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Persistent and aggressive bacteria in the
lungs of cystic fibrosis children

C Anthony Hart and Craig Winstanley
Department of Medical Microbiology and Genitourinary Medicine, University of Liverpool,
Liverpool, UK

There have been enormous improvements in life expectancy of patients with
cystic fibrosis, especially with improved nutrition and better understanding of
the basic cellular defects. However, infection in particular with Pseudomonas
aeruginosa and Burkholderia cepacia, has the greatest effect in decreasing life
expectancy. Although infections can be prevented by rigorous infection control
procedures, early aggressive antimicrobial chemotherapy and established
infection managed by antibiotics, they are not completely effective. A greater
understanding of how the bacteria evade the host defences and produce
infection is needed.

Cystic fibrosis (CF) is an autosomal recessive disorder resulting from
mutations in a gene on the long arm of chromosome 71. The gene product
is the cystic fibrosis transmembrane conductance regulator (CFTR) which
regulates and facilitates transport of electrolytes across epithelial cell and
other membranes. The mutations, (over 1000 described so far), can be by
frameshift, deletion or by base substitution leading to amino acid sub-
stitution, however 60% of CF patients have ∆F508 (a three base [codon]
deletion at phenylalanine 508). Although the mutations give abnormal
electrolyte transport, how this explains the complete pathophysiology,
especially in the lung, is unclear (Table 1). What is clear, however, is the
mucus in the CF airways is highly viscid, sulphated and readily forms
aggregates2.

In the normal lung, the mucus layer acts to trap inhaled particles such
as bacteria and is propelled upwards towards the pharynx by cilia (the
mucociliary escalator), and then expectorated or swallowed. This
defence mechanism is so potent that, despite heavy bacterial coloniz-
ation of the upper airways (above the vocal cords), the lower airway is
normally sterile. In the CF lung, the viscid mucous cannot be propelled
so easily and the escalator fails, leading to an accumulation of mucus
and trapped bacteria3. In addition, it has recently been shown that while
extracellular fluid from cultured normal airways epithelia can kill
bacteria, that from CF airways epithelia cannot4. A number of
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antimicrobial substances are excreted into the airways. These include
lysozyme (which hydrolyses the peptidoglycan backbone of the bacterial
cell wall), lactoferrin (which is an iron chelator), phospholipase A2,
proteases, complement and secretory IgA. A recent discovery has been that
antibacterial cationic peptides are synthesized and secreted by epithelial cells
of the airways and elsewhere. These peptides intercalate into bacterial
membranes, permeabilise them and cause bacterial death. Among these are
the β-defensins 1 and 2 and cathelicidins6–8. There is some evidence that,
although these are expressed in the CF lung, they are not active in the
airway surface liquid found there. However, if, for example, cathelicidin is
over-expressed then this effect can be overcome8. There is, nevertheless, an
intense inflammatory response in the CF bronchial tree with large amounts
of neutrophils, macrophages and inflammatory mediators such as tumour
necrosis factor-α (TNF), interleukin-1 (IL-1) and IL-8. Indeed secretion of
IL-8, which is a neutrophil chemokine, seems to be triggered by exposure of
bronchial submucous glands from CF patients to raised Cl– ions. This
causes accumulation of activated neutrophils which release α-defensins,
reactive oxidants, and protease all of which potentiate lung damage.
Although it appears that neutrophils from CF patients are not grossly
deficient, there is evidence of altered intraneutrophil pH regulation9

resulting in hypersecretion of granule contents including myeloperoxidase.
CF sputum contains large amounts of myeloperoxidase and reactive oxygen
and nitrogen intermediates which are toxic for tracheobronchial epithelial
cells10. In an animal model, the malnutrition seen in CF contributes to poor
bacterial clearance from the lungs and, by decreasing production of the anti-
inflammatory cytokine IL-10, might result in excessive inflammation11.
However, concentrations of one inflammatory mediator, nitric oxide (NO)
which also has antibacterial activity, are low in the CF lung probably as a
result of decreased inducible nitric oxide synthetase (iNOs) expression12.
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Table 1 Some factors promoting bacterial persistence and damage in the CF lung

IMPAIRED CLEARANCE
Viscid mucus Impaired mucociliary escalator
Altered composition of airways surface liquid Poor microbial killing by β-defensins and cathelicidin
Increased expression of wrong receptor Tetrasaccharide of asialoganglioside is receptor for Ps. aeruginosa
Decreased expression of correct receptor CFTR is receptor for Ps. aeruginosa and binding leads to internalization 

then epithelial cell plus bacteria desquamated
DAMAGE

Excessive neutrophil recruitment Enhanced release of IL-8
Excessive neutrophil activation Altered intraneutrophil pH regulation
Excessive release of neutrophil products

