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Abstract

Optical methods, as fluorescence microscopy or hyperspectral imaging, are commonly

used for plants visualization and characterization. Another powerful collection of optical

techniques is the so-called polarimetry, widely used to enhance image contrast in multiple

applications. In the botanical applications framework, in spite of some works have already

highlighted the depolarizing print that plant structures left on input polarized beams, the

potential of polarimetric methods has not been properly exploited. In fact, among the few

works dealing with polarization and plants, most of them study light scattered by plants

using the Degree of Polarization (DoP) indicator. Other more powerful depolarization met-

rics are nowadays neglected. In this context, we highlight the potential of different depolari-

zation metrics obtained using the Mueller matrix (MM) measurement: the Depolarization

Index and the Indices of Polarimetric Purity. We perform a qualitative and quantitative com-

parison between DoP- and MM-based images by studying a particular plant, the Hedera

maroccana. We show howMueller-based metrics are generally more suitable in terms of

contrast than DoP-based measurements. The potential of polarimetric measurements in the

study of plants is highlighted in this work, suggesting they can be applied to the characteriza-

tion of plants, plant taxonomy, water stress in plants, and other botanical studies.

Introduction

Optical methods, as fluorescence microscopy or hyperspectral imaging, have proved their util-

ity for the characterization and visualizations of plants and some of their structures [1–4]. One

optical method, widely used for enhanced image contrast and characterization of samples are

the polarimetric methods. However, they have barely been studied for the analysis of plants.

Polarization is a physical property of light exploited in a large number of applications, as a

complementary tool to other techniques or constituting a completely different approach [5–7].

In recent decades, a large number of works have highlighted an interest in analyzing the

polarimetric print left by biological samples when interacting with polarized light [8]. As a

PLOSONE | https://doi.org/10.1371/journal.pone.0213909 March 14, 2019 1 / 19

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Van Eeckhout A, Garcia-Caurel E, Garnatje

T, Durfort M, Escalera JC, Vidal J, et al. (2019)

Depolarizing metrics for plant samples imaging.

PLoS ONE 14(3): e0213909. https://doi.org/

10.1371/journal.pone.0213909

Editor: Patrizia Restani, Università degli Studi di
Milano, ITALY

Received:October 2, 2018

Accepted:March 4, 2019

Published:March 14, 2019

Copyright: © 2019 Van Eeckhout et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This research was supported by the

Spanish MINECO (FIS2015-66328-C3-1-R,

FIS2015-66328-C3-3-R and fondos FEDER, all to

JC); Catalan Government (SGR 2014-1639 to JC).

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-2540-2746
http://orcid.org/0000-0003-1740-2244
https://doi.org/10.1371/journal.pone.0213909
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213909&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213909&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213909&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213909&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213909&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213909&domain=pdf&date_stamp=2019-03-14
https://doi.org/10.1371/journal.pone.0213909
https://doi.org/10.1371/journal.pone.0213909
http://creativecommons.org/licenses/by/4.0/


consequence, polarimetric techniques are commonly incorporated in different fields in order

to study and characterize biological samples. For instance, polarimetric methods are success-

fully used in some medical applications, like in calculating the sugar concentration in blood in

diabetics[9], or for the early diagnosis of some types of cancer [10, 11], including skin cancer

[12, 13], colon cancer [14, 15], breast cancer [16], and others [17].

Polarized light is also used for curative processes [18–20]. Medical cases being treated with

polarized light include severe second degree burns [18], wounds [19], leg ulcers, psoriasis and

eczema [20], and the improvement of blood’s immunological response [21].

This well-known usefulness of polarized light and polarimetric techniques when dealing with

biological tissues suggests their suitability in botanical applications. In the 80s, the interest in using

polarized light for the characterization of botanical samples was explored by different authors [22–

25]. In general, the studies were intended for remote sensing and were done to explore Degree of

Polarization as an aid to vegetation classification [26]. They showed that light scattered at different

leaf layers and structures presents different depolarizing characteristics and that this partially-

polarized light may be described by the Stokes vector (see, for instance, [22, 27]).

After the above-mentioned pioneering works, most studies of plants based on polarimetric

methods focused on the depolarization signal (as opposed to retardance or diattenuation) as it

is the polarimetric channel leading to the most polarimetric sensitivity. Furthermore, nearly all

works restrict their analyses to the use of the most basic depolarization metric, the Degree of

Polarization (DoP) associated with the light reflected by or transmitted in plants [22, 25, 26,

28–30]. This DoP can be readily calculated from the Stokes vector parameters of the studied

light [31, 32],

DoP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
1
þ S2

2
þ S2

3

p

S0
; ð1Þ

where the Si (i = 0,1,2,3) are the Stokes parameters of the light transmitted, reflected, or scat-

tered by the sample. Note that throughout this manuscript we use the Stokes-Mueller (S-M)

formalism to describe the polarimetric characteristics of light and/or matter. The basic con-

cepts of the S-M formalism are taken for granted in this manuscript and more details can be

found in the specialized bibliography [31–34].

