadline.

The following theorem concludes our speed-management
strategy.

Theorem 1: With an energy constraint and a timing con-
straint , a robot can maximize the distance it can travel with a
constant traveling speed. This constant speed is determined by
the following rules:

• if , the speed is ;
• if , the speed is ;
• if , the speed is ,

at which the power is equal to .

V. DEPLOYMENT STRATEGY

This section describes our deployment strategy. We first ex-
plain three types of overhead during deployment. Our method
calculates the area covered by each group of robots; then it de-
termines the number of groups.

A. Overhead in Deployment

This paper focuses on deployment, and the coverage algo-
rithm is to help us understand different deployment strategies.
There are several ways to cover an area, as discussed in our pre-
vious paper [32]. This paper considers scanlines only, although
in some situations, some other paths like spiral curves are more
efficient in coverage. Scanline coverage is simple, and also used
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Fig. 5. (a) Scanline-covering route. (b) Three robots are unloaded at A. The
starting locations are A, B, and C . The segments AB and AC represent the
dispersing overhead. The second robot runs out of energy and stops at E.

in some other studies [24], [27]. We neglect turnings to simplify
our following analysis. This is a reasonable simplification when
the scanlines are long, as shown in [32]. Fig. 5(a) shows a scan-
line route of one robot. The height is ; the distance between two
adjacent lines is because the sensing distance is from the
robot’s center. There are three types of overhead that increases
the number of robots needed to cover an area.

1) The first type of overhead is the time spent for unloading
the robots. Because unloading takes time, a robot that is
unloaded later has less time before the deadline.

2) The second type of overhead comes from the time and
the energy spent by each robot to reach its own working
area after being unloaded. Because robots are unloaded
in groups, they need to disperse from the unloading lo-
cation to their individual working areas.

3) The third type of overhead occurs when a robot cannot
finish a scanline due to energy or timing constraints, or
both. As a result, another robot has to cover the rest of
this line. We call this fragmentation overhead, because
it is similar to sector fragmentation of hard disks. As
increases, fragmentation overhead increases.

They are called unloading, dispersing, and fragmentation
overhead in the rest of this paper. These types of overhead
are related. Fig. 5(b) illustrates the second and third types of
overhead. Suppose three robots are unloaded at location .
Their starting locations are , , and , respectively. The first
robot spends no dispersing time. The second robot’s dispersing
overhead is to travel through ; the third robot’s dispersing
overhead is the distance . Suppose the second robot stops
at when it exhausts its energy after completing three scan-
lines, shown in solid lines. The third robot has to cover ;
otherwise, this area is not covered by any robot. To simplify
our analysis, each robot finishes only integer numbers of
scanlines. In other words, the second robot stops at because
its remaining energy and time do not allow the robot to finish
another scanline, and the third robot covers .

B. The Area Covered by One Group

Our method first considers the dispersing and fragmentation
overhead of a single group. To reduce the dispersing overhead,
the robots’ starting locations should be close to the unloading
location. Since the robots travel along scanlines and cover rect-
angles, our method covers the four quadrants symmetrically in
a 2-D Cartesian coordinates centered from the unloading loca-
tion. Fig. 6 shows an example of an area covered by a group

Fig. 6. Area is covered by a group of 12 robots. The areas with subscripts from
1 to 12 are the areas covered by these robots. The areas are symmetric to the
unloading location A.

of 12 robots. In the figure, point is the unloading location of
the whole group and the starting point of the first four robots.
The first four robots move in different directions from point
to cover , , , and . Point is the starting location of the
fifth and sixth robots. Point is the starting location of next two
robots, the seventh and eighth. Because the fifth robot spends
time traveling across , its covered area cannot be larger than

, i.e., . Because these four quadrants are symmetric,
we can obtain the relationship

. In the rest of this
paper, we consider the first quadrant only.

Let be the width of the area covered by one quarter of the
robots in the same group, as shown in Fig. 6. The total dis-
persing distance of the three robots covering , , and is

. We can extend this
observation to more robots. If this group contains robots (
for each quadrant), the total dispersing distance in one quadrant
is approximately

. The average dispersing distance for each robot is
converges to for many robots. Mean-

while, the average fragmentation overhead for each robot is
. Using these two values of average overhead, our strategy

chooses values of and so that they are as close as possible.
The rationale is explained below.