Oxidative Myeloperoxidase leading to protein oxidation
Non-oxidative Elastase and other proteases leading to proteinase-anti proteinase imbalance

Malnutrition Down-regulation of anti-inflammatory cytokine IL-10
Bacterial factors and products Greatly augment damage
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There do not appear to be any gross deficiencies in the specific (T- and B-
cell) immune system; indeed, high levels of serum and sputum antibacterial
antibodies are found in CF patients. However, there is evidence that some
CF patients with chronic Pseudomonas aeruginosa colonization have more
of a Th2 response than uncolonized CF controls13. Nevertheless, it does
appear that the prolonged microbial colonization/infection that is
characteristic of the CF lung results from defects in the innate or non-
specific immune system. This is characterized by chronic infection with
Staphylococcus aureus and non-capsulate Haemophilus influenzae in early
life, followed by Ps. aeruginosa and Burkholderia cepacia, and much later
Stenotrophomonas maltophilia14, Alcaligenes xylosoxidans, non-tuber-
culous mycobacteria and some previously unidentified bacteria15. In this
review, we will concentrate on mechanisms of persistence and aggression by
the two most important CF lung pathogens – Ps. aeruginosa and B. cepacia.

Pseudomonas aeruginosa
In recent years, the pseudomonads have been subdivided into a number
of new genera on the basis of the genetic sequences of their 16S-rRNA
genes, and the number of new species has increased exponentially (Table
2). Ps. aeruginosa is the most important member of rRNA homology
group I, and a major pathogen in the CF lung. It is a Gram-negative,
oxidase positive rod that is motile by means of polar flagella (Fig. 1). It
is ubiquitous in the moist environment, and can even grow in distilled
water and disinfectant solutions.
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Fig. 1 Negative stain
electron micrograph

of Pseudomonas
aeruginosa showing

flagella (f) and pili (p).
Bar = 500 nm.
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Epidemiology

It is generally assumed that there is a hierarchy of colonization in the CF lung
beginning with H. influenzae and Staph. aureus and subsequently with Ps.
aeruginosa and B. cepacia. However, it is now clear that Ps. aeruginosa can
affect the CF lung early in life; for example, 97.5% of children with CF in
three centres in the US were infected by the age of 3 years16. In general, Ps.
aeruginosa infection rates vary from 20–85% in most CF units, but with a
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Table 2 Medically important pseudomonads

rRNA homology group Species Infection in CF

I Pseudomonas Ps. aeruginosa Major pathogen
Ps. fluorescens Rare
Ps. putida Rare
Ps. stutzeri Rare
Ps. alcaligenes Very rare
Ps. pseudoalcaligenes Very rare

IIa Burkholderia B. cepacia (genomovars I, III & VI) Major pathogens
B. multivorans (formerly genomovar II) Common
B. stabilis (formerly genomovar IV) Common
B. vietnamiensis (formerly genomovar V) Common
B. ambifaria (formerly genomovar VII) Rare
B. gladioli Rare
B. pseudomallei Rare
B. mallei Not described
B. thailandensis Not described
B. glathei Not described
B. glumae Not described
B. gramnis Not described
B. ubonensis Not described

IIb Ralstonia R. pickettii Rare
R. gillardii Rare
R. mannitolytica Rare
R. paucula Rare

IIc Oxalobacter O. formigenes Absence in normal flora 
predisposes to nephrolithiosis

IId Pandoraea P. pulmonicola Rare
P. pnomenusa Rare
P. apista Rare
P. sputorum Rare

III Comamonas C. testosteroni Rare
C. denitrificans Not described

IV Brevundimonas B. diminuta Not described
B. vesicularis Not described

V Stenotrophomonas S. maltophilia Late in disease
S. africana Not described
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higher prevalence in adult units17,18. What affects the prevalence and age of
onset of Ps. aeruginosa infection is not entirely clear, but there is evidence
that continuous administration of antistaphylococcal antibiotics is
associated with a higher rate of acquisition of Ps. aeruginosa19. There is little
doubt, however, that infection with Ps. aeruginosa has a deleterious effect
in terms of declining lung function, increased hospital admission rates, and
increased and more rapid mortality20–23. This is particularly apparent if Ps.
aeruginosa infection occurs early in life21,23. In some units, there is now a
policy of early aggressive antipseudomonal therapy as soon as infection is
detected, since it is impossible to cure the infection once it is established.
This policy does seem to be effective both in preventing colonization and
mortality and morbidity24.