Some areas of interest related to botanical applications have been explored based on DoP

calculations. For instance, the DoP has been applied to determine the water stress on plants

[32], to monitor crop growth [29], or to discriminate land mines from natural backgrounds

[35]. The measurement of polarization properties such linear, circular dichroism and birefrin-

gence as well as the DoP of light reflected by plants has been shown to be of great importance

in research related to plant photosynthesis [36–38]. The effect of polarized and unpolarized

light on the growth of some plants has also been investigated [39]. Vanderbilt et al. [30] found

no evidence of hyperspectral variation in the polarized portion of the reflectance in the leaves

of the five species they measured.

Despite the aforementioned collection of works based on the DoP indicator, polarimetric

techniques have not been consolidated in botanical applications. Rather, in the last decade,

they have fallen into oblivion, with the exception of some sporadic works [30, 36–39, 40].

The above-mentioned works show that different plant structures will depolarize light differ-

ently and thus, using depolarization as an observable, can be used to visualize structural prop-

erties (or changes) which remain veiled under nonpolarized light. Recent theoretical

developments have shown that the depolarization phenomena can be more accurately

described using a set of parameters deduced from the Mueller matrix than with the classical

DoP deduced from the Stokes vector. The parameters obtained using the Mueller matrix have
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largely proved their significance in the evaluation of the depolarizing characteristics of sam-

ples, but they are not being applied in the botanical context. In fact, one of the purposes of this

work is to reverse the decreasing tendency observed in recent years of botanical studies based

on polarization and to show for the first time the potential of some depolarizing factors in

plant imaging and characterization. We think that underscoring the significance of polarime-

try in botanical applications may allow readers to adopt less destructive methods and to seek

new botanical applications, which would have a high social impact, as plants are primary pro-

ducers and the basis of the food chain.

In particular, we study different depolarization-related observables calculated using the

Mueller matrix (MM) measurement in the botanical context. On one hand, we study the

Depolarization Index PΔ which was first proposed by J.J. Gil and E. Bernabeu [41], which con-

stitutes a standard magnitude in the polarimetric community when dealing with depolarizers

[31–34]. On the other hand, we focus on the so-called Indices of Polarimetric Purity (IPPs)

[42, 43], which have been successfully used to enhance the image contrast of polarimetric

images of animal tissues [44], unveiling physiologic structures which otherwise would have

remained invisible. In fact, the interest in IPPs relies on the fact that each of them is sensitive

to specific depolarization mechanisms. Since depolarization is related to the structure of tissues

by the way they scatter light, the specificity of IPPs to different depolarization mechanisms can

be used to finely discriminate among different tissue structures which scatter light in specific

ways [44, 45]. The suitability of the aforementioned depolarizing factors and techniques is

highlighted in this work by the study of light scattered by leaves ofHedera maroccana. At this

point, we would like to emphasize that the choice of this particular species for this work was

made because it was easily available to the authors. The choice is by no means exhaustive and

shows that the use of polarized light can be extended to any type of leaf or vegetal tissue sam-

ple, provided it transmits enough light. The experimental measurements and polarimetric

treatment discussed in this paper are provided to illustrate the suitability of the different depo-

larization indices in the study of vegetal tissues, which can be of interest in scientific and indus-

trial areas related to, among others, pharmaceuticals, the food sector, and botany.

Material andmethods

In this section, we briefly review the mathematical fundamentals of different polarimetric indi-

cators used to analyze the studied plants (subsection 2.1). We also include a brief description

of the plant used for the polarimetric analysis, theHedera maroccana (subsection 2.2), and we

give some experimental details of the image polarimeter used to calculate the Mueller matrix

of the samples (subsection 2.3).

Mathematical background

We start first by reviewing the mathematical formulation of the depolarization metrics we use

to characterize botanical samples. The depolarization index, PΔ, is a single-number metric that

characterizes the depolarization of a MM and is defined as [41, 46],

P
D
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

3

ij¼0

M2

ij �M2

00

v

u

u

t

ffiffiffi

3
p

M00

; ð2Þ

whereMij are the different coefficients of the MM. The PΔ equals 1 for nondepolarizing sam-

ples (samples that do not decrease the degree of polarization of any totally-polarized input

beam) and equals 0 for an ideal depolarizer (a sample that fully depolarizes an input beam
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independently of its polarization). In fact, the PΔ is proportional to the Euclidean distance

between an ideal depolarizer and the specific depolarizer [42].

Thereafter, we review another set of depolarizing indicators that can also be obtained from the

MM, three real magnitudes labelled as P1, P2, and P3 (with values from 0 to 1 each), known as

Indices of Polarimetric Purity (IPPs) [42–44]. The idea behind IPPs is that the response of any

depolarizer can be synthesized as the incoherent sum of four nondepolarizing components. In

this context, IPPs represent the relative statistical weight of each one of the pure components,

which allows us to differentiate between different types of depolarizers [45, 47]. Moreover, by

using these three magnitudes as a coordinate system, a new representation of depolarizers, the so-

called Purity-Space, is obtained. This is a very intuitive space because every possible depolarizer

occupies a different spatial position in a tetrahedron inscribed within the Purity-Space [43, 47].

Thus, the physical interpretation of IPPs further synthesizes the depolarizing information of sam-

ples because every combination of IPPs is linked to a different depolarizing mechanism [45, 48] ―
in contrast to the PΔ indicator, which gives an overall depolarizing estimation.

These three IPP magnitudes are defined as follows in terms of the relative differences

between the four eigenvalues (taken in decreasing order λ0�λ1�λ2�λ3) of the covariance
matrix H associated with the MM [43].

