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A B S T R A C T

Faraday rotation and depolarization of synchrotron radio emission are considered in a

consistent general approach, under conditions typical of spiral galaxies, i.e. when the

magneto-ionic medium and relativistic electrons are non-uniformly distributed in a layer

containing both regular and fluctuating components of magnetic field, thermal electron density

and synchrotron emissivity. We demonstrate that non-uniformity of the magneto-ionic

medium along the line of sight strongly affects the observable polarization patterns. The

degree of polarization p and the observed Faraday rotation measure RM are very sensitive to

whether or not the source is symmetric along the line of sight. The RM may change sign in a

certain wavelength range in an asymmetric slab even when the line-of-sight magnetic field has

no reversals. Faraday depolarization in a purely regular magnetic field can be much stronger

than suggested by the low observed rotation measures. A twisted regular magnetic field may

result in p increasing with l – a behaviour detected in several galaxies.

We derive expressions for statistical fluctuations in complex polarization and show that

random fluctuations in the degree of polarization caused by Faraday dispersion are expected to

become significantly larger than the mean value of p at l * 20–30 cm. We also discuss

depolarization arising from a gradient of Faraday rotation measure across the beam, both in the

source and in an external Faraday screen. We briefly discuss applications of the above results to

radio polarization observations.

We discuss how the degree of polarization is affected by the scaling of synchrotron

emissivity « with the total magnetic field strength B. We derive formulae for the complex

polarization at l → 0 under the assumption that « ~ B
2
B

2
', which may arise under energy

equipartition or pressure balance between cosmic rays and magnetic fields. The resulting

degree of polarization is systematically larger than for the usually adopted scaling « ~ B
2
'; the

difference may reach a factor of 1.5.

Key words: magnetic fields – polarization – radiation mechanisms: non-thermal – galaxies:

ISM – galaxies: spiral – radio continuum: general.

1 I N T RO D U C T I O N

Basic ideas and results concerning polarization and Faraday rota-

tion in radio sources were discussed by Burn (1966) (see also

Korchak & Syrovatskii 1962 and Razin & Khroulyov 1965), who

considered such effects as differential Faraday rotation, internal

Faraday dispersion and Faraday dispersion in an external screen

(see the review of Gardner & Whiteoak 1966). Although unresolved

sources were formally considered, many of these results also apply

to extended objects. Most interpretations of the radio polarization

observations of nearby spiral galaxies are based on the application

of Burn’s (1966) formulae.

Depolarization and Faraday rotation in synchrotron sources were

also discussed by Cioffi & Jones (1980), who considered both

resolved and unresolved sources of cylindrical and spherical shape.

The role of random magnetic fields was further clarified by Laing

(1981), who discussed cylindrical sources (jets) with a partially

ordered magnetic field, and Spangler (1982, 1983), who con-

centrated on correlation properties of well-resolved turbulent

fluctuations in a magneto-ionic medium. Statistical properties of
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the random fluctuations in the degree of polarization arising in a

random Faraday screen were considered by Tribble (1991).

Imprints of magnetohydrodynamic (MHD) turbulence in the

observed total and polarized intensity distributions were discussed

by Eilek (1989a,b). Depolarization by a finite number of cells with

random fields was discussed by Chi, Young & Beck (1997).

The above authors were mainly concerned with applications to

radio galaxies, jets and other active radio sources. However, spiral

galaxies provide a special environment which deserves a special

study. As we show here, the planar stratification typical of flat

sources introduces specific features into polarization patterns. Both

theory (Sokoloff & Shukurov 1990; Beck et al. 1996) and observa-

tions (Berkhuijsen et al. 1997) indicate that the regular magnetic

field in galaxies can possess reversals along the line of sight, e.g.

between the disc and the halo of a galaxy. The theory must be

generalized to include such multi-layer distributions.

It was assumed in earlier papers on polarization in synchrotron

sources that the synchrotron emissivity is proportional to the

transverse magnetic field squared. Therefore all available results

are apparently inapplicable to the case of energy equipartition or

pressure balance between magnetic fields and cosmic rays where

the scaling with the fourth power of the magnetic field seems to be

more appropriate. We discuss the effects of this scaling in

Section 5.2.

Radio polarimetric observations of spiral galaxies at decimetre

wavelengths and their analyses performed in the recent decade have

clearly shown that Faraday depolarization effects are usually strong

at these wavelengths (e.g. Sukumar & Allen 1991; Ehle & Beck

1993). On the other hand, polarized emission was detected at

wavelengths as long as l90 cm in the Galaxy (Wieringa et al.

1993) and NGC 891 (De Breuck, de Bruyn & Beck, in preparation).

Another unusual property of polarization patterns in spiral galaxies

which was discovered only recently is the anomalous depolariza-

tion with the degree of polarization increasing with wavelength.

This phenomenon was detected in the galaxies M31 (Berkhuijsen,

Beck & Gräve 1987), NGC 6946 (Beck 1991) and M51 (Horellou

et al. 1992). Similar anomalous depolarization was also detected in

the Milky Way long ago (e.g. Bologna, McClain & Sloanaker 1969,

their fig. 4), but this went unnoticed.

Strong Faraday rotation of the synchrotron emission from a radio

galaxy embedded in a galaxy cluster can arise in the intracluster gas

(Dreher, Carilli & Perley 1987; Taylor et al. 1990; Taylor, Barton &

Ge 1994; Carilli et al. 1997). Johnson, Leahy & Garrington (1995)

pointed out that the observed Faraday depolarization in such a

foreground screen does not follow Burn’s (1966) result. We discuss

Faraday effects in a foreground screen in Sections 7 and 8.2, and in

Appendix A.

In this paper we reconsider internal and external depolarization

and Faraday rotation effects, especially their aspects that are

important for observations of nearby spiral galaxies. We pay special

attention to those wavelengths at which most of the observations of

galactic magnetic fields have been performed, that is about ll6 and

20 cm. Some generic configurations of magnetic fields whose

ubiquity was understood only recently are included in the analysis.

We concentrate mostly on analytically solvable models. Our aim is

to develop a general understanding of the effects associated with

complicated magnetic configurations in spiral galaxies. Formally,

polarization of radio emission is determined by simple integrals that

can be easily computed for any specified magnetic field and electron

density distribution. Our main concern here is not to describe

precisely any specific galaxies, but rather to isolate those para-

meters of the interstellar medium that affect the polarization pattern

substantially. There is hardly any galaxy with parameters that are

known in sufficient detail to avoid the use of relatively crude

models; our intention is to assess the possible consequences of

such a modelling. In particular, we show that polarization patterns

are sensitive to whether or not the object is symmetric along the line

of sight.

2 T H E C O M P L E X P O L A R I Z AT I O N

All derivations below start from the following expression for the

complex linear polarization of incoherent synchrotron emission

(Burn 1966; Gardner & Whiteoak 1966; Pacholczyk 1977):

P ¼ pi

�

V

wðrÞ«ðrÞ exp½2iwðrÞÿ dV

�

V

wðrÞ«ðrÞ dV

;

wðrÞ ¼ w0ðrÞ þ Kl2

�

zb

z

nBz dz:

ð1Þ

Here pi is the intrinsic degree of polarization, « is the synchrotron

emissivity (i.e. the radiation energy emitted towards the observer

per unit time per unit volume in the source); w is the local

polarization angle at position r (subject to Faraday rotation) and

w0 is its intrinsic value (i.e. the intrinsic position of the electric

vector of synchrotron emission, which is perpendicular to the local

transverse magnetic field B'); and l is the wavelength. wðrÞ is the

beam profile, a function of coordinates in the plane of the sky. In

most cases we assume wðrÞ ¼ 1 (a flat beam profile), but we

consider a Gaussian beam in Section 8. The integrals are taken

over the volume V of the beam cylinder in the source of synchrotron

emission; z is the coordinate measured along the line of sight with

z ¼ zb being the boundary of the object closest to the observer (i.e.

the larger of zm and z«, the boundaries of the magneto-ionic region

and the synchrotron-emitting region, respectively). Further, Bz is

the line-of-sight component of the magnetic field; n is the volume

density of thermal electrons, and K ¼ 0:81 rad m¹2 cm3

mG¹1 pc¹1. The intrinsic degree of linear polarization is given by

ð3 ¹ 3aÞ=ð5 ¹ 3aÞ < 0:75 with a < ¹1 the spectral index of syn-

chrotron emission. Deviations from our assumed value a < ¹1 are

discussed in Section 5.2.

The real and imaginary parts of P are observable quantities, the

Stokes parameters Q and U normalized by the total synchrotron

intensity I ¼
�

V « dV. The modulus of P is the observed degree of

linear polarization, p ¼ ðQ
2

þ U
2
Þ
1=2

=I, and its argument gives the

observed polarization angle, W ¼ 1
2
arctan U=Q. Hence

P ¼ p exp 2iW: ð2Þ

For Faraday-thin objects the observed polarization angle W is a

linear function of l2
, so that the Faraday rotation measure RM can

be introduced via W ¼ W0 þ RM l2. Here W0 is the observed

intrinsic polarization angle at short l where Faraday rotation is

negligible. However, in most cases discussed below W is not a

linear function of l2 (Faraday-thick regimes); in these cases we

still formally introduce the Faraday rotation measure as

RM ¼ dW=dðl2
Þ, being aware that this is a function of l. Note

that RM obtained from DW=Dðl2
Þ can be quite different from that

defined above if Dl . l and/or DW is large.

The ratio p=pi is known as depolarization. Those depolarization

effects that are related to Faraday rotation lead to a degree of

polarization generally decreasing with wavelength (see, however,

Section 9). We also discuss in Section 5 depolarization that is

independent of Faraday rotation and therefore arises even for l → 0.

190 D. D. Sokoloff et al.
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We introduce Cartesian coordinates ðx; yÞ in the plane of the sky

and the coordinate z measured along the line of sight. The area

covered by the telescope beam is denoted W , and the extent of the

source along the line of sight is denoted L. Having in mind

applications to disc galaxies, it is convenient to fix the origin of

the reference frame (z ¼ 0) on the symmetry plane if a symmetric

source is considered (then 6zb ¼ 61
2
L are defined as the boundaries

of the source) or at the far end of an asymmetric source (then

zb ¼ L). For a distribution of a magneto-ionic medium without a

sharp boundary (e.g. exponential or Gaussian distribution), zb ¼ ∞
can be taken. We neglect the contribution of our Galaxy, the

magneto-ionic medium of which acts as a foreground Faraday

screen; in most cases of interest, this contribution can be easily

allowed for. The total magnetic field vector is denoted B; its regular

and random components are B and b, respectively.

3 D I F F E R E N T I A L FA R A DAY ROTAT I O N

When synchrotron emission originates in a magneto-ionic medium

containing a regular magnetic field, the polarization plane of the

radiation produced at different depths within the source is rotated

over different angles by the Faraday effect. This results in a

decrease in the degree of polarization of the integral emission

observed. This effect is known as depolarization by differential

Faraday rotation (Gardner & Whiteoak 1966). In this section we

consider this effect with allowance for a non-uniform distribution of

the magneto-ionic medium in the source. Any variation of para-

meters perpendicular to the line of sight is neglected in this section

(in particular, w ¼ 1), and the integrals in equation (1) are taken

along the line of sight, z (see Section 8 for a discussion of a gradient

of RM across the beam). For moderately inclined galaxies observed

with resolutions of 1–3 kpc, this is a very good approximation.

3.1 A uniform slab

Consider a synchrotron-emitting slab with a purely regular mag-

netic field, B ¼ B, containing thermal electrons with volume

density n. Burn (1966) showed that the complex polarization of

intrinsic synchrotron emission of a uniform slab is given by

P ¼ pi

sin Rl2

Rl2
exp 2iðw0 þ 1

2
Rl2

Þ ; ð3Þ

where R ¼ KnBzL is called here the intrinsic Faraday rotation

measure (also known as the Faraday depth of the source). W is a

linear function of l2 and the observable Faraday rotation measure

RM is equal to 1
2
R in this case.