Ps. aeruginosa isolates can be typed for epidemiological purposes by
phenotypic methods (such as pyocin typing, serotyping, phage typing,
antibiogram) and genotypic methods such as pulsed field gel electrophoresis
(PFGE) of macro-restricted chromosomal DNA, random amplified poly-
morphic DNA (RAP-D), ribotyping or flagellin gene polymorphisms25–29. In
general, the genomic techniques are more sensitive and specific, but in
reality no one method is completely reliable. During prolonged infection,
the phenotype of Ps. aeruginosa can change from smooth, to rough, to
highly mucoid colonial variants which may all be of the same genotype.
During the early stages of disease, patients may be colonized intermittently
and each patient has a unique genotype16. However, patients can be infected
with two, three or more different genotypes concurrently or sequentially.
The sources of the bacteria are many, and can include the inanimate
environment both within and outside hospitals18,30,31. There is some
evidence of cross-infection, especially between siblings, although the pos-
sibility of infection from a common source remains28. Outbreaks of
infection with Ps. aeruginosa have been described in a number of CF units
including Denmark26, Liverpool27, Manchester32 and Melbourne33. Indeed,
the Liverpool strain has been shown not only to cross-infect but also super-
infect; that is, it colonizes patients already colonized by their own unique
Ps. aeruginosa strain which it can displace34. Furthermore, this highly
transmissible genotype was also able to cause pneumonia in the parents of
a CF patient carrying the bacterium35. The complete genomic sequence of
one strain of Ps. aeruginosa (PAO1) has now been published36. This is of
great importance because it provides a point of reference with which to
compare other strains including the highly transmissible lineages and will
help our understanding of how they persist and cause disease.

Persistence

The initial stage in infection is attachment of bacteria to mucosal
surfaces and/or the altered CF mucin. A confusing plethora of ligand-
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receptor systems have been described for binding of Ps. aeruginosa to
epithelial cells. These include pili (protein spikes that protrude from the
bacterial surface), outer membrane proteins and even lipopolysaccharide
on the bacterium37–39 and gangliosides (asialo-GM-1), fucose residues,
heparan sulphate proteoglycans or even the mutant CFTR itself40–43 on
the epithelial cell. In addition, Ps. aeruginosa binds to CF mucin via
outer membrane proteins44. It has been demonstrated that CF epithelial
cells express a greater density of an asialylated ganglioside receptor,
GM-1, on their apical surface perhaps as a result of poor acidification
of the Golgi where the gangliosides are processed45. It is suggested that
binding of Ps. aeruginosa to this receptor might then, as a result of
release of bacterial neuraminidase, expose more receptors. It has also
been postulated that, in the normal lung, the first extracellular domain
of CFTR (amino acids 108–117) acts as a receptor for Ps. aeruginosa
(via lipopolysaccharide) and this binding results in internalization of
bacteria39,43. This, it is proposed, is a mechanism for clearance of Ps.
aeruginosa from the lung, since the epithelial cells die perhaps by
apoptosis46 and dead cells plus internalized bacteria are removed. In the CF
lung, the mutant CFTR is not expressed (in the case of ∆F508) so there is
no receptor for internalization and Ps. aeruginosa accumulates43. This
hypothesis has been questioned by others, who found no correlation
between expression of CFTR (human or murine) and binding or clearance
of Ps. aeruginosa to or from epithelial cells in vivo or in vitro47. Heparan
sulphate proteoglycans are expressed on the basolateral rather than apical
surfaces of epithelial cells. It is postulated that the inflammatory process in
the CF lung loosens the tight junctions between cells thus exposing the
receptors and allowing greater adherence by Ps. aeruginosa42. From the
above, it is clear that there is no one unifying hypothesis to explain how
Ps. aeruginosa colonizes the CF airways. It is likely that the bacteria have
a number of different strategies for attachment depending on the strain,
stage of infection, and CFTR mutation.