P1 �
l0 � l1

trH
; P2 �

l0 þ l1 � 2l2

trH
; P3 �

l0 þ l1 þ l2 � 3l3

trH
ð3Þ

Furthermore, the PΔ can also be calculated from the IPPs as [43],

P
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Nondepolarizing systems are characterized by PΔ = P1 = P2 = P3 = 1. In the other limiting

case, the values PΔ = P1 = P2 = P3 = 0 correspond to an ideal depolarizer. In general, the indices

of purity are restricted by the following inequalities [43],

0 � P1 � P2 � P3: ð5Þ

The aforementioned depolarizing metrics (Eqs (2) and (3)) are obtained from the MM of

the sample and provide more complete and meaningful information of samples than basic

DoP (Eq (1)).

Plant sample description

In order to show the suitability of these MM-based metrics for experimental data, we have

measured the Mueller matrix (MM) of a plant leaf. In particular, we measured aHedera maroc-

canaMcAll. (Araliaceae) leaf, labelled as Sample A.

This is a climbing plant native to the Atlantic coast of Morocco. This species, which also

grows in the Mediterranean area, is widely cultivated as an ornamental plant and is sometimes

naturalized. The main diagnostic characteristics of this species are its foliar trichomes.

An herbarium voucher of the studied species is deposited in the Herbarium of the Botanical

Institute of Barcelona (Hedera maroccana, BC843411). An image of theHedera maroccana

measured and considered in this work is given in Fig 1.

Mueller matrix polarimeter

To determine the Mueller matrix (MM) of sample A, we used the complete image polarimeter

sketched in Fig 2. The polarimeter mainly consists of two arms; the first one is used for
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illumination and polarization generation, while the second arm is used for imaging and polari-

zation analysis. The sample is always placed between the two arms. Measures on sample A

were always conducted in transmission configuration. What is more, the images shown in this

work were conducted with the obverse of the leaf looking at the light source and the reverse

looking at the CCD camera, as shown in the sketch given in Fig 2. It was also measured by flip-

ping over the sample, i.e., with the reverse looking at light source and the obverse at the CCD

camera. Results were quite similar, but the contrast obtained was slightly lower in this second

case, so the first configuration was selected. Note that this is not a general result, and depend-

ing on the studied plant type, different contrast may be obtained by flipping over the sample.

In fact, it will depend on the spatial distribution of the different leaf components and struc-

tures. Therefore, for each analyzed specimen, we recommend measuring both sides of leaves.

The first arm contains a light source and a Polarization State Generator (PSG) that allows

for the controlling of the polarization of the light illuminating the studied sample. As a light

source, we used the green channel (central wavelength of 530 nm and a FWHM of 10 nm,

respectively), with a maximum output intensity of 1000 mA in both cases. To achieve a

FWHM of 10 nm with the green channel, a dielectric bandwidth filter (by Thorlabs) was used.

The PSG consists of a linear polarizer (LP1) oriented toward the laboratory vertical, followed

by two Parallel Aligned (PA) liquid crystal panels. While the first liquid crystal panel, PA1, is

placed at 45˚ to the laboratory vertical, the second one (PA2) is oriented at 0˚ to the vertical.

Fig 1. Plant sample used for the polarimetric analysis: (a)Hedera maroccana plant; (b)Hedera maroccanameasured
leaf (Sample A).

https://doi.org/10.1371/journal.pone.0213909.g001

Fig 2. Scheme of the imaging polarimeter used to measure the Mueller matrices of plant leaves.

https://doi.org/10.1371/journal.pone.0213909.g002
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By using this PSG scheme, and by properly addressing the voltages of the PA1 and PA2 ele-

ments, any fully-polarized state of polarization (SoP) can be generated [49]. This controlled

illumination impinges a sample holder, where the botanical sample is set. Thereafter, light scat-

tered by the sample is polarimetrically analyzed by using a Polarization State Analyzer (PSA).

The PSA is composed of the same optical elements used in the PSG but is arranged in the

reverse order. By using this PSA, any SoP can be measured [49].

Depending on the operation of the PSG and the PSA, the polarimeter can measure either

Stokes vectors or Mueller matrices. If a single polarization state generated by the PSG is ana-

lyzed by the PSA, then the measurement corresponds to the Stokes vector representing the

SoP of the beam scattered by the sample. The SoP described by this Stokes vector depends on

both the initial polarization state created by the PSG and the optical response of the sample.

From this SoP measurement, the corresponding DoP can be calculated according to Eq (1).

On the other hand, if at least four well-different polarization states generated by the PSG and

scattered by the sample are sequentially analyzed by the PSA, the collection of the resulting six-

teen independent images can be used to compute the Mueller matrix of the sample [44, 50].

Note that a convergent lens images the sample plane to a CCD camera with a given magnifica-

tion, so imaging polarimetry can also be performed. Moreover, the PSA system can be rotated

from the specular direction (containing mainly non-scattered light) to an angle α (see Fig 2),

which allows us to analyze the light scattered in different directions. A more complete discus-

sion about the technical characteristics of the imaging polarimeter can be found in Ref. [50].