Equation (3) describes the well-known non-monotonic behaviour

of p shown in Fig. 1. Nevertheless, the observational consequences

are often confused in the literature. For 1
2
p < Rl2

< p, polarized

signals from the near and the far side of the slab have rotation angles

differing by more than 90◦ and thus partly cancel, and the observed

polarized emission comes from a layer symmetric about the mid-

plane of the slab. Beyond Rl2
¼ p, the first zero-point of p,

polarized signals from a large fraction of the slab on the far side,

across which the rotation angle is 180◦, completely cancel and only

polarized emission from a thin layer on the near side is observed.

The observable rotation angle caused by the ‘visible’ layer is only
1
2
ðRl2

¹ pÞ.

The observation of Faraday rotation in a wavelength interval

including one (or more) wavelengths at which p is zero leads to

RM Þ 1
2
R . However, RM ¼ 1

2
R is still valid in wavelength ranges

between any two zero-points of p.

Our aim here is to generalize equation (3) in the following two

ways: (i) by considering a non-uniform slab, and (ii) by introducing

reversals of Bz along the line of sight. As we show below, Burn’s

formula, equation (3), remains applicable if nBz=« ¼ constant and

w0 ¼ constant along the line of sight.

3.2 A symmetric non-uniform slab

Consider first a slab with arbitrary symmetric distributions of «, n

and B along the line of sight, described by «ðzÞ ¼ «0Fðjzj=h«Þ and

nðzÞBzðzÞ ¼ n0B0Gðjzj=hRMÞ with the normalization
�

zb

0 F dz ¼ h«

and
�

zb

0 G dz ¼ hRM, where subscript zero denotes the equivalent

values and z varies between ¹zb and þzb. We also assume that w0 is

independent of z (then w0 ¼ W0). Then we have from equation (1)

p ¼ pi

�

zb=h«

0

ds FðsÞ cos Rl2
�

s=q
0 GðtÞ dt

h i

; ð4Þ

W ¼ w0 þ 1
2
Rl2

; ð5Þ

where R ¼ K
� zb

¹zb
nBz dz ¼ Kn0B0L is the equivalent intrinsic

Faraday rotation measure of the slab with L ¼ 2hRM, q ¼ hRM=h«,

s ¼ z=h« and t ¼ z=hRM; here jsj # zb=h« and jtj # zb=hRM. As we can

see from equation (5), for any symmetric distribution with

w0 ¼ constant we have RM ¼ 1
2
R as in the uniform slab, but the

degree of polarization (4) differs from that given by equation (3).

Equation (4) reduces to p ¼ pi sin ðRl2
Þ=ðRl2

Þ when « and nBz

have similar distributions along the line of sight, i.e. F ¼ G, and in

addition their scaleheights are identical, i.e. q ¼ 1, that is for

nBz=« ¼ constant. This can be easily seen after integration by

parts in equation (4).

We illustrate the behaviour of the degree of polarization using

exponential distributions, FðsÞ ¼ exp ð¹jsjÞ and GðtÞ ¼ exp ð¹jtjÞ

with distinct scaleheights, q Þ 1. Other distributions often used in

modelling galactic discs are approximations with Gaussian and

hyperbolic functions (Spitzer 1942). All these functions give fair

fits to the vertical distributions of the gas (Dickey & Lockman 1990)

and the synchrotron emission observed in the Milky Way (Beuer-

mann, Kanbach & Berkhuijsen 1985) and edge-on galaxies (Dumke

& Krause 1998). We have also tried these approximations, but the

differences are insignificant. For the exponential distributions,

Depolarization and Faraday effects 191
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Figure 1. Degree of polarization owing to differential Faraday rotation (i.e.

in a purely regular magnetic field) for a symmetric slab with exponential

distributions of « and nBz with q ¼ hRM=h« ¼ 1 (solid) [this also corresponds

to the uniform slab, as described by equation (3)], q ¼ 1
2
(long dashes), q ¼ 2

(short dashes) and q ¼ ðl=10 cmÞ
¹0:25

(dotted).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
9
/1

/1
8
9
/1

0
1
5
1
8
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



equation (4) reduces to

p ¼ piq

�1

0
s
q¹1

cos ½Rl2
ð1 ¹ sÞÿ ds : ð6Þ

It is easy to find the following approximation:

p < pi 1 ¹
R

2l4

ðq þ 1Þðq þ 2Þ

� �

for Rl2
p 1 ; ð7Þ

whereas Burn’s formula (3) yields p < pið1 ¹ 1
6
R

2l4
Þ in the same

limit. In Fig. 1 we show p for different values of q for an exponential

symmetric slab as obtained by direct evaluation of the integral in

equation (4). In accordance with equation (7), for q > 1 (< 1) the

degree of polarization for small and moderate values of Rl2 is

larger (smaller) than that following from Burn’s formula. For q > 1,

most of the Faraday-rotating medium is located outside the syn-

chrotron layer and does not depolarize, while for q < 1 the opposite

is true.

Although the qualitative behaviour of p as a function of Rl2 is

the same as in a uniform slab, equations (7) and (3) yield the same

value of p for values of RM differing by a factor ½6=ðq þ 1Þ

ðq þ 2Þÿ
1=2 (when Rl2

p 1). For a typical value of q ¼ 2
3
, which

corresponds to B ~ n
1=2 and « ~ B

2
, the value of RM corresponding

to a given p is then smaller by 25 per cent than that from Burn’s

formula.

Owing to energy losses of relativistic electrons, h« is a function of

l. In the galaxies NGC 891 (Hummel et al. 1991) and M31

(Berkhuijsen, Golla & Beck 1991), the observed behaviour can

be approximated as h« ~ l0:25. In Fig. 1 we illustrate this case as

well. RM is wavelength-independent and equal to 1
2
R in the case of

constant q, but negligibly varies with l near this value for the

wavelength-dependent q.

3.3 An asymmetric slab

It should be emphasized that the qualitative applicability of the

results obtained for a uniform slab, equation (3), to a non-uniform

one is connected with the symmetry of the slab with respect to the

mid-plane. To illustrate this, we consider an extreme case of

asymmetry with FðsÞ ¼ exp ð¹sÞ, GðtÞ ¼ exp ð¹tÞ and w0 ¼

constant (with s; t > 0). Although this can be considered as just

one half of the symmetric source discussed in Section 3.2, we show

here that the asymmetry results in qualitative changes in the

polarization pattern.

For the exponential asymmetric slab, we obtain instead of

equation (6)

P ¼ pi exp ð2iw0Þ q

�1

0

s
q¹1 exp ð2iRl2

sÞ ds ; ð8Þ

where R ¼ Kn0B0hRM. Equation (3) is recovered for q ¼ 1, so that

Burn’s formula is also applicable to an asymmetric slab but only

when nBz=« ¼ constant and w0 ¼ constant.

The integral in equation (8) can be calculated exactly for e.g.

q ¼ 2, which corresponds to h« ¼ 1
2
hRM:

p ¼ pi

1

S
1 þ

sin2
S

S2
¹

sin 2S

S

� �1=2

;

W ¼ w0 þ 1
2
S þ 1

2
arctan

1

S
¹

1

tan S

� �

;

where S ¼ Rl2. It is obvious that in an asymmetric slab with q Þ 1

the polarization angle W is no longer a linear function of l2;

furthermore, for q ¼ 2 we have RM <
2
3
R for S p 1 and RM

approaches R for S q 1 instead of RM ¼ 1
2
R in a uniform slab

or for q ¼ 1. This occurs because, for q > 1, a significant part of the

slab acts as a foreground Faraday screen.

The degree of polarization, polarization angle and Faraday

rotation measure in an asymmetric slab are shown as functions of

wavelength in Fig. 2 for R ¼ 50 rad m¹2 and q ¼ 1
2
, as calculated

from equation (8); q ¼ 1
2

corresponds to h« ¼ 2hRM. Note that

RM Þ 1
2
R and RM even changes sign for l around 20 cm, although

the magnetic field has no reversals.

The strong variation and negative values of RM occur at those

wavelengths where the deeper part of the slab is (almost) comple-

tely depolarized, i.e. Rl2
< kp; k ¼ 61; 62; . . .. At shorter wave-

lengths, the observed polarized emission originates also from the

deeper layers, whereas at larger l an upper layer makes the

dominant contribution. This results in strongly varying RM

(growing or decreasing with l in certain wavelength ranges) and

even reversed values of RM. This unusual behaviour of RM

near l ¼ 20 cm may be responsible for singularities in the

RM distribution observed in M51 (Horellou et al. 1992).

An RM variation similar to that in Fig. 2 also occurs when

differential Faraday rotation is accompanied by Faraday dispersion

(see Section 6.2 and Fig. 5, later). However, we stress our result that

192 D. D. Sokoloff et al.
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Figure 2. The observable degree of polarization (a), polarization angle (b)

and Faraday rotation measure calculated as RM ¼ dW=dl2 (c) in an

exponential asymmetric slab with R ¼ 50 rad m
¹2

and q ¼ hRM=h« ¼ 1
2

(solid), and in a double-layer slab with R1 ¼ 60 rad m¹2, R2 ¼

¹10 rad m¹2 and I1=I2 ¼ 10 (dashed). The degree of polarization given by

equation (3) and the corresponding RM for R ¼ 50 rad m
¹2

are shown

dotted.
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RM variations with wavelength may occur already in the case of a

completely regular field if the slab is asymmetric.

Since RM varies with l, it is dangerous to apply Burn’s formula,

equation (3), to an asymmetric slab. To illustrate this, we have used

the RM obtained for an exponential asymmetric slab [shown in

Fig. 2(c) by a solid line] to calculate the expected degree of

polarization from equation (3) by taking R ¼ 2 RM. By comparing

the result shown in Fig. 3 with the observable p from Fig. 2(a), we

see that the latter is dramatically smaller than that calculated from

the observable RM using Burn’s formula. It is clear that the reason is

that equation (3) is applicable only when RM is strictly independent

of l, and application of this equation in more complicated situations

can lead to a strong underestimate of the importance of depolariza-

tion by differential Faraday rotation.

We conclude that equation (3) is valid for a non-uniform

distribution of magneto-ionic medium with a regular magnetic

field only when w0 ¼ constant and nBz=« ¼ constant along the

line of sight, or in other words, nBz and « differ by only a numerical

factor independent of z. However, the amount of Faraday rotation

expected from the classical Burn formula by inserting the observed

values of p can differ strongly from the observable RM values.

Deviations from the l2 law may indicate a complicated structure of

B along the line of sight (which makes w0 dependent on z), or an

asymmetry in the line-of-sight distribution of the magneto-ionic

medium, or a significant contribution of random magnetic fields

(see below).

3.4 A multi-layer slab

In this section we discuss differential Faraday rotation in a multi-

layer regular magnetic field, including the case of field reversals

along the line of sight. This configuration occurs when, for example,

the regular magnetic field has different directions in the disc and the

halo of a spiral galaxy (Sokoloff & Shukurov 1990; Berkhuijsen et

al. 1997), or when a galactic disc hosts a dipole field which may

occur in the central parts of galaxies (Donner & Brandenburg 1990;

Elstner, Meinel & Beck 1992; Panesar & Nelson 1992), or when the

line of sight crosses several spiral arms in a galaxy seen (almost)

edge-on.

Consider a slab consisting of N uniform layers with the line-of-

sight extent of each layer denoted as Li, the line-of-sight regular

magnetic field as Bi, the electron density as ni and the synchrotron

intensity originating in the ith layer as Ii. The Nth layer is assumed

to be nearest to the observer. It can be shown by direct integration in

equation (1) that

P ¼ pi

X

N

i¼1

Ii

I

sin R il
2

R il
2

× exp 2i
�

w0i þ 1
2
R il

2
þ
X

N

j¼iþ1

R jl
2
�

; ð9Þ

where R i ¼ KniBiLi and w0i is the intrinsic polarization angle in the

ith layer. This expression reduces to equation (3) when all the layers

are identical or N ¼ 1.

The physical meaning of equation (12) is clear: the emission

originating in each layer has the intrinsic degree of polarization

depending on R i as given by equation (3). When propagating, its

polarization angle experiences Faraday rotation with RM ¼ 1
2
R i in

the parent layer and RM ¼ R j in every other layer passed, which

then act as a Faraday screen. The total complex polarization is the

sum of the complex polarizations arising in each layer weighted

with the fractional synchrotron intensity Ii=I (cf. Burch 1979).

