
 

 

 University of Groningen

Depression of Glass Transition Temperatures of Polymer Networks by Diluents
Brinke, Gerrit ten; Karasz, Frank E.; Ellis, Thomas S.

Published in:
Macromolecules

DOI:
10.1021/ma00236a017

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1983

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Brinke, G. T., Karasz, F. E., & Ellis, T. S. (1983). Depression of Glass Transition Temperatures of Polymer
Networks by Diluents. Macromolecules, 16(2). https://doi.org/10.1021/ma00236a017

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 25-08-2022

https://doi.org/10.1021/ma00236a017
https://research.rug.nl/en/publications/bb8cc92f-5686-4d3b-b81c-c88c595ef9e9
https://doi.org/10.1021/ma00236a017


244 Macromolecules 1983,16, 244-249 

The slope of the HDPP line, ys, is then calculated as 
(as/aw,),, 

Ys 6w, s=o (as/aw,),, 6w31 = - (Al-2) 

with the result given in eq 16. 
At  S = 0, the function Ji  of eq 5 is simply 

(Al-3) 

Substitution from eq 2 and 15 for r's and the inversion of 
the function then yield eq 17 for the direction of the xc 
contour lines a t  the HDPP line. 

Appendix I1 
Assume for a while that the HDPP line can indeed exist 

as a closed loop inside the triangle of polymer composi- 
tions. 

The direction of an HDPP line at  a particular point for 
a given system is a function of only r,; this is apparent from 
eq 16 if r,+l is expressed in terms of r, from the condition 
S = 0. Then at all points of intersection of the HDPP line 
with a given r, line running through the loop (at least two 
for each such rz line-one entry and one exit), the direction 
of the HDPP line ys would have to be identical. This 
requirement, however, cannot be satisfied. For instance, 
the two points of intersection A' and A" of Figure 7, in- 
finitesimally close to the tangential point B, are by defi- 
nition on the same side of the tangential r, line b. Since 
the HDPP line is continuous, however, it is bound to have 
different slopes at points A' and A", although both points 
arise as points of intersection with the same r, line a. 

This proves that no r ,  line can form a tangent to the 
HDPP line and, consequently, that the HDPP line cannot 
exist as a closed loop entirely contained within the phys- 
ically significant triangle of compositions where wi > 0, i 
= 1, 2, and 3. 

Appendix I11 
We wish to prove the equivalence of two interpretations 

of the triple critical point in quaternary systems: (i) as 
an extremal point of the HDPP line, i.e., a point where the 
slopes of the HDPP line and of a xc contour line are 
identical (cf. eq 16 and 17) 

Y s  = Yx,s (A3-1) 

(ii) as a point of the HDPP line where (cf. eq 18) 

z = o  (A3-2) 

Since the two conditions contain variables of different 
nature, the compositions w2 and w3 of yxs and the average 
rE+2 of Z are first expressed in terms of r l ,  r2, and r3 and 
the averages r, and rz+l, with the result 

Yx,s = 
Ar2 rz(r,+l - rl - 4 + r1r2 rz(rz+l - R)  + 7173 + r2r3 

Ar, r,b,+l - r1 - r3) + rlr3 r2(r2+l - R )  + vz + v - 3  

Rr,r2+l - Pr, - r,2(10r2+1 - 15r, + 6) + T (A3-4) 

-- 

(A3-3) 

Z 

where 
R = rl + r2 + r3 

P = r1r2 + r2r3 + r1r3 

T = r1r2r3 

Using these two forms, one can prove after some tedious 
rearrangements that the above conditions (i) and (ii) are 
indeed equivalent. 
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ABSTRACT: A classical thermodynamic theory is used to derive expressions for the depression of the glass 
transition temperature Tg of a polymer network by a diluent. The enhanced sensitivity of Tg in cross-linked 
systems to small amounts of diluent is explained. Predictions of the theory are in satisfactory agreement 
with the experimental values of a particular polymer network/diluent system. 

Introduction 
Some years ago Couchman and Karaszl presented a 

classical thermodynamic analysis of the effect of compo- 
sition on glass transition temperatures of binary mixtures. 