Results and discussion

A discussion of the experimental results obtained is provided below. First, we treat the images

of a leaf ofHedera maroccana (Sample A) by calculating the corresponding Degree of Polariza-

tion (DoP) of the forward scattering. Measures were conducted in transmission configuration

(leaf transmittance of ~0.44% for 530 nm). Then, we provide a discussion interpreting the con-

trasts seen in the image in terms of the structures found in the leaf in a botanical framework

(subsection 3.1). This interpretation serves as a benchmark (or gold standard) to be compared

with the images obtained using the MM-based observables in order to show their potential in

the analysis of plant structures (subsection 3.2).

Plant samples contrast based on DoP measurements

In this section we discuss the DoP images obtained from Stokes vectors scattered by sample A

and measured in transmission configuration (α = 90˚ in Fig 2). Since the scattered SoPs

depend on the initial polarization state, our discussion is based on a set of SoPs measured

using the following incidents SoPs: linearly polarized in the horizontal direction (0LP), linearly

polarized at 45˚ to the vertical direction (45LP), and, left-handed circularly-polarized (CP).

The set of SoPs used in this work is arbitrary—they were chosen because they are linearly inde-

pendent from each other and also intuitive. However, a different basis could have been chosen.

The obtained images, shown in Fig 3, correspond to a Region of Interest (ROI) in the selected

Hedera maroccana leaf (see Fig 1B) with dimensions of 1024x1024 pixels, which corresponds

to an area of 2.2x2.2 cm on the leaf.

The image shown in Fig 3A corresponds to the coefficient m00 of the Mueller matrix of the

sample, i.e. to the transmission of unpolarized light. The contrasts of this image reveal the pres-

ence of the primary (major) veins of the leaf, which constitute one of the more relevant structural

features and which are even visible to the naked eye. By contrast, less visible in the intensity image

but clearly defined in the DoP images (Fig 3B, 3C and 3D) are the secondary (smaller) veins. In

fact, DoP images clearly stress the vascular bundles of highly basted and lignified walls.
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It is important to notice that this improved contrast strongly depends on the selected input

polarization, as the contrast among different secondary vein structures differs from one polari-

zation to another. This fact is clearly observable by analyzing the visual information in Fig 3B

(0LP), 3C (45LP), and 3D (CP). For instance, the leaf vein marked with a blue arrow in Fig 3C

shows high contrast when using an input linear polarization at 45˚, whereas almost no contrast

is visible when using linear polarization at 0˚ (Fig 3B) or circular polarization (Fig 3D). When

a linearly-polarized incident SoP is used, the contrast enhancement depends on the vein orien-

tation in respect to the direction of the incident SoP. In contrast, the SoP orientation depen-

dence is somewhat suppressed when a circular polarization is used (Fig 3D), with this

polarization keeping an image contrast sufficient for the visualization of tiny veins.

This spatial dependence of the contrast of the leaf structures on the input polarization by

using DoP-based images deserves special attention. In fact, the selection of the input polariza-

tion in botanical polarization-based studies is, in the majority of cases, arbitrary. Linear polari-

zations are most commonly used because of their simplicity to be generated (only a linear

polarizer is required). To generalize the physical picture suggested by the images in Fig 3, we

have measured the Mueller matrix for Sample A and we have analytically calculated the output

polarization corresponding to a set of N input polarizations (according to well-known input-

output Stokes linear relation scheme Soutput =Msample�Sinput [31, 32]). Afterwards, we calculated
NDoP images corresponding to the N output Stokes array, according to Eq (1). To consider as

widespread of a set of input polarizations as possible, we generated a collection of input

Fig 3. (a) Nonpolarized light intensity image of the Hedera maroccana (Sample A) obtained on transmission. (b)-(d)
DoP image for an input polarization: (b) linear polarization at 0˚; (c) linear polarization at 45˚; (d) left-handed circular
polarization. Input polarization is marked in red at the top-right corner of the images.

https://doi.org/10.1371/journal.pone.0213909.g003
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polarizations equally distributed along the whole Poincaré sphere surface. In particular, the

collection of input polarizations tested draw a spiral-like curve covering the whole Poincaré

sphere surface (see Fig 4). They are described by the following parametric relation of the Stokes

vector [51]:

Sk ¼ ð 1 cos2ykcos2εk sin2ykcos2εk sin2εk Þ
T

εk ¼ k � Dε � p

4
; Dε ¼ p

2NεNy

;

yk ¼ k � Dy; Dy ¼ p

N
y

;

k ¼ 1; . . .;NεNy

ð6Þ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

where the θ and ε are the azimuth and ellipticity angles, describing the polarization ellipse

[32]. Whereas θ goes from 0 to π, the angle ε goes from -π/4 to π/4 (from left to right handed,

respectively). The parameter Nθ is the number of steps in each circle around the S3 axis and Nε
is the number of circles around the S3 axis (see Fig 4).

In our particular calculation, we selected Nθ = 20 and Nε = 10, so a total number of N = 200

input polarizations are sampled, which are represented as black dots on the Poincaré sphere in

Fig 4.