Although Faraday rotation in each particular layer follows the l2

law, this does not apply to the whole slab, and the resulting degree of

polarization is quite different from that given by equation (3). To

illustrate this, we give the explicit result for the simplest case of two

layers, N ¼ 2:

p
2

¼ p
2
i A

2
1 þ A

2
2 þ 2A1A2 cos2

½Dw0 þ 1
2
ðR1 þ R2Þl2

ÿ
� 	

; ð10Þ

where Ai ¼ ðIi=IÞ sin ðR il
2
Þ=ðR il

2
Þ, Dw0 ¼ w01 ¹ w02 and the

remaining notation is obvious. The polarization angle for an N-

layer system is given by

W ¼ 1
2
arctan

P

N

i¼1

Ai sin 2½w0i þ l2
ð1
2
R i þ

P

N

j¼iþ1

R jÞÿ

P

N

i¼1

Ai cos 2½w0i þ l2ð1
2
R i þ

P

N

j¼iþ1

R jÞÿ

: ð11Þ

This formula can be easily simplified to the case N ¼ 2.

Of course, these results agree with those in Sections 3.2 and 3.3

because expressions obtained here can be considered as finite-

difference representations of the integrals appearing there. In

particular, for any distribution of the layers that is symmetric

along the line of sight, i.e. Ii ¼ IN¹i and R i ¼ RN¹i, we have

RM ¼
P

i
1
2
R i.

3.4.1 Some applications

Reversals of magnetic field along the line of sight can strongly

affect the observed polarization pattern when the system is asym-

metric. However, this can occur even in a symmetric source when

the synchrotron emissivity and the magneto-ionic medium have

different extents along the line of sight.

To illustrate the above results, consider the galaxy M51, the disc

of which is surrounded by an extended magneto-ionic halo and

where the synchrotron scaleheight only slightly exceeds the scale-

height of the thermal disc (Berkhuijsen et al. 1997). As the far part

of the halo does not contribute significantly to the synchrotron

emission of the galaxy, only the disc and the near half of the halo
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Figure 3. An illustration of the inapplicability of equation (3) to an

asymmetric slab and a double-layer distribution of magneto-ionic

medium. Shown are the wavelength dependences of the degree of polariza-

tion in an exponential asymmetric slab (solid) and a double-layered slab with

a reversal in the line-of-sight component of the regular magnetic field

(dashed), obtained from Burn’s formula, equation (3), with R replaced by

2 RM, and with the RM shown in Fig. 2(c). The difference from the correct

depolarization curves shown in Fig. 2(a) is striking.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
9
/1

/1
8
9
/1

0
1
5
1
8
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



affect the observed polarized radio emission. This introduces an

asymmetry along the line of sight.

In Fig. 2 we show the degree of polarization calculated from

equation (10), the polarization angle from equation (11), and

the Faraday rotation measure for a double-layer slab with

R1 ¼ 60 rad m¹2, R2 ¼ ¹10 rad m¹2 and a ratio of synchrotron

intensities of I1=I2 ¼ 10. These values of R1 and R2 are close to

those obtained by Berkhuijsen et al. (1997) for the disc and halo of

M51, respectively. The Faraday rotation measure strongly varies

with l from about 18 rad m¹2 at small wavelengths to very negative

values at l < 23 cm. Negative RM values arise when mainly a layer

on the near side of the slab is ‘visible’ where the field direction is

reversed. The RM behaviour looks similar to that of the asymmetric

slab (solid lines in Fig. 2) and has a similar explanation

(Section 3.3).

In Fig. 3 we show the values of p that would be obtained if

equation (3) were applied to a double-layer slab with the values of

RM shown dashed in the lower panel of Fig. 2. It is again clear that a

direct application of expressions obtained for a case when RM is

wavelength-independent (e.g. a uniform slab) with the observed

values of RM would lead to erroneous results. Faraday depolariza-

tion in a purely regular field can be much stronger than the observed

low RM suggests. This has to be taken into account in data

interpretation.

Another interesting example of a multi-layer magnetic field is a

dipole magnetic field which may be maintained by a dynamo in the

central part of a spiral galaxy (Donner & Brandenburg 1990; Elstner

et al. 1992; Panesar & Nelson 1992). The toroidal and radial

components of this field are antisymmetric with respect to the

mid-plane, whereas the vertical component is symmetric. When

seen at an angle to the symmetry axis, this magnetic configuration is

antisymmetric along the line of sight as long as the vertical

component can be neglected. Contrary to naive expectations, the

total Faraday RM produced by an antisymmetric field does not

vanish. Moreover, this configuration produces exactly the same p

and RM as just the half of the layer on the near side to the observer.

Indeed, for N ¼ 2, I1 ¼ I2 and R1 ¼ ¹R2, equations (10) and (11)

yield p ¼ pi sinðR2l2
Þ=ðR2l2

Þ and RM ¼ 1
2
R2. However, this

strange degeneracy is removed by internal Faraday dispersion, i.e.

by a random magnetic field.

We note that for N ¼ 2 and I1 ¼ I2, the observable rotation

measure at small wavelengths becomes

RM <
1
4
ðR1 þ 3R2Þ for Rl2

p
1
2
p ; ð12Þ

which also leads to RM ¼ 1
2
R2 for R1 ¼ ¹R2. This result, show-

ing that the sublayers have different weights, is also far from naive

expectations.

3.5 Conclusions of Section 3

A general conclusion of Section 3 is that for a symmetric slab we

have RM ¼ 1
2
R in between two consecutive zero-points of p where

R is the total intrinsic Faraday RM of the source (see Section 3.1),

but the degree of polarization is different from that given by

Burn’s formula (3) with the same R . Meanwhile, for an asymmetric

slab the degree of polarization is rather close to that given by

equation (3), but RM is a function of l and RM Þ 1
2
R when

the scaleheights of « and nBz differ from each other. When the

scaleheights are equal and w0 ¼ constant, equation (3)

remains applicable to both symmetric and asymmetric non-uniform

slabs.

4 P O L A R I Z AT I O N I N A R A N D O M M AG N E T I C

F I E L D : G E N E R A L C O N S I D E R AT I O N S

Consider now the effects associated with the random component of

the magnetic field. We assume that the total magnetic field vector B

is represented by a regular (large-scale) part B and a random one b,

i.e. B ¼ B þ b. It is assumed that the line-of-sight and transverse

components of b are statistically independent to ensure statistical

independence of random contributions to w0 and RM. We note that a

correlation of b' and bz can arise owing to the solenoidality of b, but

we believe that this effect is not important.

Below we use the following notation. The correlation scale of the

Faraday rotation measure distribution across the beam is denoted as

lRM and that along the line of sight is lm. The free-electron density n

is a positive random quantity characterized by a correlation scale ln.

Another correlation scale which enters expressions for the complex

polarization is l«, the correlation scale of the synchrotron emissivity.

It is not easy to express lm, lRM and l« in terms of the correlation

scales of b and n. To illustrate the difficulties, consider the correla-

tion scale of the synchrotron emissivity «. A widespread model

assumes that the fluctuating component of b is a Gaussian random

field with a correlation scale d. Then the correlation scale of « can

be understood as, say, the curvature radius of its autocorrelation

function at the origin. Then l« ¼ 1
2
d if « ~ B

2
'.

Another popular model assumes that the magnetic field is regular

within each cell of radius d and has independent strengths and

orientations in different cells. Then the correlation scale can be

introduced in an approximate manner as the scale at which the fields

become uncorrelated. It is obvious that l« ¼ d in this case. In a

similar model with a spectrum of cell sizes, the correlation scale

will depend on the particular way in which space is filled with cells.

If the cells are allowed to overlap and the field is assumed to be a

vector sum of the fields of the overlapping cells, then the statistical

properties of the resulting random field are nearly Gaussian. It is not

clear, however, whether or not such a model provides a good

description of the interstellar medium.

It is also important to note that n is a positive definite quantity, so

that its fluctuations cannot be described as a Gaussian random

variable. Therefore reference to Gaussian statistics cannot resolve

all problems connected with a statistical description of the mag-

neto-ionic medium. In order to specify relations of lm, lRM and l« to

the correlation scales of b and n, one must develop a detailed

statistical model of the random fields involved. The available

knowledge is not sufficient for such a model of the interstellar

medium.

It is notable that different estimates of the correlation scale of

electron density and magnetic fields in the interstellar medium of

the Milky Way are in a wide range from a few parsecs to a few

hundred parsecs. These values are implied by analyses of Faraday

rotation measures of pulsars and extragalactic radio sources (Lazio,

Spangler & Cordes 1990; Ohno & Shibata 1993; Minter & Spangler

1996); values around 10 pc follow from the theory of cosmic ray

confinement. This range may result from the presence of several

physically distinct scales in the distributions of the electron density

and/or the magnetic field at which the autocorrelation function has

local maxima, or even from the finite size of an observed area. On

the other hand, the difference may also arise from the fact that

different tracers (the diffusion coefficient of cosmic rays, the

observed distribution of RM, scintillations, etc.) have been used

to obtain different estimates of the correlation scales. Most

plausibly, all these factors contribute and it is difficult to separate

them.
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Having in mind the above uncertainties, we assume that all the

correlation scales lm, lRM and l« are equal to each other in order to

obtain expressions for complex polarization which can be used in

applications.

Before evaluating the complex polarization in a random field, it is

convenient to represent it as follows. Integration over the beam

cylinder in equation (1) is equivalent to volume averaging. Since the

regular magnetic field as well as the statistical parameters of

fluctuations in both B and n can vary along the line of sight, it is

expedient to introduce volume averages over a slice of the beam

cylinder within which the line-of-sight variation of the averaged

parameters can be neglected. The extent of this slice along the line

of sight should be significantly smaller than the scaleheights of the

constituents of the magneto-ionic medium.

Having identified volume integrals with the corresponding

averages, equation (1) can be rewritten as

P ¼ pi

�

V

dV « exp 2iw0


 �

W×h exp 2iKl2

�

zb

z

nBz dz
0

* +

W×h
�

V

dV «h iW×h

;

where . . .h iW×h denotes averaging over the slice volume W × h in the

synchrotron source; these averages are slowly varying functions of

position. It is convenient to represent the latter expression in the

following equivalent form:

P ¼

�

V

dV P0 «h iW×h exp 2iKl2

�

zb

z

nBz dz
0

� �

W×h
�

V

dV «h iW×h

; ð13Þ

where

P0 ¼ pi

« exp 2iw0


 �

W×h

«h iW×h

ð14Þ

is the complex intrinsic polarization averaged over the random

fluctuations.

Thus the assumption that b' and bz are uncorrelated allows us to

factorize the integrand in equation (1) to obtain equation (13), i.e. to

decouple the effects of the wavelength-independent depolarization

represented by P0 and Faraday effects described by the exponential

term in (13). In the following sections we discuss these two groups

of effects separately, and then consider examples of their combined

action.

5 WAV E L E N G T H - I N D E P E N D E N T

D E P O L A R I Z AT I O N

In this section we evaluate P0, the complex polarization at l → 0.

Depolarization at short wavelengths is due to mixing of emission

with different polarization planes within the telescope beam. This

depolarization is wavelength-independent; it can be observed at

small wavelengths where Faraday effects are negligible.

The problem reduces to the calculation of the volume averages in

equation (14). Let us assume that the volume of a slice encompasses

a large number of correlation cells. Using the ergodic hypothesis, a

volume average can be expressed in terms of the ensemble average

as the sum of a regular and a fluctuating part:

Xh iW×h < Xh i þ N
¹1=2
W jXy ;

where X is a complex random variable (not necessarily a Gaussian

one), . . .h i denotes the ensemble average, NW is the number of

correlation cells of X within the averaging volume of a slice, jX is

the standard deviation of X defined as j2
X ¼ XX

¬

 �

¹ Xh i X
¬


 �

, with

the asterisk denoting the complex conjugate, and y is a complex

random variable with zero mean value and unit standard deviation.