Once established in colonization, Ps. aeruginosa must resist attempts
by the immune system to dislodge it. It is already at an advantage in that
three major components – the mucociliary escalator, peptide-mediated
killing, and NO production – are impaired. However, the CF airway is
a very harsh environment with large numbers of neutrophils, cytokines,
chemokines, complement, T-cells, B-cells and specific antibody9,10,13,48–50.
Indeed, attachment of Ps. aeruginosa to a lung pneumocyte cell-line or
epithelial cells from CF airways itself induces release of a number of
cytokines and regulatory proteins51–54. Pyocyanin, a phenazine redox
active molecule that gives Ps. aeruginosa its greenish pigment, can also
increase IL-8 expression in airway epithelial cells55. Nevertheless, the
bacterium is not eliminated. This may result from alterations in
neutrophil activity12 and inhibition of opsonophagocytosis by digestion
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of specific antibody by bacterial proteases such as elastase. Non-opsonic
phagocytosis of Ps. aeruginosa involves at least two different receptors
(CD14 and CR3) and it appears that mutants of Ps. aeruginosa can arise to
escape this route of bacterial killing56. Thus, despite a florid inflammatory
response, Ps. aeruginosa is able to persist in the CF airways.

During prolonged infection, the bacteria change tremendously, for
example, changing from smooth to rough colonial morphology by loss of
polysaccharide chains from lipopolysaccharide, by loss of flagella and
thus motility, and production of a mucoid exopolysaccharide (alginate)57.
The latter is particularly important in that it imparts further resistance to
neutrophil-mediated killing58, and contributes to the production of a
biofilm59. This ability to evolve rapidly is a survival trait that enables Ps.
aeruginosa to survive for years in the CF lung. For example, 36% of Ps.
aeruginosa strains from 30 CF patients were found to be hypermutators,
whereas this phenomenon was not found in 75 strains from non-CF
patients60. Under normal circumstances, hypermutability carries a cost
which limits survival; but, clearly in the CF lung, the cost of hyper-
mutability is offset by the need to survive in such a harsh environment.
Hypermutability often results from mutations in genes encoding DNA
repair and error avoidance genes (mutS, mutY) and this was so for the CF
isolates. Thus, in this case, the ability to mutate rapidly in the harsh
environment of the CF lung gives a survival advantage.

Another mechanism for survival is the production of a biofilm, and
there are morphological and genetic data indicating biofilm production
by Ps. aeruginosa in the CF lung59,61. At high densities, bacteria secrete
high concentrations of a diffusible auto-inducer such as an N-acyl-
homoserine lactone (HSL). This is produced by an enzyme which is a
member of the LuxI family62,63. In the case of Ps. aeruginosa, two
enzymes (RhlI and LasI) direct the synthesis of N-butyryl HSL and N-(3
oxododecanoyl)–HSL, respectively. These signal to all the other bacteria
so as to co-ordinate expression of virulence factors, alginate production
and formation of a biofilm. This process is called quorum sensing, and
enables a pathogen to reach a critical mass and then release its virulence
factors to produce a massive attack on the host. It is estimated that 4%
of the ~6000 Ps. aeruginosa genes are controlled by quorum sensing.
Following attachment to mucosal cells, the bacteria multiply and move
together by twitching motility (mediated by type IV pili), to form
microcolonies64. At this stage, quorum sensing induces alginate synthesis
and biofilm formation occurs61,62. Within the biofilm, the bacteria are
relatively well protected from the external environment including both
host-produced microbicides and antimicrobial drugs. The latter explains
why it is so difficult, if not impossible, to clear Ps. aeruginosa infection
once it is established. Once the alginate-producing mucoid phenotype
has been induced, it persists and, in addition to quorum sensing-
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mediated conversion, it has been shown that hydrogen peroxide (an
oxidant released by activated neutrophils), can induce mucoid Ps.
aeruginosa in a biofilm in vitro65.

Aggression

Infection by Ps. aeruginosa in the CF lung does not usually lead to
immediate morbidity or mortality. Rather, it is a process of chronic
infection with frequent exacerbations leading to a gradual decline in
lung function. How much is a result of bacterial aggression or of the
chronic inflammatory response to the bacterium is unclear. However, Ps.
aeruginosa does have an impressive array of virulence determinants. It
releases a variety of hydrolytic enzymes including proteases, elastase,
lipase, phospholipase, alkaline phosphatase and mucin sulphatase. For
some, release is apparently within vesicles formed from the bacterial
outer membrane and release can be increased 3–5-fold by exposure to,
for example, gentamicin66. Ps. aeruginosa is able to catalyze the break-
down of pulmonary surfactant, perhaps by phospholipase C activity
although non-mucoid strains were more active than mucoid67. Most
strains of Ps. aeruginosa produce a range of proteolytic enzymes active
against a variety of substrates. Elastase degrades elastin and immuno-
globulins. The mucin in the CF airways has sulphated terminal sugars
and this prevents digestion by bacterial saccharidases. However, both
Ps. aeruginosa and B. cepacia have mucin sulphatase activity68 which
allows further degradation of mucin and exposure of new receptors for
pathogens. In addition, Ps. aeruginosa produces a number of other
factors including pyocyanin55, haemolysins, cytotoxins and siderophores
all of which may contribute to aggression.