Fig 4. Poincaré sphere showing the location of the input polarizations (N = 200) used to study the dependence of
the input polarization on the DoP-based images contrast.

https://doi.org/10.1371/journal.pone.0213909.g004
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For the sake of visualization, the resulting collection of DoP images is arranged in video for-

mat included in the supplementary material accompanying this work (S1 Video). In fact, S1

Video consists of 200 frames where each frame shows the DoP image of Sample A calculated

for a different input polarization. By varying the input polarization, we see how the contrast in

different veins is modified (or even appears and disappears), and thus, S1 Video constitutes

clear evidence of the high dependency of each particular leaf structure contrast on the input

polarization. This dependence can be explained by the fact that veins and other structures are

made of highly oriented polymers that present certain anisotropic (birefringent or dichroic)

response. The components that mainly provide birefringent response in plants (as well as

dichroism when some pigments are present) are the cellulose fibrils, and in particular, the

microcrystals of which cellulose fibrils are made of [52–55]. These microcrystals tend to be ori-

ented in the direction of the large structures. Oriented polymers generate a form of anisotropy

(linear or circular, depending on which oriented polymer is considered) which implies that

they do not isotropically scatter light in all directions of the space. This fact can explain the

contrast dependence on the vein direction observed in DoP images when the illumination was

linearly polarized. In contrast, since the electric field of a circular polarization vibrates with the

same probability in all directions perpendicular to the propagation direction, the orientation

dependence in DoP images obtained with circularly-polarized illumination is less evident.

However, the maximum contrast obtained with circular polarization is half the maximum con-

trast obtained with linearly-polarized light.

As above-stated, we observe a clear relation between the visualization of the veins in the

Hedera marroccana leaf and the input polarization. We further investigated this fact by analyz-

ing the correlation between the DoP values of veins with different orientations and the input

polarization orientation. To this aim, we calculated different Hedera marroccanaDoP images

corresponding to a set of different linear input polarizations, which were calculated by setting

εk = 0 andNθ = 200 in Eq (6) (i.e., the 200 equispaced linear polarizations placed over the Poin-

caré sphere equator were evaluated). From the different DoP-based images, we calculated the

averaged value of the DoP obtained at three consecutive pixels in a segment over four different

veins with different orientations (see orange, red, blue and purple segments in Fig 3A). The

obtained results are represented in Fig 5.

Data in Fig 5 reveals a strong dependence between the DoP values and the orientation of

the input linear polarization, following an approximately sinusoidal relation. All the analyzed

veins (colored segments in Fig 3A) follow the same tendency, but the positions for the DoP

maximums (minimum depolarization) and minimums (maxima depolarization) are related to

different orientations of the input linear polarization (i.e., there are horizontal shifts between

DoP curves obtained for veins with different orientations). In fact, we observed that the orien-

tation of the input linear polarization for which a maximum value of the DoP is measured, it is

parallel (coincides) with the orientation of the vein in the leaf. This situation has sense because

as commented before, veins are made of highly oriented vascular bundles (oriented organic

polymers). When linear polarization is oriented parallel to the leaf veins, and for symmetry

reasons, it is also likely to be oriented parallel to the global dipole of the oriented molecules

from with the vein is made. Although the measurements presented in this work are done in

relatively transparent spectral region, the interaction of light with matter is always present and

higher when the polarization is parallel to the dipoles (from which the matter is composed)

than when the polarization is perpendicular to them. So, it can be said that light will be more

efficiently absorbed when it vibrates parallel to the molecules than otherwise. If absorption is

enhanced, then, the amount of scattered light respect to direct light decreases because the opti-

cal path of scattered light is longer than that of direct light. Let us recall that depolarization

arises because there is an incoherent superposition of direct and scattered light contributions
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when it is detected by the CCD camera. If due to the above mentioned reasons the detected

component related to direct light dominates, then the DoP increases (light polarization

becomes purer). When light is polarized perpendicularly to the direction of molecular dipoles,

the interaction of light with them (and thus, absorption and subsequent re-emission of scat-

tered light), is also minimized. Again, in this situation, but for different reasons, the ratio

between direct (non-scattered) to scattered light is favorable to the direct light component

reaching the detector, which leads to an increase of the measured DoP. When light is neither

parallel nor perpendicular to the material dipoles, the ratio of scattered to direct light reaching

the detector increases thus leading to a decrease of the DoP. For symmetry reasons, light

Fig 5. DoP values as a function of the input linear polarization orientations.Orange (squared), red (circle), blue (triangle) and
purple (inverted triangle) curves correspond to the segments of the same color in Fig 3A.

https://doi.org/10.1371/journal.pone.0213909.g005

Table 1. Correlations between the vein orientation and the maximumDoP value for different veins in theHedera

maroccana leaf (orange, red, blue and purple segments in Fig 3A).

Segments Vein orientation with respect to the lab
horizontal (deg)

Input linear orientation (in deg) for the
maximumDoP

Orange 51±1 51±0.5

Red 119±1 117.5±0.5

Blue 3±1 3±0.5

Purple 89±1 90±0.5

https://doi.org/10.1371/journal.pone.0213909.t001
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polarized at 45˚ with respect to the material dipoles represents a particular case for which the

DoP reaches a minimum value (maxima depolarization).

To summarize this correlation between the vein angular orientation in the leaf and the ori-

entation of the input linear polarization providing the maximum DoP value, these two quanti-

ties are provided in Table 1 for the four veins studied.”