Direct application of this formula to equation (14) yields

P0 ¼ pi

« exp 2iw0


 �

þ N
¹1=2
W j0y1

«h i þ N¹1=2
W j«y2

; ð15Þ

where j0 and j« are the standard deviations of « exp ð2iw0Þ and «,

respectively, and y1 and y2 are complex and real random variables,

respectively, both with zero mean and unit variance. Here we have

assumed for simplicity that both « exp ð2iw0Þ and « have NW

correlation cells in the beam area.

To evaluate the averages in equation (19) we note that Bi


 �

¼ Bi

and B
2
i


 �

¼ B
2
i þ j2

i , where ji is the standard deviation of bi. We

also introduce Cartesian coordinates in the plane of the sky ðx; yÞ

with the corresponding axes oriented along the principal axes of the

covariance matrix of the random field b'; this ensures that

bxby


 �

¼ 0. b can be an anisotropic random vector, jx Þ jy Þ jz.

5.1 Generalization of the standard approach

As the intrinsic polarization plane is perpendicular to B', we have

w0 ¼ 1
2
p þ arctan By=Bx : ð16Þ

Assuming a synchrotron spectral index of a ¼ ¹1, so that

« ¼ cB
2
' ð17Þ

with a certain constant c depending on the number density of

relativistic electrons, this yields

« exp ð2iw0Þ ¼ cðB
2
x ¹ B

2
y þ 2iBxByÞ :

As we discuss in Section 5.2, the error associated with the

approximation a ¼ ¹1 is smaller than other uncertainties of the

modelling.

After some simple algebra, equation (19) reduces to the sum of

the regular and fluctuating parts of the form

P0 < p0 exp ð2iW0Þ þ N
¹1=2
W j¬y¬ ; ð18Þ

where

p0 ¼ pi

B
2
x ¹ B

2
y þ j2

x ¹ j2
y

� �2

þ4B
2
xB

2
y

� �1=2

B2
'

; ð19Þ

W0 ¼ 1
2
p þ 1

2
arctan

2BxBy

B
2
x ¹ B

2
y þ j2

x ¹ j2
y

 !

; ð20Þ

j¬y¬ ¼ j0=B2
'

� �

y1 ¹ p0j«=B2
'

� �

y2 ; ð21Þ

where B
2
' ¼ B

2
x þ B

2
y , B2

'
¼ B

2
' þ j2

x þ j2
y , and the overbar

denotes ensemble averaging (equivalent to . . .h i); we note that y1

and y2 are not statistically independent and NW q 1 is assumed. We

stress again that p0, W0 and j¬ can be functions of z.

The following expressions for j0 and j« in equation (21) can be

obtained by direct calculations from j2
X ¼ XX

¬

 �

¹ Xh i X
¬


 �

,

assuming that b' is an isotropic Gaussian random variable, so

that b
4
i


 �

¼ 3j4
:

j2
0 ¼ 8j2

ðB
2
' þ j2

Þ ; j« ¼ 4j2
ðB

2
' þ 2j2

Þ ;

where j ¼ jx ¼ jy ¼ jz.

Equation (18) expresses an intuitively obvious fact that both

the degree of polarization and the polarization angle arising in a
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random field have predictable values only provided that the

number of correlation cells is large enough, so that the first term

in equation (18) dominates. Otherwise, the complex polarization is

simply a random vector.

It is useful to obtain limitations on the number of correlation cells

within the beam cylinder required to have sufficiently small random

fluctuations in the observable polarization. After integration over z

in equation (13), NW should be replaced by N, the number of

correlation cells within the beam cylinder, i.e. a region of area W

and depth L. From equations (18) and (21) we have that the regular

term is larger than that arising from the fluctuations, provided that

N
1=2 * j0ðp0B2

'
Þ
¹1 and N

1=2 * j«=B2
'

. For an isotropic Gaussian

random magnetic field, the first inequality reduces to

N * 8
j

B'

� �2

1 þ
j

B'

� �2� �

; ð22Þ

where N is the number of correlation cells of « exp ð2iw0Þ within the

beam cylinder W × L. This yields N * 100 for a typical case of

j=B'

ÿ �2
¼ 3. The second inequality for N

1=2 above leads in this case

to a much less stringent constraint N * 2.

We give an explicit expression for N which should be used to

isolate, using equation (26), the cases when neglect of the second

term in equation (18) is meaningful:

N ¼

L=ð2lÞ for D & 2l; L q 2l ;

LD
2
=ð2lÞ

3 for D q 2l; L q 2l ;

D
2
=ð2lÞ

2 for D q 2l; L & 2l ;

(

ð23Þ

where D is the beam diameter and l is the correlation scale. We

recall that correlation scales of all fluctuating quantities are sup-

posed to be equal to each other. The first case corresponds to a very

narrow beam and a thick slab, the second to a wide beam and a thick

slab, and the third to a thin slab observed at low resolution. The case

of a narrow beam and thin slab, D p 2l and L p 2l, is trivial

because then the medium cannot be considered random.

In an intermediate case when the fluctuations are partially

resolved and the number of correlation cells within the volume

W × L is only moderate, that is D . 2l and L . 2l, equation (18)

remains applicable with the regular magnetic field understood as

being the mean over the beam cylinder. Then the resulting

polarization angle becomes random. The variance of the random

magnetic field j2 becomes a function of the beam size D and should

be replaced by AðDÞ, where AðdrÞ ¼ bðdrÞ·bðr þ drÞh i is the auto-

correlation function.

5.1.1 Some applications

If all relevant quantities entering equations (18)–(21) are indepen-

dent of z and l → 0 or n ¼ 0, integration over z in equation (13)

becomes trivial. Then we obtain the following two well-known

examples of wavelength-independent polarization as particular

cases of equations (19) and (20).

In an isotropic random field, jx ¼ jy ¼ j, superimposed on a

regular magnetic field B, the ensemble-averaged complex polariza-

tion becomes (Korchak & Syrovatskii 1962; Burn 1966)

P0


 �

¼ pi

B
2
'

B
2
' þ 2j2

exp 2i 1
2
p þ arctan By=Bx

ÿ �� �

; ð24Þ

where we recall that j is the one-dimensional standard deviation of

the random magnetic field; so 21=2j is the rms value of b'.

Another interesting example is a purely random anisotropic

magnetic field, B' ¼ 0, jx Þ jy, and B2
'

¼ j2
x þ j2

y Þ 0. Such a

magnetic field also produces polarized emission, the complex

polarization of which follows from equations (19) and (20) as

P0


 �

¼ pi

j2
x ¹ j2

y

j2
x þ j2

y

exp ip : ð25Þ

The resulting polarization angle is W0 ¼ 1
2
p as measured from the x-

axis, which is chosen to be parallel to the direction along which the

standard deviation of b' is a maximum. A two-dimensional

random, isotropic magnetic field confined to a plane that is inclined

by an angle b to the line of sight (Laing 1981) is a particular case of

this configuration; Laing’s result (1981, his section 3) is recovered

from equation (29) when jy ¼ jx sin b.

We note that the above results do not rely on the Gaussian

statistical properties of the fluctuations.

Polarization associated with anisotropy in b can be significant in

galaxies. A polarization degree of 10 per cent is produced in quite a

weakly anisotropic magnetic field with jx=jy ¼ 1:14. Such an

anisotropy can readily arise in the discs of spiral galaxies owing

to azimuthal stretching of turbulent cells by differential rotation,

and in galactic haloes owing to vertical stretching by galactic

fountains and/or winds. This can mimic a regular magnetic field

– azimuthal in the disc and vertical in the halo. However, RM must

be small in both isotropic and anisotropic random magnetic fields.

A significant Faraday RM is a signature of a regular magnetic field.

To illustrate the use of equation (18), consider a spiral galaxy. A

typical size of a turbulent cell is then 2l ¼ 10–100 pc in the disc and

2l ¼ 100–1000 pc in the halo (see Sokoloff & Shukurov 1990;

Poezd, Shukurov & Sokoloff 1993; Dumke et al. 1995). The

characteristic line-of-sight depth of the magneto-ionic medium is

L ¼ 2 kpc in the disc seen nearly face-on and L ¼ 10 kpc in the halo

of a galaxy seen nearly edge-on. For a beam diameter D ¼ 0:5 kpc

we have D q 2l and L q 2l in the disc and D . 2l and L q 2l in the

halo. Thus Ndisc . LD
2
=ð2lÞ

3
. 5 × ð10

2
–10

5
Þ and Nhalo . L=ð2lÞ .

20–100. Comparing this with equation (26) for j2
=B

2
' ¼ 3, we see

that the regular part of P0 significantly exceeds (by modulus) the

fluctuations in the disc, but in the halo of a galaxy seen edge-on the

fluctuations are comparable to the mean value of P0. Thus wave-

length-independent depolarization would make observations of the

polarization of the intrinsic synchrotron emission from galactic

haloes at this high resolution meaningless, and the data must be

smoothed to a coarser resolution in order to yield any useful

estimates of the physical parameters (a correlation analysis of

fluctuations in the polarization pattern is the only reasonable

approach in the case of such high-resolution observations). For

moderately inclined galaxies, the strong difference between the

synchrotron emissivities in the disc and the halo makes the

fluctuations in P0 arising in the halo less important.

5.2 Energy equipartition between magnetic fields and cosmic

rays

All available analyses of the polarization of synchrotron sources

assume that the synchrotron emissivity scales as « ~ B
2
'. This

assumption also was adopted in our discussion above. However,

the scaling of synchrotron emissivity with magnetic field is differ-

ent under the widely used assumptions of energy equipartition and

pressure equilibrium between magnetic fields and cosmic rays. In

this case the number density of energetic particles scales as B
2 if the

energy densities of magnetic fields and cosmic rays are completely

correlated, and the scaling becomes

« ¼ CB
2
B

2
' ð26Þ
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with a certain constant C. The stronger dependence of the synchro-

tron emissivity on magnetic field increases the importance of

regions with strong B (both localized and extended). Therefore,

the degree of polarization under the scaling (26) must be generally

larger than that of (17). This affects both p at l → 0 and the Faraday

effects in any inhomogeneous regular and/or random magnetic

field.

For illustration we derive here an expression for the complex

polarization at short wavelengths for the scaling (26). In this case

« exp ð2iw0Þ ¼ CB
2
ðB

2
x ¹ B

2
y þ 2iBxByÞ ;

which yields

p ¼ pi B2 B2
'

� �¹1

× B
4
x ¹ B

4
y þ 3 j4

x ¹ j4
y

ÿ �

þ 6 B
2
xj2

x ¹ B
2
yj2

y

� �hn

þ B2
z B2

x ¹ B2
y

� �i2

þ4B
2
xB

2
y B2 þ 2 j2

x þ j2
y

ÿ �

h i2
�1=2

;

where the same notation as in Section 5.1 is used and w0 is given by

equation (20). It is instructive to consider a purely transverse field

consisting of a uniform component and an isotropic random field

with jx ¼ jy ; j, Bz ¼ jz ¼ 0 and B' ¼ Bx. Then

p ¼ pi

1 þ 6 j=B'

ÿ �2

1 þ 8 j=B'

ÿ �2
þ8 j=B'

ÿ �4
; ð27Þ

which should be compared with equation (24). As we can see, the

scalings (17) and (26) lead to very similar degrees of polarization

for j=B' p 1, but p is larger by 50 per cent under the assumption of

energy equipartition and for j=B' q 1.

The synchrotron emissivity (26) and, consequently, p depend on

the line-of-sight magnetic field via the energy density of relativistic

electrons. For an isotropic random field, jx ¼ jy ¼ jz ; j, and a

vanishing line-of-sight component of the regular field, Bz ¼ 0 and

B' ¼ Bx, we obtain

p ¼ pi

1 þ 7 j=B'

ÿ �2

1 þ 9 j=B'

ÿ �2
þ10 j=B'

ÿ �4
: ð28Þ

In the limiting case j=B' q 1, equation (28) yields

p=pi . 1:4B
2
'=b

2
' (with b

2
' ¼ 2j2), which is larger by 40 per cent

than equation (24) gives, but the asymptotic dependence of p on

j=B' remains the same as in equation (24).