All robots in the same group can travel the same maximum
distance, because each has the same amount of energy and time.
Let this distance be . The available time before the deadline is

. Suppose the robots travel at speed and consume power .
The traveling time of a robot is at most , and hence, the
robot can operate at most time, and travel at most

distance. This is the value of . Each robot can
sense a region of from its center; hence, to cover the area

, the total traveled distance of the whole group is .
This area is reduced due to the overhead, so

. Using the Lagrange multiplier method to
maximize the total covered area, we can obtain the condition

. By setting , we obtain the relationship
. With the value of , we can determine the value

of , i.e., the height of the scanlines. The area covered by this
group is (four quadrant). We will calculate the number of
robots in the group in the next subsection.
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Fig. 7. Deployment with three groups.

C. Number of Groups and Group Sizes

Minimizing the number of robots used is equivalent to maxi-
mizing the average area covered by each robot. The area covered
by the robots in each group can be ordered by the coverage sizes.
When more robots are unloaded at the same location, the min-
imum size of this group decreases for two reasons. First, it takes
longer to unload the whole group. Second, some robots need
to travel farther to reach their starting locations. Our method
adopts the following rules to enlarge the average area covered
by each robot.

1) The minimum area covered by the robots in each group
should be close. Let and be the minimum
areas covered by the th and th groups. If is much
smaller than due to the dispersing overhead, then
we should use fewer robots in the th group and more
robots in the th group. By adjusting the group sizes, we
can enlarge the average area covered by the robots in
both groups.

2) An earlier deployed group should have a group size
larger than or equal to those of latter deployed groups.
According to the first rule, they all have similar min-
imum areas. However, later deployed groups have less
time before the deadline.

3) For two deployments that satisfy the above two rules
and can cover the same assigned area, the one that has a
smaller size of the first group is better because it makes
the minimum area larger.

These three rules together determine the number of groups
and the sizes of groups. Fig. 7 shows an example deployment
with three groups of seven, three, and one robot(s), respectively.
The group sizes are in decreasing order. The vertical axis is the
area covered by individual robots. The maximum areas of the
three groups are , , and ; they have a relationship
of , because later groups have less time
before the deadline. The minimum areas of the three groups are

, , and ; they are close to each other to increase the
average area.

The next section presents our algorithm generating deploy-
ment solutions that satisfy the above three rules.

D. Deployment Algorithm

ROBOT-DEPLOYMENT

1 , ,

: energy, : deadline, : total area to cover

, and : used to remember initial values

2

3

4

5 GET-TOTAL-AREA

6 GET-MINIMUM-AREA

7 no solution yet

8 while

9 do is the fleet size

10 initialization

11 while and

12 do for to select next group size

13 do

14 GET-MINIMUM-AREA

15 if and

16 then ,

17 break

18 find the closest minimum area

19 if

20 then

21

22

23 if

24 then break

25

26 GET-TOTAL-AREA

27

28

29 GET-MINIMUM-AREA

30 if before the deadline

31 then

32 else change first group size

33 , ,

34
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35

36 GET-TOTAL-AREA

37 GET-MINIMUM-AREA

adjust the size of last group

38

39 GET-TOTAL-AREA

40

41 for to

42 do

43 if GET-TOTAL-AREA

44 then

45 break

46 else

47 return

Our algorithm is called SPACA. It sets the size of the first
group, and then determines the sizes of the other groups using
a greedy approach. Each group’s size depends on only the sizes
of the previous groups. The algorithm starts from a small size of
the first group, then increases the size until a solution is found.
The size of the first group is initialized to one. This corresponds
to the third rule in the last section. The outer while loop finds
the size for the first group until a solution is found.

The inner while loop assigns the sizes of the other groups
until either the area has been covered or the deadline has
passed. The variable keeps the size of the latest assigned
group. The minimum area covered by the previous group, i.e.,

, is calculated, and it is recorded by the variable .
According to rule 2), the next group size is at most . In the
for loop from line 12, the algorithm computes the minimum
areas of the next groups with sizes from 1 to , and selects
the size when the next group has the closest minimum area
with . This is required by the first rule. The func-
tions GET-TOTAL-AREA and GET-MINIMUM-AREA compute the
total area and the minimum area covered by one group of robots,
respectively.