The above-stated dependence of theHedera maroccana contrast with input polarization

was further studied from a more quantitative point of view. To do so, the visibility V can be

defined as a function of the input polarization particular index (k parameter in Eq (6)). Note

that the visibility can be calculated for any arbitrary point on the image. In our case, we

focused on two particular secondary veins, which are oriented at 90˚ degrees one to each other

(visibility of the orange and blue segments in Fig 3A). These visibility values were obtained

according to the following equation,

V ¼ I
max

� I
min

I
max

þ I
min

; ð7Þ

where Imax and Imin stand for the maxima and the minima intensity of the selected segments.

The results are shown in Fig 6A, where we see the visibility value for each tested input

polarization (i.e., as a function of the input polarization index k in Eq (6); ranging from 1 to

200). The orange and blue curves in Fig 6 provide the visibility values as a function of k for the

orange and blue segments in Fig 3A, respectively. They reveal that the significant dependence

of the image contrast as a function of the three input polarizations discussed in Fig 3 (linear

polarizations at 0˚ and 45˚ and right-handed circular polarization) is generalized for all the

mapped input polarizations, as provided by the high variation of the visibility observed in Fig

6A both for the orange and blue curves (with peak-to-valley visibility variations from approxi-

mately 0.15 to 0.85 in both cases). It is also clear that the maximum visibility for different struc-

tures in the leaf (orange and blue segments in Fig 3A) are obtained for different input

polarizations, as shown by the peaks displacement observed between the orange and blue

curves. Therefore, we confirm that the visibility of a particular plant structure depends on the

input polarization (high visibility variations with the k parameter in Fig 6A). What is more, we

also prove that different plant structures present different visibility responses to the input

polarization (as shown by the different curves in Fig 6A).

For the sake of generalization, the same study was repeated using a larger number of struc-

tures. In particular, the visibility of 10 different segments arbitrarily chosen all along the whole

image was calculated (see orange, blue and 8 green segments in Fig 3A). The average visibility

as a function of the input polarization index k is represented as a black curve in Fig 6B. Note

that for each value of k (x-axis), the value of the mean visibility is calculated in the following

way: the visibility for each one of the 10 random segments is calculated, then the mean value of

these 10 visibilities is obtained, and this is the value represented in Fig 6B. In addition, the cor-

responding upper and lower deviations, included as dashed lines, were calculated from the

standard deviation.

We see that by considering different plant structures at the same time (10 segments), the

corresponding mean visibility (black line) is considerably reduced. Note that if some input

polarization (k value) were capable of obtaining high visibility values for the 10 plant structures

at the same time, some point of the visibility black curve would be close to 1. However, we see

that all the mean visibility values are lower than 0.7, with the majority of them restricted to val-

ues lower than 0.6 for all the input polarizations. This result generalizes the discussion related

to Fig 6A, and confirms that a particular input polarization provides very different visibility
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values for different plant structures. The same idea is observed in the large standard deviations

associated to the mean visibility values (dashed lines in Fig 6B).

In summary, the images in Figs 3 and 6 and S1 Video demonstrate that the contrast of

DoP-based images is highly dependent on the input polarization, so an optimal selection of the

input polarization is a crucial issue. What is more, the visibility of different spatial structures of

the plant show a large variation (Fig 6B) when a particular illumination polarization is chosen.

Therefore, the optimum contrast related to each specific biological structure is obtained by

selecting different input polarizations. Considering the vast majority of polarimetric methods

conducted on plants so far are based on DoP measurements and using a particular input polar-

ization (usually linearly-polarized light), the above-provided study reveals that those methods

never provide the best possible contrast simultaneously for all the biological structures present

in the plant. Thus, the use of new techniques to better enhance the overall contrast of polarized

images of plants is required.

Contrast of plant samples based on MMmetrics: PΔ and IPP indicators

In the present section, we discuss the results obtained when MM-based observables are used

and we compare them with the results obtained for DoP-based images. In particular, the depo-

larization metrics reviewed in section 2.1 were calculated for Sample A from the experimental

MM of the sample. For comparison with images in Fig 3 (DoP-based images), Sample A

images for the PΔ, P1, P2 and P3 polarimetric purity indices are given in Fig 7A–7D, respec-

tively. We see that different polarimetric channels provide different contrast visualization of

the plant structures. This can be understood by taking into account the physical interpretation

of these metrics. Whereas PΔ gives a measure of an overall depolarization capability of the sam-

ple [41], i.e. it depolarizes more or less (from 0 to 1), the IPPs are related to the inherent depo-

larizing mechanisms of samples, and thus can differentiate among different kinds of

depolarizers [42, 43, 45]. From all the obtained results, the best image contrast is achieved for

the P1 channel (Fig 7B), clearly showing the vascular bundles of highly basted and lignified

walls constituting the veins in theHedera maroccana sample. This contrasted visualization of

the veins indicates that they scatter light in a very different way than other structures in the

plant. More precisely, the veins in Sample A can be understood as equivalent depolarizers con-

sisting of an incoherent addition of two nondepolarizing Mueller matrices [31, 32]. Note that

this analysis is correct for the studied particular case of Sample A, but the best-contrasted

Fig 6. Visibility values calculated fromDoP images corresponding to 200 different input polarizations (k
parameter). (a) Orange curve and blue curve provide the visibility related to the orange and blue segments in Fig 3A,
respectively; and (b) Mean visibility (black curve) as a function of the input polarization, calculated from 10 different
segments (orange, blue and 8 green lines in Fig 3A) arbitrarily selected along the leaf. The corresponding standard
deviations values are given by the upper and lower dashed black lines.

https://doi.org/10.1371/journal.pone.0213909.g006

Depolarizing metrics for plant samples imaging

PLOSONE | https://doi.org/10.1371/journal.pone.0213909 March 14, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0213909.g006
https://doi.org/10.1371/journal.pone.0213909


images for other plants could be obtained with P2 or P3 channels if different inherent depolar-

izing mechanisms were predominant.