Two categories of Ps. aeruginosa isolates have been described that are
invasive or cytolytic, but non-invasive for epithelial cells. Many pathogenic
bacteria have type III secretion systems (TTS) that are assembled when the
bacteria are in contact with epithelial cells69. TTS systems are used to
transport effector molecules across the Gram-negative bacterial cell wall
and have an apparatus for injecting them into host cells, by which they alter
host cell activity. In Ps. aeruginosa, two of the TTS secreted effectors are
exoenzyme S (ExoS) and ExoT, both of which are ADP-ribosyl-
transferases70. ExoS induces transcriptional expression of a number of pro-
inflammatory cytokines and chemokines, thus contributing to pulmonary
inflammation71. It appears that the invasion into epithelial cells is associated
with defects in the TTS72. Recently, a genomic island, Ps. aeruginosa
genomic island-1 (PAGI-1) which represents a 6729 bp region deleted from
PAO1, has been found in 85% of clinical isolates including from CF
patients73. As yet, it is unclear what roles the TTS system or PAGI-1 play in
the pathogenesis of infection in the CF lung.
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Burkholderia

Burkholderia spp. are in rRNA group II (Table 2), along with other CF lung
pathogens such as Ralstonia picketii and Pandoraea spp74. However,
Burkholderia spp., and in particular B. cepacia, are the most important
pathogens in this group. They are Gram-negative, rod-shaped bacteria, motile
by polar flagella  (Fig. 2). They are unusual in that they do not have one
circular chromosome but 2–4 circular replicons75,76. In addition, there are a
number of insertion elements in the genome77. All of the above indicate that
Burkholderia spp. have tremendous genomic plasticity.

There are a number of Burkholderia species, and B. cepacia has been sub-
divided into a number of genomovars by DNA–DNA and DNA–ribosomal
RNA hybridization studies57,78. The term genomovar is used since, by
taxonomic convention, bacteria cannot be given a species name unless
identifiable by phenotypic characteristics. However, some of the
genomovars have now been given species names (see Table 2) and rapid
methods devised for their differentiation79,80. To date, only genomovars
I, III and VI remain in the B. cepacia complex.

Epidemiology

B. cepacia is named after Burkholder who, in 1950, discovered it was
the cause of onion soft rot (cepia is Latin for onion), and it is known that
Burkholderia spp. are also widely distributed as saprophytes in the
environment78. Prior to the 1980s, B. cepacia was regarded as a rare
opportunist causing nosocomial respiratory, urinary tract or soft tissue
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Fig. 2 Negative stain
electron micrograph

of Burkholderia
cepacia showing pili.

Bar = 500 nm.
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infections, which was able to survive in disinfectant solutions78. Then, it
became clear, that it was associated with infection in the CF lung81 and
widely distributed in the environment57,78.

Subsequently, it emerged that certain strains of B. cepacia were highly
transmissible and some could cause lethal infection in CF patients78,82–84. A
variety of methods are available for typing B. cepacia. These include
phenotypic methods such as pyrolysis mass spectroscopy85 and lipopoly-
saccharide chemotyping86, but genotypic methods such as PFGE, flagellin
RFLP typing and ribotyping remain the gold-standard57,78,82,83,87,88. There is
one highly transmissible lineage called ET-12 (Edinburgh-Toronto) which is
in B. cepacia genomovar III. This possesses two markers of transmissibility
cable pili (cbl)89 and BCESM (B. cepacia epidemic strain marker)90. The
presence of cbl genes seems to be limited to epidemic genomovar III strains,
but BCESM is present in epidemic and non-epidemic strains of B. cepacia
genomovars I and III as well as in B. multivorans and B. stabilis91.