There are three possible cases making the algorithm leave the
inner while loop. The first case happens in the first if statement
inside the inner while loop at line 15. When the next group size
is 1 and the minimum area is less than the previous minimum
area, the first rule is impossible to fulfill. Therefore, we assign a
negative value to and leave the inner while loop. In the second
case, the remaining time is nonpositive, while the remaining
area is still positive. This means the area has not been fully
covered but no time is left. The third case happens when the area
is covered and there is still time. In the first two cases, the al-
gorithm does not find a solution. It increases by 1, renews
the parameters, and continues the outer while loop. In the third
case, a successful deployment is found and the variable

Fig. 8. Grid lines, cells, and neighbor cells.

is set to leave the outer while loop. Because the determination
of the last group size depends only on the comparison of min-
imum areas, not the remaining area, we may use more robots
than necessary in the last group. The last steps adjust the size of
the last group based on the remaining area. This algorithm will
report the situation when it is impossible to cover the area due
to a short deadline.

The complexity of this deployment algorithm is ,
where is the total number of robots deployed. This is an-
alyzed as follows. The time complexity of GET-MINIMUM-
AREA or GET-TOTAL-AREA is linear to the
number of robots, i.e., . The critical statement is in line 14
for analyzing the complexity of this algorithm. For each specific
, the complexity of line 14 is . Furthermore, the com-

plexity of the for loop, from line 12 to line 22, at a specific group
size , is . For a specific

, assuming the algorithm tries through groups with sizes of
, the complexity is

, because
. The value of can be in-

creased from 1 to , and for each , the complexity is .
Therefore, the complexity of this deployment algorithm is

.

VI. ENVIRONMENTS WITH OBSTACLES

In this section, we present two probabilistic models for obsta-
cles. An empirical rule is developed to estimate the additional
distance robots have to travel for detouring around obstacles,
and calculate the distance ratio for different obstacle density

. We use simulation to validate the rule.

A. Obstacle Model

To model the environments, we make the following assump-
tions: 1) the area is divided into equal-size square cells; 2) each
cell is either occupied by an obstacle or free; 3) obstacles are
static and do not move; 4) a robot can move from one cell to its
four neighbors: upper; down; left; and right; and 5) the density
of the obstacles is known in advance, but the obstacles’ exact
locations are unavailable. Fig. 8 shows an area with 5-row 6-
column cells. Four cells with shading are obstacles; the obstacle
density is . A robot at cell “A” can move only
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Fig. 9. Four examples of environments filled with probabilistic obstacles with obstacle density 8%. (a) Generated by random model. (b), (c), and (d) Generated
by clustering model with different (k ; k ).

to its left and down cells; at point “B,” the robot can move to
upper, right, and down cells.

We develop two environment models: random model and
clustering model. In the random model, the probability of one
cell occupied by an obstacle is independent of its neighbors and
is equal to . In the clustering model, the obstacle possibility
of one cell depends on its upper and left neighbors. We use four
values , , , and to represent obstacle probabilities of
a cell in four different situations: 1) when both its upper and left
neighbors are obstacles; 2) only the upper cell is an obstacle;
3) only the left cell is an obstacle; and 4) neither neighbor is
an obstacle. Since an environment generated by the clustering
model has an obstacle density of , the following equation
must hold: . We
further assume that and , where

and are two constants. The value of can be calculated
as , and the four
probabilities can be uniquely determined. The values of and

model the likelihood that a cell is occupied if its neighbors
are occupied. When and , is larger so a cell
is more likely to be occupied if its upper and left neighbors are
occupied. When , and
the clustering model degenerates to the random model. Fig. 9
shows four areas generated with . In Fig. 9(b)–(d),
the values of are (0.6, 0.1), (0.8, 0.2), and (0.7, 0.3),
respectively.

Fig. 10. Scanline covering an environment with obstacles.

B. Distance Ratio

Fig. 10 shows an example of scanning an area of 30 cells
with . This example illustrates how we
count the distance to cover an area with obstacles. Since the top
left cell is an obstacle cell, the robot starts from cell “A.” The
robot moves to the right, until the end of the first row. Then, it
moves down to the right end of the second row and heads left. At
cell “B,” it encounters an obstacle cell. It observes that the next
unvisited cell is “C.” From “B” to “C,” there are two shortest
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Fig. 11. Obstacles and traveling steps.