In this scenario, the study of IPPs channels is highly recommended because they synthesize

and magnify the overall depolarizing information given by DoP images (section 3.1), leading

to higher contrast.

By comparing the results in Fig 3 (DoP-based images) with those in Fig 7 (MM-based

images), we realize that a given input polarization can enhance the polarimetric response of a

particular structure of a plant with this polarization maximizing the depolarizing response of

this particular biological structure. However, when different depolarizing mechanism origins

(plant scatters with different densities, concentrations, organizations, sizes, etc.) are at different

spatial locations, as is the usual case of a biological image, a particular polarization illumination

does not reveal all the properties of the plant (check the dependence of the spatial image con-

trast on the input polarization in Figs 3 and 6 and S1 Video). Unlike this, by calculating the

MM of the plant, the full polarimetric information is encoded in the matrix, as MMs describe

the polarimetric behavior in polarimetric samples [31–34]. In this scenario, a proper decoding

Fig 7. Hedera maroccana (Sample A) images obtained by using different depolarizing based indicators: (a)
Depolarization Index PΔ; (b)-(d) Indices of Polarimetric Purity (IPPs), P1, P2 and P3. Sample A images obtained by
combining different IPP channels: (e) P2-P1; and (f) P3-P2.

https://doi.org/10.1371/journal.pone.0213909.g007
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of the polarimetric information can reveal all characteristics of the sample. In such a situation,

the analysis of a set of different depolarization metrics based on the MM arises as a promising

strategy, as they provide an overall visualization of scattering structures in the plant. For

instance, we have shown how, in the particular case ofHedera maroccana, the P1 channel (Fig

7B) is clearly better than any DoP image obtained using any other input polarization state (Fig

3A–3D).

Although we review here the particular case of Sample A, we have also studied other plant

taxa (Spathiphyllum sp.,Hibiscus syriacus L., Prunus dulcis (Mill.) D.A.Webb, Arum italicum

Mill.). In all these cases, MMmetrics provided an overall image contrast enhancement when

compared with standard DoP-based measurements. In particular, the P1 channel tends to pro-

vide the highest contrast in the majority of studied cases.

Some authors have also pointed out that the combination of different IPP channels may

lead to a visualization improvement [44, 47]. For instance, in the particular case of Sample A

(Fig 7), we see how, as stated before, the P1 channel provides a significant contrast of the plant

veins, whereas these structures are more poorly contrasted in the P2 channel (P2 image shows

quite a constant spatial intensity with blurred vein structures). Therefore, the direct differences

between P2-P1 channels could be understood as the removing of certain image background,

which leads to a possible image enhancement for some plant structures. This hypothesis is

compatible with the structure of polarimetric randomness [56] given by the characteristic (or

trivial) decomposition [57], whose coefficients are precisely the differences Pi−Pi−1. To test this

situation, we have also calculated the P2-P1 (direct difference between images in Fig 7C and

7B) and P3-P2 (direct difference between images in Fig 7D and 7C) images for the Sample A,

and the corresponding results are given in Fig 7E and 7F, respectively. We see well-contrasted

images in both cases, especially for the P2-P1 channel (Fig 7E), leading to the best contrast of

the primary and secondary veins in Sample A.

To highlight this image contrast enhancement provided by Mueller matrix-based metrics

from a quantitative point of view, we have examined the visibility of the orange and blue pixel-

segments studied in Fig 3. Let us now turn to the MM-based images in Fig 7. As a reminder,

the two orthogonal segments set in Fig 3 are plotted again in Fig 7B. In particular, the visibility

values corresponding to the direct channels PΔ, P1, P2, P3, as well as for the combined channels

P2-P1 and P3-P2, were calculated according to Eq (7), and both for the orange and blue seg-

ments (i.e., we tested two different secondary veins in Sample A). The results obtained are

summarized in Table 2, where we observe how the P1 and P2-P1 channels are those providing

the best visibility values for both the orange and blue segments. This result was expected

because the P1 and P2-P1 polarimetric images of theHedera maroccana leaf provided the best

visualization for Sample A structures (see Fig 7).

For the sake of comparison with the DoP-based images, the visibility values obtained for

the P2-P1 images (i.e., the largest visibility values in Table 2) are represented in Fig 6A as an

asterisk (an orange and blue asterisk for the orange and blue segments in Fig 7B, respectively).

We want to note that the visibility calculated for the P2-P1 channel (asterisks in Fig 6A), or for

any other MM-based metric, does not depend on the input polarization because they are calcu-

lated from the MM of the sample (see metrics in Section 2.1). In fact, the Mueller matrix can

be understood as the polarimetric transfer function of the system, linearly relating the input

Table 2. Visibility values V for different polarimetric indicators (different columns) corresponding to the orange and blue segments in Fig 3A.