In Fig. 4 we illustrate the effect of the scaling (26) on the degree

of polarization in a uniform slab with a partially ordered magnetic

field with Bz ¼ 0, j ¼ 1:6B', where j is the one-dimensional

standard deviation of the isotropic random magnetic field, and

j2
RM ¼ 1900 rad2 m¹4. The intrinsic degrees of polarization

obtained under the scalings (17) and (26) differ by as much as 25

per cent at l → 0. We also include the internal Faraday dispersion

discussed in Section 6 which is affected by the scaling of the

synchrotron emissivity with magnetic field as well.

The results of this section allow us to assess the role of the

deviations of the synchrotron spectral index a from the assumed

value of ¹1. The dependence « ~ B
4
', close to what was discussed

above, would correspond, without any equipartition, to an

extremely steep spectrum with a ¼ ¹3. As shown in Fig. 4, even

a strong change of a from ¹1 to ¹3 results in a moderate variation

in p of just 20–30 per cent. The observed variations of a for

optically thin objects (like discs and haloes of galaxies),

¹1:1 & a & ¹0:8, therefore produce relatively unimportant varia-

tions in the polarization pattern.

6 I N T E R NA L FA R A DAY D I S P E R S I O N

6.1 General considerations

The polarization plane of emission propagating in a random

magneto-ionic medium experiences a random walk which causes

depolarization when the telescope beam encompasses many

turbulent cells. These lead to different amounts of Faraday

rotation along different lines of sight within the beam. If this

effect occurs within a synchrotron-emitting region it is called

internal Faraday dispersion and is described by the wavelength-

dependent term in equation (13), which is the subject of this

section.

We introduce regular and random components, M and m, of the

product

KnBz ¼ M þ m ð29Þ

which includes the density of thermal electrons as well as magnetic

fields. As shown in Appendix A, the complex polarization is then
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Figure 4. In the case of energy equipartition between magnetic fields and

cosmic rays, « ~ B
2
B

2
', the polarization in a partially ordered magnetic field

(solid) is stronger than for « ~ B
2
' (dashed). Shown is the case of a transverse

regular magnetic field B' ¼ 5 mG and an isotropic random field with

j ¼ 1:6B' ¼ 8 mG, and j2
RM ¼ 1900 rad2 m¹4. The random field is uniform

within the cells of size l ¼ 50 pc. The degree of polarization at l → 0 is

given by equation (28); the random field causes internal Faraday dispersion

at l Þ 0.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
9
/1

/1
8
9
/1

0
1
5
1
8
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



given by

P ¼

�

zb

¹zb

«h iW×h dz

� �¹1

×
�

zb

¹zb

P0

n

«h i exp
�

zb

z ð2il2
M ¹ 2l4j2

mlmÞ dz
0

� �

þ N
¹1=2
W Y

o

dz ; ð30Þ

where lm and jm are the correlation scale along z and the standard

deviation of m, respectively. NW is the number of correlation cells in

the beam area. P0, possibly a function of z, was evaluated in

Section 5 and Y, a complex random quantity the dispersion of which

is calculated in Appendix A, represents fluctuations.

6.2 Internal Faraday dispersion in a symmetric slab

Consider a slab with «h i, M and j2
m being symmetric functions

of z, i.e. «h i ¼ «0Fðjzj=h«Þ, M ¼ ð2hMÞ
¹1

R f ðjzj=hMÞ and j2
m ¼

ð2hmÞ
¹1j2

RM gðjzj=hmÞ, where

R ¼ 2M0hM and j2
RM ¼ 2j2

m0lmhm ; ð31Þ

hM has the same physical meaning as hRM used in Section 3 where a

purely regular magnetic field was considered; jm0 is jm at z ¼ 0.

(Note that hm is defined as the scaleheight of j2
m rather than of jm.)

Apart from jm, defined as the standard deviation of m (the

fluctuating part of KnBz), below we also use the standard deviation

of the integral
�

zb

¹zb
m dz

0, which is denoted as jRM.

Adopting the normalization
� zb

0 Fðz=h«Þ dz ¼ h«,
� zb

0 f ðz=hMÞ dz ¼

hM and
�

zb

0 gðz=hmÞ dz ¼ hm, the quantities with subscript zero in

equation (31) are equivalent values.

If P0


 �

is independent of z, the ensemble average of the complex

polarization given by equation (30) reduces to

Ph i ¼ 1
2

P0


 �

�

zb=h«

¹zb =h«

ds FðjsjÞ

× exp
�

zb =hM

s=q

dt ½il2
Rf ðjtjÞ ¹ l4j2

RMqmgðqmjtjÞÿ; ð32Þ

where q ¼ hM =h«, qm ¼ hM=hm and the integration variables are

s ¼ z=h« and t ¼ z
0
=hM . This expression can be further simplified to

Ph i ¼ P0


 �

exp ð¹l4j2
RM þ il2

RÞ

�zb=h«

0

ds FðsÞ

× cosh
�

s=q

0

dt ½l4j2
RMqmgðqmtÞ ¹ il2

Rf ðtÞÿ : ð33Þ

For q ¼ qm ¼ 1 and F ¼ f ¼ g (i.e. for identical distributions of

all the constituents of the magneto-ionic medium along the line of

sight), integration in equation (33) can be performed exactly to

yield

Ph i ¼ P0


 � 1 ¹ exp ð¹SÞ

S
; ð34Þ

where S ¼ 2l4j2
RM ¹ 2il2

R and jRM and R are defined in

equation (31). Equation (34) coincides with the well-known result

of Burn (1966) who obtained it for a particular case of a uniform

slab (note a factor of 2 in the first term of S which was missed by

Burn).

We illustrate the effects of internal Faraday dispersion in Fig. 5. It

seems to be realistic to adopt «h iW×h ~ M
2 and jm ~ M, i.e.

q ¼ qm ¼ 2, which applies where the synchrotron emissivity

scales as magnetic field squared and regular and random magnetic

fields have equal scaleheights. Solid lines show results obtained in

this case from equation (33) for a symmetric Gaussian slab with

f ðtÞ ¼ ð2=pÞ
1=2 exp ð¹1

2
t
2
Þ. This yields a sign-constant RM. For

comparison, results for the same f ðtÞ and hM but with «h i ~ M

and j2
m ~ M, i.e. q ¼ qm ¼ 1, when equation (34) applies, are

shown dashed (we note that this scaling does not seem to be

realistic). The values of parameters chosen are R ¼ 100 rad m¹2

and j2
RM ¼ 1000 rad2 m¹4, which corresponds to values n ¼

0:03 cm¹3, Bz ¼ 2 mG, jz ¼ 3 mG, lm ¼ 100 pc and h« ¼ 1 kpc,

typical for the discs of spiral galaxies. The results for an exponential

slab with the same equivalent parameters are practically the same.

Fig. 5 shows that, unlike the case of differential Faraday rotation

in a regular magnetic field (Fig. 1), the degree of polarization in a

random magnetic field is not very sensitive to the relation between

the scaleheights, so that Burn’s formula equation (34) well approx-

imates p in a non-uniform slab. However, RM exhibits a significant

dependence on the distribution of the magneto-ionic medium along

the line of sight. RM remains positive at all wavelengths when the

ratio of the random and regular magnetic fields is independent of z

(i.e. hm ¼ 1
2
hM) and the synchrotron emissivity has the same

scaleheight as m. A general feature of Faraday rotation is that

198 D. D. Sokoloff et al.
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Figure 5. Internal Faraday dispersion in a symmetric Gaussian slab con-

taining both regular and random magnetic fields with scaleheights

h« ¼ hm ¼ 1
2
hM (solid), and for h« ¼ hm ¼ hM (dashed). The latter results

are the same as for a uniform slab. (a) The degree of polarization; (b) the

polarization angle; and (c) the corresponding values of RM ¼ dW=dðl2
Þ.

Note a change of the sign of RM appearing for a uniform slab and for

h« ¼ hm ¼ hM , although Bz is sign-constant. This does not occur for a more

realistic model shown with solid lines.
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equation (34), applicable to a uniform slab and to the case h« ¼

hm ¼ hM , yields reversed values of RM in a certain range of l even

when the regular magnetic field has no reversals along the line of

sight. A similar result was obtained by Chi et al. (1997) based on a

somewhat simpler model of mixed regular and random fields.

6.3 Approximate description of internal Faraday dispersion

An important consequence of internal Faraday dispersion is that it

also introduces asymmetry along the line of sight because less

polarized emission is observed from deeper layers of the source

than from nearer ones. As a result, polarization properties of even a

symmetric slab resemble those of an asymmetric source.

In the case of internal Faraday dispersion the following approxi-

mation can be applied: assume that the polarized emission observed

originates completely in the near part of the source where the

amount of Faraday depolarization due to a random magnetic field

and fluctuations in electron density is small. Then the random

component is completely neglected in the near part of the source,

and the degree of polarization and Faraday rotation measure are

estimated from the corresponding expressions for differential Fara-

day rotation in a purely regular magnetic field applied to the part of

the source that is visible in polarized emission. (Clearly, this

approximation breaks down at such long wavelengths that the

thickness of the visible layer becomes comparable to the cell size

– see Section 6.3.1.) This approximation, which may be called the

approximation of an ‘opaque layer ’, is useful because it is often

difficult to analyse consistently the complex polarization of a

synchrotron source; instead, most authors consider separately the

degree of polarization and Faraday rotation measure. The opaque-

layer approximation may be an appropriate step in attempts to

combine these two parameters of polarization in a consistent

interpretation.

Such an approach was used by Berkhuijsen et al. (1997) who

analysed the regular magnetic field in M51 by considering the

polarization angles measured at four wavelengths, ll2:8, 6.3, 18.0

and 20:5 cm. To simplify their analysis, they used the observed

degree of polarization to estimate the geometrical depth in the

thermal disc of the galaxy beyond which the synchrotron emission

is completely depolarized by internal Faraday dispersion. After that

they assumed that the observed polarization angles are determined

by the regular field alone in the upper layer of the galaxy visible in

the polarized emission. In this section we discuss the accuracy of

this approximation.

This approximation is equivalent to replacing equation (32) by

the following expression:

Ph i ¼ 1
2

P0


 �

�

zb=h«

z¬=h«

ds FðjsjÞ exp il2
R
�

zb=hM

s=q

f ðjtjÞ dt

" #

; ð35Þ

where z¬ is defined as the geometric depth at which the variance of

Faraday rotation due to the random field [i.e. the term neglected in

equation (35)] is equal to a certain value f¬ (of order unity) which

can be adjusted to control the accuracy of the approximation:

l4j2
RMqm

�

zb=hM

z¬=hM

gðqmjtjÞ dt ¼ f¬ : ð36Þ

For a given f¬, this condition can be met only for l $ l¬, where

l4
¬ ¼ f¬=ð2j2

RMÞ. For l < l¬ internal Faraday dispersion can be

completely neglected and the results of Section 3.2 are expected to

provide a good approximation. Thus, for l < l¬, equation (35)

should be applied with z¬ ¼ ¹zb.

For l $ l¬, internal Faraday dispersion completely depolarizes

the emission from the far part of the slab, z < z¬, and already at

l1=2 ¼ 21=4l¬ the polarized emission originating in the half of the

slab at z < 0 does not contribute to equation (35), i.e. z¬ ¼ 0. For

j2
RM ¼ 103 rad2 m¹4, we have l¬ < 15f1=4

¬ cm and l1=2 <

18f1=4
¬ cm.

For a Gaussian slab, the integral in equation (36) reduces to the

error function, which gives the following equation for z¬:

erf ð
���

2
p

z¬=h«Þ ¼ 1 ¹ l¬=l
ÿ �4

for l $ l¬:

Fig. 6 demonstrates that the opaque-layer approximation well

describes basic qualitative features of both p and W at short and

moderate l, although the accuracy is rather poor for RM. The

approximation is shown for f¬ ¼ 1. For any given value of f¬ the

relative accuracy of the approximation is different for p and W: for

larger f¬, W is approximated better, whereas p is estimated more

accurately for smaller values of f¬. Values of f¬ in the range

0:5 # f¬ # 1 appear to be optimal. We should note a peculiar

feature of the exponential slab, for which the approximate expres-

sion (35) yields RM ; 0 for l > l1=2.