paths, one from above, the other from below. Suppose the robot
chooses the lower one, and reaches cell “C.” It continues moving
toward the left until it finishes the second row. The robot then
moves down to the left side of the third row and heads right. The
middle three cells of the third row are visited by the robot twice.
At the fourth row, the robot encounters an obstacle, and chooses
the lower shortest path. At the last row, the robot encounters an
obstacle cell again, and it chooses the only shortest path, moving
upward to reach the next accessible cell “D.” The left three cells
of the fourth row are visited twice. The right three cells of the
last row have already been visited, so the robot stops at cell
“D.” The arrows in the figure show the whole path from “A” to
“D.” There are a total of four obstacle cells, and the robot visits
six cells twice to avoid the obstacles. The length of this path is

steps. Without the obstacles, the robot scans
the whole area using steps (moving from one cell to
one of its neighbors is counted as one step). The distance ratio
is .

To derive the relationship between and , we analyze two
special cases as examples shown in Fig. 11. In Fig. 11(a), a robot
detours around an isolated obstacle in the sequence shown by
the letters and the arrows. It takes two more steps to avoid this
obstacle. In Fig. 11(b), a robot detours around four obstacles
clustered as a square. The letters and arrows show the traveling
sequence. At cell “G,” the robot travels right until reaching the
right boundary, turns down to the next row, and then travels left
to cell “H.” The steps from cell “G” to cell “H” are omitted in
the figure by the dash curve. It takes four extra steps to avoid
the four obstacles. Suppose an area contains a total of cells.
If there is no obstacle, it takes steps to cover this area. One
obstacle cell increases by , and one extra step increases

also by . If all the obstacles are isolated, similar to the ob-
stacle in Fig. 11(a), one obstacle cell will incur two extra steps.
Therefore, we can model the relationship as .
This analysis can be applied to the clustering obstacles, as well.
If all the obstacles are clustered as in Fig. 11(b), then the rela-
tionship is . Therefore, we model the relationship
between and by the following equation, where is a pos-
itive constant:

(8)

When the obstacle density is large, the obstacle-clustering
shapes are more complex. In the following paragraphs, we use
simulations to decide the appropriate value of , and also the
applicable range of .

Fig. 12. Distance ratio versus obstacle density.

To validate this relationship, we perform extensive simula-
tions of different maps with different values of . The simu-
lator first randomly generates an area using either model, and
then simulates the scanline-covering process. Two sets of simu-
lations are performed, and both of them assume the robot knows
its current location. The first set assumes that the robot has the
map of the area, obstacles, and its own location. The robot scans
the area without considering timing or energy constraints. The
robot starts from the top left toward the right, following the
scanlines until all accessible cells have been visited. If the robot
encounters obstacles, it picks the next unvisited accessible cell
along the scanlines, and then chooses a shortest path from the
current cell to that unvisited cell. The robot remembers all the
cells it has visited. This simulation provides a lower bound for

, because the robot has the map and can determine the next
unvisited accessible cell.

In the second set of simulations, the robot has no map. The
robot starts from the top left toward the right, following the
scanlines until covering the last row of cells. When the robot
encounters obstacles, it detours around obstacles until the next
cell along the scanline is reached. There are two detouring direc-
tions: clockwise and counterclockwise. When the robot moves
toward the right, it detours in the counterclockwise direction
first to the uncovered cells. In this direction, it can avoid the
cells that have been covered. Since the robot has no map, it does
not know whether this is a viable detouring. If it fails, the robot
detours around the obstacles in a clockwise direction. When the
robot moves toward the left, it tries the clockwise direction first.
This kind of simulation adopts a simple, yet effective, covering
algorithm. The robot travels a longer distance than the result in
the first set of simulations because the robot has no map.

We run simulations with obstacle densities ranging from 1%
to 15%. Fig. 12 shows the simulation results. The top two sets
of data ( and ) are from the second set of simulations. They
are called “no-map-random” and “no-map-clustering” for the
two probabilistic models. The other two sets of data ( and
) are from the first set of simulations. They are called “map-

random” and “map-clustering.” Two lines enclose the range be-
tween and . Fig. 12 shows
that with maps, the robot can travel shorter distances to cover
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Fig. 13. Traveling distance with different energy, PPRK.

the same area. The results from models are consistent. This
shows that at a low , the two models have negligible dif-
ference. When the density is less than 10%, the relationship

is valid for the no-map simulations. With maps
and , the relationship can be closely approximated by

. From our stimulation results, the value of in
(8) is between 2 and 3 for .