Certain strains of B. cepacia especially, but not only ET-12, are easily
spread, person-to-person, directly presumably via respiratory secretions,
(counts can exceed 108 cfu/ml) by, for example, kissing, or hands, or
indirectly via spirometers or other medical equipment. Spread can occur
both in hospital82 and in a social setting57,78,83. One B. cepacia strain (not
ET-12) has caused a nosocomial outbreak of infection in CF and non-
CF patients88. The results of infection can vary from prolonged carriage
with a gradual decline in lung function to fatal ‘cepacia syndrome’ with
necrotizing pneumonia and bacteraemia82. Why such differences should
occur is not clear, but might be related to other deficiencies unrelated to
CFTR mutations, for example in mannose-binding lectin92.

As with ‘epidemic’ strains of Ps. aeruginosa34, it appears that B.
cepacia ET-12 can super-infect CF patients already colonized with non-
epidemic strains, displace them and result in fatal ‘cepacia syndrome’93.
This adds an extra layer of complexity for prevention of spread of B.
cepacia94. Finally, although B. cepacia is described as a pathogen of
onions and humans, there has been a recent outbreak of mastitis in dairy
sheep predominantly due to genomovar III95. In addition, B. cepacia is
being developed for use as a biopesticide to protect crops against fungi
and for bioremediation to break down herbicides that are not easily
biodegradable96. This could pose a further threat to CF patients and its
use should be approached with extreme caution.

Persistence

Following transmission, the initial interaction between B. cepacia and the
airways mucosa involves attachment. At least 5 morphologically different pili
have been detected on epidemic and non-epidemic strains including: cable,
filamentous, spikes and mesh forms97. Of these, the cable pili which are
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associated with B. cepacia ET-12 are best characterized89. The receptor for
cable pili is cytokeratin 1398 which is enriched on the hyperplastic epithelia
of CF airways99. Some cable pilus-negative B. cepacia appear to bind to
asialo GM1100. B. cepacia is also able to bind respiratory mucin from CF
patients101. Once established in colonization, B. cepacia must resist the
bronchial killing and elimination mechanisms. Unlike Ps. aeruginosa, B.
cepacia is resistant to epithelial derived antimicrobial peptides no matter
what the salt concentration102. The ability to scavenge iron using a
siderophore, ornibactin, is also important for the persistence of B.
cepacia103. The CF airway also contains a number of reactive oxidants such
as superoxide, hydrogen peroxide, hypochlorite and singlet oxygen released
from activated neutrophils and macrophages. These are extremely toxic for
bacteria, but virulent B. cepacia have evolved mechanisms for resisting
attack. Such mechanisms include production of a melanin pigment104 and
expression of haem dimer binding proteins on the bacterial surface105 which
imparts catalase activity. Finally, B. cepacia does appear to have the ability
to exist in a biofilm both in the CF lung and on plastic catheters106,107, and
there is recent evidence of a quorum sensing system mediated by N-
octanoylhomoserine lactone108. This raises the intriguing possibility of
cross-talk between Ps. aeruginosa and B. cepacia in the CF lung.

Aggression

It is not clear how B. cepacia produces such devastating infection nor why
some patients have prolonged infection with gradual decline in lung function
and others develop ‘cepacia syndrome’ with identical bacteria. B. cepacia
produces an impressive array of potential virulence determinants including
protease, lipase, haemolysins, mucin sulphatase and cytotoxins57,68,78,109,110. Of
note, the haemolysin has also been shown to induce degranulation and
programmed cell death of neutrophils109 leading to both protection of bacteria
and lung damage. Clinical isolates of B. cepacia also secrete greater amounts
of cytotoxins than environmental strains. In the presence of ATP these
cytotoxins induce macrophage and mast cell death110. B. cepacia is also able
to penetrate into, and survive within, cultured macrophages and lung
epithelial cells111,112. Isolates of B. vietnamiensis and B. cepacia genomovar VI
were able to survive for at least 5 days in activated macrophages and bacterial
entry stimulated the macrophages to release TNF and reactive oxidants111.
Thus it is proposed that repeated cycles of phagocytosis and macrophage
activation could promote chronic inflammation. It is noteworthy that B.
cepacia can also survive and grow within free-living amoebae113, a situation
that parallels that of another lung pathogen Legionella pneumophila. How
these phenomena are orchestrated is unclear, but the recent discovery of genes
encoding a putative type III secretion system in B. cepacia ET-12114 might help
to provide an explanation. The recent description of a model of B. cepacia
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infection in Cftr–/– mice will also help to advance our understanding of the
pathogenesis of infection115.
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