We conclude that the opaque-layer approximation, which

assumes that internal Faraday dispersion makes the far side of the

source invisible in polarized emission, yields a reasonable approx-

imation to p and W, but not to RM. The accuracy is generally within

108–208 for W at l & 20 cm, which is about the typical observa-

tional error. Therefore interpretations of observed polarization

patterns that use this approximation should be formulated in

terms of observed polarization angles W rather than in terms of

observed Faraday rotation measure. However, this approximation

becomes inapplicable at longer wavelengths, typically those

exceeding ll25–30 cm.

6.3.1 Extreme internal Faraday dispersion

In an extreme case of strong internal Faraday dispersion, only an

upper layer of turbulent cells (which is the closest to the observer)

contributes to the observed polarized emission. Then the

polarization pattern will be completely random, but the degree of

polarization can be significant. As can be seen from equation (A3),
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Figure 6. A description of internal Faraday dispersion in terms of the

opaque-layer approximation. Exact results for a symmetric Gaussian slab

with the same parameters as in Fig. 4 are shown solid, and approximate

results obtained from equation (35) with f¬ ¼ 1 in equation (36) are shown

dashed. (a) The degree of polarization, (b) the polarization angle and (c) the

corresponding values of RM. The discontinuity in the approximate depen-

dences occurs at l ¼ l¬.
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the random contribution of the upper layer of turbulent cells at

zb ¹ z & lm to the observable polarized emission can be consider-

able at long wavelengths where depolarization within a single

correlation cell of m is significant. Assuming that the field is

uniform within a cell, we see that this occurs when jmlml2 * 1.

A typical degree of polarization at l2 * ðjmlmÞ
¹1 is equal to N

¹1=2
W .

Under conditions typical of galactic discs, the contribution of the

upper layer is important at l * 35 cm for n ¼ 0:03 cm¹3,

jz ¼ 5 mG and lm ¼ 100 pc with jz the rms value of the line-of-

sight random magnetic field.

Significant polarization from a thin layer in the source close to

the observer may possibly explain significant polarization at

l < 90 cm observed in the halo of NGC 891 by De Breuck et al.

(in preparation), where n ¼ 0:003 cm
¹3

and lm ¼ 1000 pc are

plausible estimates, so that the fluctuations become strong at

l * ðjmlmÞ
¹1

. 65 cm.

7 C O M M E N T S O N E X T E R NA L FA R A DAY

D I S P E R S I O N

A distinct depolarization mechanism is the depolarization in an

external Faraday screen, i.e. a magneto-ionic region devoid of

relativistic electrons which is located between the source of

synchrotron emission and the observer. Owing to Faraday rotation

by a random magnetic field, the plane of polarization undergoes a

random walk which leads to depolarization as long as many

turbulent cells are within the beam area. This effect is physically

similar to internal Faraday dispersion, but it requires a separate

treatment because depolarization occurs at positions where the

synchrotron emissivity has vanished. A comprehensive treatment

of Faraday depolarization in an external screen can be found in Burn

(1966) and Tribble (1991). In Appendix B we review their results in

terms of the present formalism.

An important peculiarity of a Faraday screen is that the mean

degree of polarization, given by equation (B3) of Appendix B,

decreases with l as j Pex


 �

j ~ exp ð¹2j2
RMl4

Þ, whereas fluctuations

of the complex polarization, equations (B4) and (B6), decrease only

as jPex
~ ðjRMl2

Þ
¹1, where jRM is defined in equation (31). There-

fore the fluctuations can become dominant at relatively small l,

resulting in a power-law variation of the observed degree of

polarization with l. In agreement with this conclusion, Johnson et

al. (1995) noted that in their sample of radio sources, where

depolarization is due to foreground Faraday rotation, p does not

decrease exponentially with l4.

Equations (B3) and (B6) essentially rely on the Gaussian statis-

tical properties of the fluctuations of m, since they were obtained

using equation (5) of Appendix A. The Gaussian approximation

cannot be applied to a geometrically thin Faraday screen (i.e.

zb ¹ z« & lm) if the random magnetic field is assumed to be uniform

within correlation cells having independent directions and strengths

in different cells. Then fluctuations in the polarization angle (and

the complex polarization itself) are completely correlated at the exit

from the source for separations smaller than lRM, and completely

uncorrelated otherwise. In other words, the transverse correlation

length of Pex, denoted as lP , is equal to the transverse correlation

length of RM, lP ¼ lRM for such a screen. Meanwhile, lP p lRM for

a Gaussian random screen, equation (B5). Note that lP and lRM

remain different from each other for a thick screen with the same

cell model for the random magnetic field, because each line of sight

passes through many correlation cells and equation (B6) remains

applicable.

We stress that the Gaussian statistical properties of a random field

and its spectral properties refer to different physical characteristics

of the field: for example, one can envisage a Gaussian random field

with both extended and single-scale spectra. Tribble (1991) dis-

cussed the role of a range of scales of magnetic fluctuations. An

extended power-law spectrum of magnetic fluctuations leads to a

power-law behaviour of the autocorrelation function of p. However,

the power-law behaviour in Tribble’s expression for the observable

degree of polarization, equation (B6), arises not from spectral

properties of the fluctuations but from the fact that the filling

factor of the regions, which contribute significantly to the obser-

vable degree of polarization, is a function of wavelength (see

Appendix B for details).

A power-law form of the autocorrelation function can be impor-

tant for studies of the fine structure of the magneto-ionic medium in

the Milky Way. However, the resolutions available for observations

of external galaxies are as yet insufficient to admit extensive studies

of the spectral properties of magneto-ionic fluctuations.

7.1 Some applications

For illustration, consider the halo of an external galaxy illuminated

by a synchrotron-emitting disc (i.e. seen almost face-on), adopting

the following parameters for the halo: b ¼ 2 mG, n ¼ 3 ×
10¹3 cm¹3, lRM ¼ 500 pc, L ¼ zb ¹ z« ¼ 5 kpc. For these values

of parameters [with L replacing 2hm in equation (31)], we obtain

jRM < 8 rad m¹2. Hence the contribution of the fluctuation term

(B4) to the degree of polarization is smaller than that of the mean

value (B3) at l < 20 cm, provided that the beam size is large

enough, D * 2 kpc, or the number of turbulent cells in the beam

cylinder is N * 40. In our Galaxy, Leahy (1987) found

jRM < 20 rad m¹2 within 108 from the Galactic plane and

jRM < 6 rad m¹2 near the Galactic North Pole. Therefore the

interstellar gas does not impose excessively strong fluctuations on

the radio emission of high-latitude extragalactic radio sources.

Towards the lobes of radio galaxies embedded in clusters, RM

values of several 1000 rad m¹2 have been observed (Dreher et al.

1987; Taylor et al. 1990, 1994; Carilli et al. 1997). This is

interpreted as the effect of the hot intracluster gas with B . 5 mG,

n . 2 × 10¹2 cm¹3 and L . 20 kpc. In such cases, Faraday depolar-

ization is dominated by RM gradients (see Section 8.2).

Deviations from Gaussian statistical properties of expð¹2j2
RMl4

Þ

are expected to become significant when 2j2
RMl4

q 1. In our case

2j2
RMl4

< 0:2 at l ¼ 20 cm for the halo parameters adopted above,

so that the Gaussian statistics provide a reasonable description of

the depolarization.

8 G R A D I E N T S I N R M AC RO S S T H E B E A M

In this section we discuss depolarization arising from a resolved or

unresolved gradient of Faraday rotation measure across the beam,

originating in the synchrotron source (as in spiral galaxies) and in a

foreground screen (as in the case of radio galaxies).

8.1 RM gradients in a synchrotron source

Berkhuijsen & Beck (1990) measured polarization in the south-

western arm of M31 at wavelengths of ll6:3 and 20:1 cm at a

resolution of 600 pc × 3000 pc along the major and minor axes,

respectively. They found systematic variations in RM giving rise to

gradients in RM across the beam. They noted that the ratio of the

degrees of polarization at the two wavelengths, known as depolar-

ization DP20=6 ¼ pð20:1 cmÞ=pð6:3 cmÞ, systematically decreases

200 D. D. Sokoloff et al.

q 1998 RAS, MNRAS 299, 189–206

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
9
/1

/1
8
9
/1

0
1
5
1
8
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



with increasing gradient in RM across the beam. The data used were

slightly oversampled, with the separation between the measured

points being equal to about one-third of the beam size. Their results

are reproduced in Fig. 7.

To describe the effects of RM varying systematically across the

beam, we consider a synchrotron-emitting region with a linear

gradient of Faraday rotation measure across the beam,

RM ¼ RM0 þ DRM x=D ; ð37Þ

where x is measured across the beam, jxj # x0, D is the beam

diameter, and DRM is the variation in RM across the beam. It is

assumed that RM ¼ constant for jxj > x0.

For a flat beam profile, w ¼ 1, the complex polarization is

given by equation (13), where we have to evaluate

exp 2iKl2
�

zb

z nBz dz
0


 �

W×h for RM ¼ 1
2
KnBzL given by equation

(37). As averaging over the volume W × h reduces to averaging

over x, the result has the form

P ¼ P̃

�1

0
exp ð4i RM0 l2

sÞ
sin ð2DRM l2

sÞ

2D RM l2s
ds ; ð38Þ

where P̃ is the average value of the complex polarization across the

beam at DRM ¼ 0 and the integration variable was introduced as

s ¼ 1 ¹ z=zb, with 2zb ¼ L the full extent of the region along the line

of sight. One can use equation (38) for both resolved (x0 $ D) and

unresolved (x0 < D) gradients.

As argued by Berkhuijsen & Beck (1990), depolarization by

differential Faraday rotation is unimportant in the observed region

of M31, so that we can neglect RM0. The amount of depolarization

at DRM ¼ 0, denoted P̃ in equation (38), should be adjusted to the

value DP20=6 ¼ 0:35 observed in regions where the gradient of RM

is negligible. Assuming that this value is due to internal Faraday

dispersion, described by equation (34), this requires a reasonable

value j2
RM < 840 rad2 m¹4. The result of applying equation (38) is

shown in Fig. 7. Thus we obtain a rather satisfactory fit to the

depolarization data for a range of DRM by adjusting only a single

parameter, jRM, to fit DP20=6 at DRM ¼ 0.

8.2 RM gradients in a foreground screen

In the Faraday screen in front of the lobes of radio galaxies

embedded in a cluster, RM gradients of up to 2000 rad m¹2 over

1 arcsec have been observed (Dreher et al. 1987; Taylor et al. 1990,

1994), causing strong depolarization when using low angular

resolution. In this section we obtain an explicit expression for

depolarization arising from a gradient of RM in a foreground

Faraday screen.

We consider three models: (A) a Gaussian beam and an arbitrary

transverse variation of RM in a finite region jxj # x0; (B) a Gaussian

beam and an infinite transverse extent of a linear variation of RM (a

model identical to that of Johnson et al. 1995); and (C) a flat beam

profile and a linear RM variation in a finite region.

Using equation (B2) for the Gaussian beam, w ¼

ð2
������

2p
p

=DÞ expð¹2r
2
=D

2
Þ, we obtain for model A

Pex ¼
2
������

2p
p

D

�

x0

¹x0

exp ¹
2x

2

D2
þ 2iRMðxÞl2

� �

dx ; ð39Þ

where RM ¼ KnBzðzb ¹ z«Þ. This expression is applicable for any

relation between x0 and D.

In model B, the result of Johnson et al. (1995) is obtained from

equation (39) if we suppose that the linear gradient (37) extends

from x ¼ ¹∞ to x ¼ ∞, i.e. x0 → ∞ (a resolved gradient):

Pex ¼ 2

������

2p
p

D
e2iRM0l2

�∞

¹∞
exp ¹2

x
2

D2
þ iDRM l2 x

D

� �

dx

¼ exp 2iRM0 l2
¹ 2ðDRM l2

Þ
2

� �

: ð40Þ

Another simple result is obtained for a flat beam profile w ¼ 1,

model C. Then, using equation (37), we have from equation (B2)

P ¼ P int exp ð2iRM0 l2
¹ 2j2

RM l4
Þ
sin DRM l2

D RM l2
; ð41Þ

where the additional effect of the random field is also included (the

term with jRM).