VII. CASE STUDIES

In this section, we use the two robots PPRK and Pioneer 3DX
to conduct case studies. Their power models have been devel-
oped in Sections IV-B and IV-C, respectively. The initial en-
ergy of the two robots is estimated from the specifications of
rechargeable batteries. PPRK uses four 1.2 V and one 9 V Ni-Cd
batteries; Pioneer uses one 12 V lead-acid battery. The value of

for PPRK is 25 000 J, and the value for Pioneer is 311 040 J.
We compare our method with two other solutions. The first is
equal-number deployment by unloading the same number of
robots each time until the assigned area is covered. We choose
equal-number-40 (40 robots each time) and equal-number-80
(80 robots each time), because they represent relatively smaller
and larger group sizes than our method. The second is one-un-
loading deployment by unloading all robots at one location. The
unloading time is s for robots. The sensing
distance used is 0.8 m.

A. Speed Management

Our speed-management method is to determine a speed be-
tween and that can maximize the traveling distance under
energy and timing constraints. For the Pioneer robot, the speed
is the maximum speed, since .

Fig. 13 shows the difference between our speed-management
method and the constant speed method (the robots always
travel at speed ). The timing constraint is 3, 4, 5, and 6 hrs,
respectively; the energy varies from 0 to J. For
hrs, when is less than J, the two methods are the
same. This is because our speed-management method chooses

when is low. When is higher, our method outperforms
the constant speed method by 6%. When 4, 5, and

Fig. 14. Fleet size and speed management, PPRK.

Fig. 15. Fleet size verses speed for Pioneer 3DX to cover different areas, time
= 3 hrs, energy = 311 040 J.

6 hrs, our method also outperforms the constant-speed method
when is high. Fig. 14 shows the effect of speed management
on fleet size ( hrs, J). The fleet size is
calculated using the deployment strategy of equal-number-80.
When using speed management, we can use a smaller number
of robots to cover the same amount of area. For example, we
use fewer robots to cover m
with speed management.

Fig. 15 shows the fleet size of Pioneer 3DX robots to cover
different areas with sizes of , , and m ,
respectively. The robots travel at different speeds and cover the
area within 3 hrs. We use our deployment algorithm SPACA.
It is clearly seen that the fleet size decreases as the speed in-
creases. This is because at a higher speed, the robots can travel
farther before the deadline, and Pioneer’s energy efficiency is
higher. The figure also shows that at the same speed, a larger
area requires a larger fleet size. Notice that when speed is lower
than 0.7 m/s, SPACA can not cover m under the energy
and timing constraints. For the rest of this paper, we assume our
speed-management method is used.
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Fig. 16. Area covered by different number of robots with different ratios of
height and width (6 hrs, 25 000 J, PPRK).

B. Robot Deployment in Open Areas

The height and width of the area covered by a group should be
close, in order to reduce the dispersing and fragmentation over-
head. Fig. 16 shows the size of the area covered by a different
number of PPRK robots with different height–width ratios. The
robots have 6 hrs before the deadline, and each of them has en-
ergy of 25 000 J. When the ratio is less than one, the covered
area increases as the ratio increases. This is because the dis-
persing overhead dominates when the width is larger, and the
overhead decreases as the ratio increases. Point indicates the
area when for 60 robots. Point has , and the
covered area increased by more than 9%. When the ratio of
and exceeds one, the covered area becomes unstable, some-
times increasing and sometimes decreasing. The reason is that
fragmentation overhead is sensitive to the value of . The figure
shows three different group sizes. With 60 robots, an area larger
than can be covered when is . However, the same ratio

can cover a smaller area with 48 robots or 36 robots.
Moreover, the variation is significant when . Hence, we
choose in our algorithm, because this provides stably
large covered areas.

Figs. 17 and 18 show the number of needed robots for
covering different area sizes using PPRK. Figs. 19 and 20 are
simulation results of Pioneer 3DX. Since pioneer robots have
higher speeds and carry more energy, they can cover more area
than the same number of PPRK robots. Figs. 17 and 19 have
a timing constraint of 3 hrs, while Figs. 18 and 20 have
6 hrs. For equal-number deployment, we choose two different
numbers, 40 and 80. In all four figures, our method requires
the fewest robots to cover the areas. To cover the same area,
more robots are needed when the deadline is earlier (Figs. 17
and 19). In Fig. 17, equal-number-80 needs almost the same
number of robots as our method. Equal-number-40 is better
than one-unloading when the area is small, and one-unloading
is better than equal-number-40 when the area is larger than

m . However, both equal-number-40 and one-un-
loading are inferior to our method. In Fig. 19, the two curves of

Fig. 17. Fleet size versus area for PPRK, time = 3 hrs, energy = 25 000 J.