0024-9297/83/2216-0244$01.50/0 

This theory has been used to describe successfully the glass 
transition temperature of compatible polymer blends.2 
R e ~ e n t l y , ~ - ~  this was also applied to polymer/diluent 
systems, proving the ability of the theory to deal with a 
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Table I 

system 

PS/ethvlbenzene 385 113 
PSIS t yiene b 378 l i s  
PSIhexamer 378 255 
epoxy / water b 41 2 134 
epoxy/methanol 412 104 
epoxylethanol 412 102 
epoxy/butanol 412 184 

0.28 0.7 6.5 6.7 
0.27 0.77 7 7.4 
0.27 0.41 2 1.9 
0.35 1.94 15 15.4 
0.35 0.81 7.5 7.1 
0.35 0.67 5 5.9 
0.35 0.51 2 3.3 

Reference 7.  References 3 and 4.  

wide variety of systems. An even more challenging situ- 
ation arises by considering the glass transition temperature 
depression of polymer networks by diluents. Former ap- 
plications of the Couchman-Karasz approach to these 
systems, however, invariably overestimated the plastici- 
zation effect.*5 It is the purpose of this paper to establish 
that these systems are also well within the scope of the 
theory. 

Compositional Variation of T, 
Couchman and Karasz’ treated the glass transition as 

a quasi-second-order phase transition in the Ehrenfest 
sense. Using the characteristic continuity of the total 
system entropy, they derived an expression for the glass 
transition temperature Tg of a binary mixture as a function 
of the pure component properties: 

- C,;) d In T + AS,’ - ASmg = 0 (1) 

In this relationship xi, Tg, C,;, and C,; (i = 1 and 2) denote 
the mole fraction, the glass transition temperature, and 
the specific heat of the liquid and the glassy state of 
components 1 and 2, respectively. AS,’ and AS,g are the 
excess entropies of mixing just above and below Tg. 
Couchman2 argued that the difference AS,’ - AS,g may, 
in general, be neglected for compatible polymer blends, 
because both ASm’ and ASmg are very small. For poly- 
mer/diluent systems both terms will be much larger. 
Nevertheless, their difference may still be negligible be- 
cause it is known2 to be zero for ideal and regular solutions. 
Deviations may be expected in some cases. In particular, 
as indicated by Angel1 et a1.,6 any specific interaction be- 
tween polymer and solvent will most probably result in a 
greater than normal change of Tg with x 2 ,  whereas a 
flattening out of the T composition dependence may be 
caused by imminent piase separation. The latter is of 
considerable importance for polymer/diluent systems, 
since nearly all these systems show phase separation upon 
cooling (UCST) and upon heating (LCST). Depending on 
the system under investigation, either of these phase 
separation phenomena may interfere with the glass tran- 
sition. However, in our treatment we will, unless otherwise 
indicated, assume that the excess entropy of mixing dif- 
ference can be neglected. Equation 1, therefore, reduces 
to 

4: AC,, d In T + x2L>CP2 d In T = 0 (2) 

where ACpi r C,; - Cp: (i = 1 and 2). 
We are interested in binary mixtures in which the first 

component is a polymer and the second component is a 
low molecular weight solvent. In that case the mixture Tg 
satisfies Tg2 < Tg < Tgl. Any application of eq 2 therefore 

requires knowledge of the extrapolated values of the spe- 
cific heat of the glassy state of the diluent to temperatures 
above Tg2 and of the specific heat of the liquid state of the 
polymer to temperatures below Tgl. A way to solve this 
problem is to assume that as a first approximation AC,, 
and AC,, are independent of temperature. This has proven 
to be a very good approximation for some polymer blends? 
principally because the difference between the pure com- 
ponent glass transition temperatures is rather small. For 
polymer/diluent systems, this would be a very questionable 
approach since, in this case, the T i s  are usually several 
hundreds of degrees apart. In order to solve this problem 
we note first that our main interest is the depression of 
the glass transition temperature due to small amounts of 
diluent. In this limit one obtains by differentiating eq 2 

where now ACpl is the incremental change in specific heat 
at  Tgl. This expression shows that the depression due to 
a small amount of diluent is determined by the tempera- 
ture dependence of AC,,. The temperature dependence 
of AC,, plays no role in this limit. Heretofore, eq 3 has 
nearly always been used assuming AC,, to be independent 
of temperature, which resulted in a greater glass transition 
temperature depression than observed. A more accurate 
approximation6 is given by ACp2 = constant/T, where the 
constant is determined by the value of AC,, a t  Tg2. Sub- 
stituting this into eq 3 results in 

where from now on AC,, and AC,, are the incremental 
changes in specific heat a t  T and Tg2, respectively. 