Segment m00 PΔ P1 P2 P3 P2-P1 P3-P2

Orange 0.1 0.34 0.71 0.16 0.18 0.89 0.54

Blue 0.28 0.26 0.68 0.25 0.19 0.79 0.65

https://doi.org/10.1371/journal.pone.0213909.t002
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and output polarizations [31–34], and only depends on the polarimetric characteristics of the

sample.

In the case of the vein in Sample A, highlighted in the orange segment, the visibility value

for the P2-P1 channel is equal to 0.79 (orange asterisk in Fig 6A), with this value being very

close to the maximum visibility value obtained from DoP-based images (0.85 for the value

k = 39 in the orange curve in Fig 6A). On the other hand, in the case of the blue segment, the

visibility value for the P2-P1 channel is equal to 0.89 (blue asterisk in Fig 6A), with this visibility

being larger than any other visibility obtained from DoP images (the largest DoP-based visibil-

ity for the blue curve is 0.84, obtained for the polarization index value k = 166).

Therefore, unlike DoP-based methods, by using the MM-based depolarizing metrics we

obtain a reasonably good visibility for the two studied segments simultaneously (more than

0.78), and without any dependence on the input polarization. In particular, despite the fact

that some specific input polarization (which must be found using some optimization method)

may lead to the largest visibility for a specific structure of the plant (e.g., orange segment visi-

bility of 0.85 for the input polarization k = 39; see Fig 6A), this same input polarization will

degrade the visibility of other structures in the plant (blue curve for the same k, visibility value

of 0.26). Therefore, the fact that using PΔ and IPP indicators for the full image of the plant pro-

vides a nice overall contrast without the necessity of optimizing the input polarization proves

this is a more adequate approach for the characterization of plants through polarizing images.

Finally, the adequacy of MM-based metrics in the visualization of different plant structures

is further highlighted by generalizing the above-described visibility study to 10 different pixel-

segments arbitrarily selected along the plant (the same 10 segments shown in Fig 3A that were

previously used to test veins placed at different spatial positions on the leaf, data in Fig 6B). In

particular, we calculated the mean visibility (average of the visibility values for the 10 seg-

ments) corresponding to the P2-P1 channel. The corresponding standard deviation was also

calculated. To illustrate the comparison with the DoP-based approach, the calculated mean

visibility is marked with a blue asterisk in Fig 6B along with its corresponding error bar. We

observe how the mean visibility obtained from the P2-P1 channel is significantly higher (0.77,

blue asterisk in Fig 6B) than the mean visibility calculated using DoP images (black curve in

Fig 6B), independently of the input polarization (k parameter). This result highlights the suit-

ability of the MM-based depolarizing metrics for plant imaging.

Conclusion

In this work we presented the benefits of polarimetric methods for the inspection of plants.

Although polarimetric methods have widely proved their suitability in biological applications,

for instance in medical applications, they have not been extensively exploited in botanical

applications. In particular, despite the fact some authors have studied different plants using

polarized light, the number of works in this topic is not very extensive, and those that do exist

mainly focus on the study of the Degree of Polarization of light dispersed by plant samples.

However, methods for polarimetric analysis of data have been largely improved in recent

years. We proved how current polarimetric tools, based on the calculus of the Mueller matrix

of the samples, can be beneficial in extracting information about plant structure. In fact, polar-

imetric tools provide images showing a larger contrast in some plant structures (or even show

structures hidden in the intensity images) than nonpolarized intensity images. Furthermore,

they have proven to be more suitable than polarimetric approaches based on the Degree of

Polarization evaluated from the Stokes vector of scattered light.

A qualitative/quantitative polarimetric analysis of aHedera maroccana leaf is provided in

this work. The contrast of some leaf structures which are hidden in nonpolarized light
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intensity images (such as secondary veins), can be revealed by DoP images. However, we

proved that such structures, like veins with different spatial orientation, present very different

visibility values as a function of the input polarization. As a consequence, no input polarization

is able to provide high visualization of all structures at the same time. In contrast, we proved

how some polarimetric indicators evaluated using the Mueller matrix provide a much better

overall visualization of plant structures and are highly recommended over DoP-based images.

In particular, the depolarization index, PΔ, and the Indices of Polarimetric Purity, IPPs, were

used to study theHedera maroccana. Among these indices, we have shown that both P1 and

P2-P1 channels provide the best contrast of the principal and secondary vein systems of the

leaf. Analyses conducted on sample A were repeated on differentHedera maroccana leaves

(sampling of 5 leaves), obtaining analogous results.

The examples provided in this work prove that polarimetric methods can be successfully

used in botanical applications and the methods described could be of interest in a wide number

of botanical applications. For instance, cell membrane depolarization potential can be a tran-

sient situation due to different factors: biotic elicitor for phytoalexin production in vitro culture,

effect of feeding on plant leaf, interaction between root plant and Rhizobium bacteria, etc. The

analysis of polarimetric imaging of plant tissues is then a useful parameter in order to verify the

membrane integrity and function. The methods could also be applied in diverse botanical areas,

as for instance, in plants characterization of structures and plant taxonomy, evolution of plant

specimen, hydric stress determination, and for early detection of some plant diseases.

Supporting information

S1 Video. Video consist of 200 frames where each frame shows the DoP image ofHedera

maroccana leaf calculated for a different input polarization.
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