The three models are compared in Fig. 8 where we show

pex ¼ jPexj as a function of DRM l2. The solid line was obtained

by direct integration of equation (39) with

RMðxÞ ¼
1

p
DRM arctan

x

x0

ð42Þ

and x0 ¼ 1
2
D. We also plotted results from equation (40) (dotted)

and equation (41) (dashed) which are both devised to approximate
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Figure 7. Depolarization, defined as the ratio of the degrees of polarization

at ll20:1 and 6:3 cm, in the south-western arm of M31 as a function of the

difference in RM across the beam (points with error bars – Berkhuijsen &

Beck 1990), and the fitted dependence given by equation (38) with

j2
RM ¼ 840 rad2 m¹4 and RM0 ¼ 0.

Figure 8. Degree of polarization in a foreground Faraday screen with a

gradient of RM as given by equations (39) and (42) for a Gaussian beam with

x0 ¼ 1
2
D (solid, model A), by equation (41) for a flat beam profile with

x0 ¼ 1
2
D (dashed, model C), and by equation (40) for a Gaussian beam with

x0 → ∞ (dotted, model B), where 2x0 is the lateral extent of the region with a

gradient of RM and D is the beam diameter.
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equation (39). In model A, as in its approximation model C, a

gradient of RM leads to similar non-monotonic variations of the

degree of polarization with DRM l2. In contrast, pex monotonically

decreases in model B.

We conclude that equation (40) is not a good approximation to

equation (39) and is applicable only to resolved gradients of RM. It

cannot be applied to unresolved or partly resolved gradients. For

them, equation (41) is a fair approximation to equation (39).

The formula of Johnson et al. (1995) strongly underestimates the

degree of polarization for a given DRM. A quantitative agreement

between equation (40) and the exact result (39) can be reached for

DRM l2 & 1 if we replace the coefficient 1=p in equation (42) by

4=p. On the other hand, a good agreement between equations (39)

and (41) for any value of DRM l2
is reached when 1=p is replaced

by 1:35=p in equation (42). Thus the simple equation (41) can be

used even for a Gaussian beam provided only that a correction

factor of 1:35 is introduced into the resulting estimate of the RM

gradient.

9 A N O M A L O U S D E P O L A R I Z AT I O N

E X P L A I N E D B Y A T W I S T E D M AG N E T I C

F I E L D

Observations of nearby galaxies at wavelengths of ll18 and 20 cm

have revealed regions of anomalous depolarization where p at the

longer wavelength is larger than that at the shorter one. In terms of

depolarization between different wavelengths, defined as

DP20=18 ¼ pð20 cmÞ=pð18 cmÞ, these regions have DP20=18 > 1. Typi-

cal values of DP20=18 are 1.2–1.5, but locally values as high as 3 are

reached. This was observed in e.g. M51 (Horellou et al. 1992) and

NGC 6946 (Beck 1991). At low resolutions, the regions of anoma-

lous depolarization appear to be extended – a strip across the whole

image of M51 and a complete quadrant of the image of NGC 6946.

However, the maps at the full resolution of 42 arcsec (unpublished)

reveal a patchy pattern with DP20=18 > 1 only in isolated regions of

about 1–2 kpc in size.

As the size of the regions with anomalous depolarization far

exceeds the anticipated correlation scale of the random magnetic

field, it appears that this phenomenon is connected with some

specific properties of the regular magnetic fields. The simplest

explanation invokes differential Faraday rotation. If the first zero of

the degree of polarization in equation (3) occurs at l & 18 cm, p

grows with l in a relatively narrow range of wavelengths between

ll18 and 20 cm. Then depolarization exceeding unity, DP > 1,

would occur only in this wavelength range, whereas normal values

DP < 1 would be observed at shorter wavelengths (see Fig. 1). This

explanation requires that internal Faraday dispersion negligibly

affects p (because it removes the mimina in Fig. 1), which is

unlikely.

Anomalous depolarization could also be due to a partially

resolved or unresolved foreground gradient of RM in the galactic

halo because then p is a non-monotonic function of l (see

Section 8.2 and Fig. 8). The difficulties with this explanation are

the same as in the case of differential Faraday rotation just

discussed.

We suggest that the anomalous depolarization may result from a

specific geometric configuration of the regular magnetic field which

may be typical of spiral galaxies. Consider a regular magnetic field

with a line-of-sight component that is uniform and a transverse

component that changes its direction along the line of sight, z.

Twisted magnetic fields are a natural consequence of the fact that

the azimuthal and radial components of the field generated by the

galactic dynamo exhibit different variations across the disc

(Ruzmaikin, Shukurov & Sokoloff 1988) or of a reversal between

the disc and the halo of a galaxy (Sokoloff & Shukurov 1990;

Brandenburg, Moss & Shukurov 1995).

In a twisted magnetic field, the intrinsic polarization angle w0

varies along z. If the Faraday rotation of the plane of polarization is

equal to the variation in w0, the outcoming polarized emission will

not be depolarized at all. It is clear that this may occur only at a

single wavelength. On the other hand, the degree of polarization at

short wavelengths can be smaller or even vanish in a twisted

transverse field. For a linear variation of w0 with z, p ¼ 0 at

l → 0 for Dw0 ¼ 1808, where Dw0 is the variation in w0 along the

line of sight. As a result, in a twisted field p is an increasing function

of l for a wide range of wavelengths, which means that DP > 1.

Since the wavelength range in which the anomalous depolarization

occurs can be rather wide in a region occupied by twisted magnetic

field, the regions with DP > 1 can be extended and their appearance

does not require any exact adjustment of parameters.

To illustrate the effect of a twisted magnetic field, consider the

simplest case of a slab jzj # zb with w0 ¼ Dw0 z=ð2zbÞ, where Dw0 is

the increment in w0 across the slab. For a uniform Bz we have from

equation (1):

P ¼ pi

1

2zb

�zb

¹zb

exp i Dw0

z

zb

þ Rl2 1 ¹
z

zb

� �� �

dz

¼ pi

sin ðDw0 ¹ Rl2
Þ

Dw0 ¹ Rl2
exp iRl2

; ð43Þ

where R ¼ 2KnBzzb. It is clear that for a linear twist the degree of

polarization monotonically grows with l for

l2
< Dw0=R ; ð44Þ

in which wavelength range the anomalous depolarization occurs.

For Dw0 ¼ 1808 and R ¼ 30 rad m¹2, we have DP > 1 for

0 < l # 32 cm.

We note that anomalous depolarization also occurs if w0 changes

abruptly between two homogeneous layers. However, in this case

the effect is strongest for Dw0 ¼ 908, as follows from equation (10).

A specific feature of anomalous depolarization in a twisted field

is that it occurs over a wide range of wavelengths, including very

small ones. This property can be used to distinguish it from effects

caused by differential Faraday rotation (Section 3).

We should note that anomalous depolarization between ll18 and

20 cm is observed in galaxies seen almost face-on. The line-of-sight

magnetic field is then quite weak, so that the value R ¼ 30 rad m¹2

adopted in the above example after equation (44) is justified. In

M31, which is seen at a high inclination, the line-of-sight magnetic

field may be stronger. Here some traces of anomalous depolariza-

tion are observed at significantly shorter wavelengths, ll6 and

11 cm (Berkhuijsen et al. 1987). The tendency of the anomalous

depolarization to occur at shorter wavelengths when R grows

agrees with equation (44).

Random magnetic fields make this effect weaker because their

line-of-sight component shifts the maximum in p to smaller

wavelengths owing to Faraday dispersion. We illustrate polarization

in a twisted magnetic field and the effects of random magnetic fields

in Fig. 9.

In the thin-disc dynamo model of Krasheninnikova et al. (1989),

w0 changes from about ¹208 at the mid-plane to positive values

above about 0:8h with h the disc half-thickness. This amount of

twist is smaller than the optimum value of 1808. A twist comparable

to the optimum value can be associated with a smooth reversal of
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magnetic field between the disc and the halo of a spiral galaxy

(Sokoloff & Shukurov 1990; Brandenburg et al. 1995), which was

detected in M51 by Berkhuijsen et al. (1997). In this case Dw0 is

close to its optimum value of 1808. However, the decrease in the

synchrotron emissivity with height may hamper this effect. A more

detailed comparison with observations will be given elsewhere.

Urbanik, Elstner & Beck (1997) explain the anomalous depolar-

ization in NGC 6946 by a helical shape of the magnetic field lines in

this galaxy. A helical field seen at an angle to its symmetry axis

represents a particular case of a twisted field, so that this mechanism

may be related to that discussed above.

Other cases in which a twisted magnetic field is natural to expect

are jets in active galaxies and near young stars where helical

magnetic fields are believed to be widespread.

1 0 S M A L L F I L L I N G FAC T O R S

So far we have implicitly assumed that the filling factors of both

relativistic electrons and magneto-ionic material are close to unity.

This assumption may not be valid if, say, H II regions make a

significant contribution to the depolarization or the magnetic field is

concentrated to thin flux ropes.

Consider a two-component magneto-ionic plasma consisting of

clouds of a size d (having uncorrelated magnetic fields) embedded

in a diffuse medium with a regular magnetic field. The diffuse

component has an extent L along the line of sight and an intrinsic

Faraday rotation measure R . The clouds have a volume filling

factor fV , and a high value of jRM ¼ KnjzðdLÞ
1=2. The surface filling

factor of the clouds is given by fW ¼ fVL=d and is not restricted to be

smaller than unity. If fW * 1, the two-component nature of the

magneto-ionic medium can be taken into account by replacing jRM

by f
1=2
V jRM in the formulae given above because nbz


 �2
¼

fV ðnbzÞ
2


 �

. However, fW is no longer close to unity when

fV & d=L. In this case a significant portion of polarized emission

avoids the dense clouds and is sensitive to R alone. At long

wavelengths, 2j2
RMl4 * 1, where the emission from the ensemble

of dense clouds is completely depolarized, the diffuse component

alone determines the polarization properties of the synchrotron

emission.

For example, consider the interpretation of observations of

NGC 6946 by Ehle & Beck (1993), who considered small clouds

with d < 1 pc and fV < 0:05 within a thin disc of about 100-pc full

thickness. Their surface filling factor, fW . 5, significantly exceeds

unity, with the implication that this component of the interstellar

medium can be well described using the above formulae.

1 1 D I S C U S S I O N A N D C O N C L U S I O N S

We have discussed various mechanisms that determine complex

polarization under conditions typical of spiral galaxies. Some of our

conclusions are also applicable to radio galaxies and other extended

radio sources. A major part of the available observations of galaxies

has been performed at wavelengths of about l20 cm where the

objects are Faraday-thick. This strongly complicates the interpreta-

tion (although does not make it impossible). Therefore we have

restrained ourselves here from consistent interpretation of any such

observations and, instead, illustrated individual physical effects

using isolated observational examples. Wherever possible, we have

discussed how individual effects combine with each other; such

combinations are often non-trivial. In Section 9 we have discussed

an example of the application of our results using a model of twisted

magnetic field that illustrates how simple magnetic configurations

can lead to very unusual polarization patterns.

In order to isolate and concentrate on generic behaviours, we

have considered mainly analytically solvable models. In the case of

regular magnetic fields, polarization properties of an object can be

easily calculated for any given magnetic field and electron density

distribution. However, one should be careful with modelling the

magneto-ionic medium because the complex polarization is sensi-

tive to such delicate properties as the symmetry and the relations

between the scaleheights of the constituents of the medium.

The situation is much more complicated in the case of polariza-

tion in a random magnetic field. In this case straightforward

integration in equation (1) is practically impossible, merely because

one can never know exact realizations of the random fields

involved. Therefore one has to adopt plausible assumptions about

statistical properties of n and B and to perform analytical integra-

tion (averaging) of the random functions. This yields simpler

integral expressions of the type (30) and (B3). If even averaged

properties of the source are not known in sufficient detail, further

assumptions should be involved and expressions similar to

equation (33) become useful.

More generally, the purpose of any interpretation is to deduce the

physical parameters of the source from its polarized emission (the

inverse problem), rather than to calculate the complex polarization

for a given magneto-ionic medium. However, the formulation of

and approaches to the inverse problem go far beyond the scope of

this paper, although our results may be useful in this respect.

Our results may be summarized as follows.