Fig. 18. Fleet size versus area for PPRK, time = 6 hrs, energy = 25 000 J.

Fig. 19. Fleet size versus area for Pioneer 3DX, time = 3 hrs, energy =
311 040 J.

equal-number-80 and one-unloading are almost indistinguish-
able, and equal-number-40 requires the most robots. Figs. 18
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Fig. 20. Fleet size versus area for Pioneer 3DX, time = 6 hrs, energy =
311 040 J.

TABLE I
DEPLOYMENT FOR COVERING 4� 10 m WITHIN 3 HRS WITH PPRK

TABLE II
DEPLOYMENT FOR COVERING 4� 10 m WITHIN 3 HRS WITH PIONEER

and 20 allow a longer deadline, so unloading time is less im-
portant. In contrast, the dispersing and fragmentation overhead
play more important roles. Deployments with a small group
size can save dispersing and fragmentation overhead, thus
requiring fewer robots than the deployments with a large group
size. From both figures, we can observe that equal-number-40
is better than equal-number-80, and equal-number-80 is better
than one-unloading.

Tables I and II show the details of two deployments gener-
ated by our method. Table I uses a total of 280 PPRK robots to
cover an area of m within 3 hrs; Table II uses a total of
328 Pioneer robots to cover an area of m within 3 hrs.
There are four groups in the first deployment and two groups in
the second deployment. This is because the PPRK and Pioneer
robots have different specifications, and also these two deploy-
ments cover two areas with different sizes. We can see from
both tables that the later deployed groups have smaller num-
bers of robots and cover smaller areas. Corresponding to the two
deployments, the equal-number-40 uses 320 PPRK robots and
448 Pioneer robots, respectively. Our method saves 14% PPRK
robots and 36% Pioneer robots.

Fig. 21. Fleet size versus area for PPRK, time = 3 hrs, energy = 25 000 J, area
3�10 m .

Fig. 22. Fleet size versus area for Pioneer 3DX, time = 3 hrs, energy =
311 040 J, area = 3�10 m .

C. Robot Deployment in Areas With Obstacles

The robots’ detouring around obstacles increases the trav-
eling distance to cover an area with obstacles. Equation (8)
shows the empirical rule we use in this paper to estimate the
relationship between and . We use the constant , as
explained in the previous section. Figs. 21 and 22 show the fleet
size at different obstacle densities. Fig. 21 is for PPRK robots
covering an area of m with 3 hrs, and Fig. 22 is for
Pioneer robots covering an area of m with 3 hrs.
In both figures, the fleet size increases as the obstacle density
increases, and our method uses the fewest robots. SPACA uses
200 PPRK robots at and 280 PPRK robots at ,
while equal-number-40 uses 212 PPRK robots at and
316 PPRK robots at . SPACA uses 6% and 12% fewer
robots than equal-number-40, respectively. For Pioneer robots,
SPACA uses 15% and 32% fewer robots than equal-number-40
at and .
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VIII. CONCLUSION

This paper presents a robot deployment strategy that can
reduce the deployment overhead, and use a smaller number of
robots to cover the same area. Our approach considers both
energy and timing constraints, and determines a speed at which
the robot can travel the longest distance. We use two obstacle
models and derive an empirical rule for the extra detouring
distance. Our deployment method is applied to covering areas
with obstacles. Simulations are conducted on two robots called
PPRK and Pioneer 3DX, and show that our method can reduce
the total number of robots by up to 30%.

For future work, this study can be extended in the following
three aspects. 1) We do not consider the sensing uncertainty in
this paper. Sensing uncertainty can be considered by changing
the sensing models. An area is considered as covered only when
the confidence is higher than a threshold. 2) Our deployment
algorithm adopts a divide-and-conquer strategy, and requires
little communication. This can be extended to consider dynamic
robot coordination where the robots communicate with each
other when they are working. This could potentially increase
the coverage efficiency. 3) We can consider some other existing
coverage algorithms, and compare our scanline coverage algo-
rithm with them.
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