(1) Depolarization effects occurring within the synchrotron

source in a magneto-ionic medium with a purely regular magnetic

field are discussed in Sections 3.1 to 3.4. In this case differential

Faraday rotation leads to wavelength-dependent depolarization of

radio synchrotron emission.

(i) Burn’s formula, equation (3), is applicable not only to a single

uniform magneto-ionic layer but also to a non-uniform (e.g.

exponential) layer, either symmetric or asymmetric, as long as

the intrinsic polarization angle is constant along the line of sight (z)

and the quantities nBz and « have identical dependences on z, and

differ by only a (dimensional) numerical factor.
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Figure 9. The degree of polarization in a slab hosting a twisted magnetic

field with w0 changing linearly from 08 to 1808 along the line of sight. Shown

are the results for a purely regular magnetic field with R ¼ 22 rad m¹2

[solid – this is described by equation (43)] and for several values of the

superimposed random magnetic field corresponding to jRM ¼ 5:2,

10:4; 15:6; 20:8 and 26:0 rad m¹2 (dashed curves from top to bottom).
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(ii) However, the relation between the observable degree of

polarization p and the observable Faraday rotation measure RM

differs from Burn’s formula in the case of any non-uniform

distribution of nBz, in the sense that p is generally smaller (i.e.

stronger depolarization) than predicted by Burn’s formula from

the observable RM (see Figs 1 and 3).

(iii) For an asymmetric distribution, RM varies with wavelength l

and may even reverse its sign at some wavelength, although the

magnetic field has no reversals (Fig. 2).

(iv) In a multi-layer slab (with or without reversals), both p and

RM may vary strongly with l (see also Fig. 2). The total RM,

obtained from equation (11), can be a complicated function of the

RMs in the sublayers.

(2) Depolarization effects caused by random magnetic fields are

discussed in Sections 4 to 5.2.

(i) Random magnetic fields in a synchrotron source lead, in

particular, to wavelength-independent depolarization. We give

the general formula for wavelength-independent depolarization

(equation 18) which, for a large number of correlation cells, is

identical to Burn’s result for an isotropic random field and

synchrotron emissivity « proportional to B
2
'. It generalizes

Laing’s (1981) result for polarization in an anisotropic random

magnetic field by including a regular magnetic field. In the case

of equipartition between the energy densities of cosmic rays and

magnetic fields (« ~ B
2
B

2
') (see Section 5.2), the predicted

degree of polarization at l → 0 is up to 50 per cent larger than

in the standard case (see Fig. 4).

(ii) Random fields in a synchrotron-emitting layer containing

thermal electrons lead to wavelength-dependent depolarization

(internal Faraday dispersion) and always to a wavelength-

dependent RM. As l increases, the layer becomes opaque for

polarized emission, causing a reduced observable RM. We show

that the approximation of a depolarized far side and a visible near

side of the layer reasonably describes pðlÞ and wðlÞ, but not

RMðlÞ (see Fig. 6).

(iii) The contribution of the upper layer of turbulent cells to the

observed polarized emission can be considerable at long wave-

lengths. Therefore strong fluctuations in pðlÞ are expected for the

synchrotron emission from galactic discs and haloes at long

wavelengths; typical values of p can be significantly larger than

the mean value expected from the standard formulae. This may

explain recent observations in NGC 891 at l90 cm (see

Section 6).

(iv) Random fields in a magneto-ionic medium between the

synchrotron source and the observer (external Faraday disper-

sion) also lead to wavelength-dependent depolarization. The

fluctuations in the degree of polarization may become dominant

and observable at l * 20 cm (see Section 7).

(3) Faraday depolarization caused by RM gradients across the

beam can be described by equation (38) when they occur within the

synchrotron source, in good agreement with observations in M31

(see Fig. 7). For RM gradients in a foreground screen, equation (41)

provides a reasonably accurate description.

(4) Anomalous depolarization with p increasing with wave-

length can be explained by the proximity of the wavelength of

observations to a minimum in p produced by differential Faraday

rotation. This explanation requires that internal Faraday dispersion

negligibly affects p, which is unlikely. We therefore propose

another explanation (see Fig. 9), based on a regular magnetic

field having a twist along the line of sight. Such a configuration

may arise in the transition layer between the disc and the halo of a

galaxy, and may possibly explain the anomalous depolarization

observed in NGC 6946 between ll18 and 20 cm.
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A P P E N D I X A : C O M P L E X P O L A R I Z AT I O N I N A

R A N D O M M E D I U M

In this section we obtain an expression for the complex polarization

in a random magneto-ionic medium with allowance for internal

Faraday dispersion. Under conditions specified in Section 6, using

equations (13) and (29), we obtain the following expression for the

complex polarization:

P ¼

�

zb

¹zb

«h iW×h dz

� �¹1

×
�zb

¹zb

P0ðzÞ «h iW×h exp 2il2
� zb

z M dz
0

ÿ �

× exp 2il2
�

zb

z m dz
0

ÿ �
 �

W×h dz ; ðA1Þ

where M is assumed to be constant across the beam.

In the same manner as in Section 5, we express the average over

the beam area in terms of the ensemble average:

eiX

 �

W×h ¼ eiX

 �

þ N
¹1=2
W jexp ðiXÞy ;

where X ¼ 2l2
�

zb

z m dz
0 and NW is the number of correlation cells

of eiX within the averaging volume.

For any statistical property of the random quantity m, its integral

X is well approximated by a Gaussian random variable, and we can

use the following relation applicable to the ensemble average of a

Gaussian random variable:

e
iX


 �

; ð2pj2
XÞ

¹1=2

�∞

¹∞
exp ½iX ¹ X

2
ð2j2

XÞ
¹1

ÿ dX

¼ exp ¹1
2
j2

X

ÿ �

; ðA2Þ

where jX is the standard deviation of X. As Xh i ¼ 0,

j2
X ¼ X

2

 �

¼ 4l4

�

zb

z

�

zb

z

mðz
0
Þmðz

00
Þ


 �

dz
0dz

00
:

The average under the integral is the two-point autocorrelation

function of m. As it significantly differs from zero only for

jz
0
¹ z

00
j # lm, where lm is the correlation scale of m along z, we

have
�∞
¹∞ mðz

0
Þmðz

00
Þ


 �

dðz
0
¹ z

00
Þ . j2

mlm, where jm is the standard

deviation of m. We have assumed that zb ¹ z q lm, which allows us

to use an infinite integration domain.

Introducing intermediate variables 1
2
ðz

0
þ z

00
Þ and z

0
¹ z

00, we

obtain

j2
X ¼ 4l4

lm

�

zb

z

j2
m dz

0
: ðA3Þ

This expression is valid only for zb ¹ z q lm. At positions closer to

the boundary of the source, zb ¹ z & lm, we have to replace lm by

zb ¹ z in equation (A3).

We can estimate the number of correlation cells within the beam

cylinder required to have fluctuations in the complex polarization

smaller than the mean value in equation (30). We obtain it for a

purely random medium, R ¼ 0. The integral of the fluctuating part

over z appearing in equation (30),
�

zb

¹zb
N

¹1=2
W Y dz, has the standard

deviation

N
¹1=2jexp ðiXÞ ¼ N

¹1=2
½1 ¹ exp ð¹j2

RMl4
Þÿ

1=2
< N

¹1=2
;

where

X ¼ 2l2

�

zb

¹zb

m dz
0

and we have used the relation

j2
expðiXÞ ¼ eiXe¹iX


 �

¹ eiX

 �2

¼ 1 ¹ exp ¹1
2
j2

X

ÿ �

:

Thus,

jY < 1 for j2
RMl4 * 1:

The average contribution is about ð2l4j2
RMÞ

¹1 for large l. This

yields the following constraint on the number of correlation cells

within the beam cylinder:

N * 4j4
RMl8

;

which can be used to obtain a wavelength below which observations

will give a predictable result. (It was assumed that the correlation

scales of exp 2il2
�

zb

z mdz
0 and « are equal to each other.) For the

‘standard’ set of parameters used above for galactic discs, this

constraint is rather loose, N * 10 at l ¼ 20 cm. It should also be

required that N * j2
« = «h i

2 in order to avoid strong fluctuations in the

denominator of equation (A1); also this restriction is not very

demanding.

A P P E N D I X B : FA R A DAY ROTAT I O N I N A

R A N D O M E X T E R NA L S C R E E N

Specific properties of a Faraday screen are related to the fact that the

volume integral in equation (13) is taken over the synchrotron

source where «h iW×h Þ 0, whereas integration over z
0 in the expo-

nent extends over the region occupied by the magneto-ionic

material. Thus here we consider the case in which the synchrotron

source has the boundary at z ¼ z« along the line of sight and the

thermal plasma has a boundary at z ¼ zb with zb > z«. Then

equation (13) reduces to

P ¼ P intPex ; ðB1Þ

Pex ¼ exp 2iKl2
�

zb

z«
nBz dz

0

 �

W
; ðB2Þ

where P int denotes the complex polarization associated with effects

within the synchrotron source, which were our subject in Sections

4–6, and Pex is due to the Faraday screen; . . .h iW denotes the

average over the beam area. As follows from equation (B1), the

effects of a Faraday screen can be considered separately from

polarization within the source. The internal complex polarization

P int is still determined by equation (13), but now with zb replaced

by z«; this does not affect the formulae for P int given above, as we

assumed that either zb ¼ z« or zb → ∞ and z« → ∞.
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As above, we represent the average over the telescope beam W in

equation (B2) in terms of the ensemble average and fluctuations as

Pex ¼ exp 2iKl2
�

zb

z«
nBz dz

0

 �

þ dPex ;

where dPex is a complex random quantity with zero mean value.

Burn (1966) calculated the above ensemble average for a Gaussian

random field nBz using equation (5) to show that

Pex


 �

¼ exp ¹2j2
RMl4

þ 2il2
� zb

z«
M dz

0
ÿ �

; ðB3Þ

this expression can be obtained from equation (30) by assuming that

z« < zb. As the regular term containing M contributes only to the

imaginary part of Pex


 �

, a regular foreground Faraday screen

produces rotation with RM ¼ R ¼
�

zb

z«
M dz without depolarization.

When 2j2
RMl4

q 1 we have j Pex


 �

j p 1, so that the polarization

vectors in the ðQ; UÞ plane are almost uniformly distributed over a

circle the centre of which is at a small distance j Pex


 �

j from the

origin. The radius of this circle is jjPexj. Neglecting j Pex


 �

j, the

fluctuations of Pex can be estimated as

dPex ¼ jjPexjN
¹1=2
W y for 2j2

RMl4
q 1 ; ðB4Þ

where jjPexj is the standard deviation of jPexj, NW ¼ ðD=2lRMÞ
2 is

the number of correlation cells of RM within the telescope beam,

and y is a complex random variable with unit modulus. Tribble

(1991) showed that the correlation scale of Pex differs from that of

RM and is given by

lP . lRMð2jRMl2
Þ
¹1=2 for 2jRMl2

q 1 ; ðB5Þ

where lRM is the correlation scale of RM across the beam. Thus the

area filling factor of the cells of Pex, defined as fP ¼ ðlP =lRMÞ
2,

decreases as l¹2 and becomes small at large l. Polarized emission

with jPj < jP intj comes from an area l
2
P in each cell of total area

l
2
RM; only unpolarized emission comes from the remaining part of

each cell. The standard deviation of jPexj is then given by a typical

degree of polarization (normalized by jP intj) coming from a single

cell of RM i. e.

jjPexj ¼ fP .

1

2jRMl2
for 2jRMl2

q 1 : ðB6Þ

The physical meaning of this result is that the standard deviations

of the observed Stokes parameters Q and U are given by

jQ;U . 2¹1=2jjPexjN
¹1=2
W . This estimate, together with

equation (B4), applies only to the case 2jRMl2
q 1 when Pex


 �

is negligible. Only then can jdPexj be identified with fluctuations of

the degree of polarization, dpex. For 2jRMl2
p 1, fluctuations of

Pex are negligible in comparison with Pex


 �

. In this case the

distribution of the fluctuations of Pex on the complex plane ðQ; UÞ

is anisotropic, and it must be characterized by a correlation matrix

rather than by a dispersion.

This paper has been typeset from a TEX=LATEX file prepared by the author.
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