Equation 4 has been appliedlto a number of systems for 
which experimental results were obtained at  our labora- 
tory. Table I shows that it gives a good account of the 
observed behavior. It should be noted that the epoxys are 
actually lightly cross-linked networks. The results in Table 
I support the correctness of the approximations involved 
in this treatment: the inverse proportionality to temper- 
ature of the extrapolated incremental change in specific 
heat of the diluent and the smallness of the difference AS; 

Effect of Cross-Linking 
Introducing cross-links in a polymer system will obvi- 

ously not have any influence on the pure component 
properties of the diluent. The excess entropies of mixing 
ASm’ and AS,g, however, will change. Their difference may 
become important if the cross-linked system interacts, due 
t o  the cross-links, strongly with the diluent. We will 
consider only networks for which the change in chemical 
composition that accompanies the introduction of cross- 

- AS,g. 
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Table IIa 
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cross-linked samples. We will offer a simple solution to 
this problem. 

The overestimation of (dTg/dx2)xlz0 is, in general, due 
to a strong decrease of AC, with increasing degree of 
cross-linking. Each cross-link forces two chains to come 
in close contact. Cross-linking is therefore equivalent to 
the introduction of strong attractive interaction between 
different chains. This leads to a higher glass transition 
temperature. Moreover, this linking of various chain units 
by means of normal valency bonds reduces the number of 
units capable of being thermally activated, that is, capable 
of carrying out micro-Brownian or wriggling movements." 
Only the chain units with benzene rings attached to them 
that are not cross-linked can in principle rotate around the 
bent valency bonds of the chain. However, measurements 
of Uberreiter and Kanig'l on styrene/divinylbenzene 
networks show that, for less than four carbon atoms be- 
tween two successive cross-links, thermal activation of that 
part of the network is also almost impossible. In general, 
AC I becomes vanishingly small a t  high degrees of cross- 
l inR~ng.~-~ The measured incremental change in specific 
heat represents only the activation of those units that are 
capable of rotating around the valency bonds of the chain. 
We will as a first approximation assume that they have 
the same number of degrees of freedom, which are frozen 
in at Tg, as the units in the un-cross-linked chain. The 
observed depression of the glass transition temperature 
by a diluent is determined by these units. 

Let fd(X) denote the fraction of chain units capable of 
being activated for a degree of cross-linking X. The in- 
cremental change in specific heat per mole of units capable 
of being activated ACplact(X) is then given by 

ACpFt(X) = AC,,(X)/f""t(X) (7) 

where AC,,(X) is the experimental value of the incremental 
change in specific heat per mole of chain units. Equation 
4 for the depression of the glass transition temperature 
becomes accordingly 

% DVB 
(w/w) Tg,, K J/(g K) exptl calcd 

0 38 5 0.283 6.5 6.7 
5 390.3 0.252 6.5 7.7 

21.0 415.6 0.200 8 10.6 
35.7 444.9 0.095 10  24.5 

a Experimental data; see ref 7. 

links can be ignored. An obvious example is given by 
styrene/divinylbenzene cross-linked polymers. The only 
difference between this network and pure polystyrene is 
that some of the free benzene rings in polystyrene are 
joined to a neighboring chain by normal covalent bonds. 
As a result both AS,' and AS,g will for a particular diluent 
diminish, and it seems even more likely that their differ- 
ence is negligible. This will also be the case for a number 
of other polymer network/diluent systems. To illustrate 
this, we consider first an ideal or a regular solution of a 
non-cross-linked polymer and a solvent. The entropy of 
mixing of such a system is given by 

(5) 
where 41 and 42 are the volume fractions of the polymer, 
with a degree of polymerization pl, and the solvent, re- 
spectively. For an ideal polymer network and a diluent 
this becomes8 

AS,,, = -42 In 42 + ASel (6) 
where AS,, represents the entropy change associated with 
the change in configuration of the network. Since ASel is 
negative, it is clear that cross-linking reduces the entropy 
of mixing. Moreover, in this simple example AS, is solely 
configurational and therefore continuous at T . 

In order to compare predicted depressions of the glass 
transition temperature based on eq 4 with observed ones, 
one has to know the glass transition temperature Tg and 
the incremental change in specific heat AC,, as a function 
of the degree of cross-linking. DSC measurements of 
cross-linked samples show a pronounced widening of the 
transition region due to the fact that the meshes are of 
different lengths. The chain units in the longest mesh are 
the first to be activated in the sense of cooperative motion 
followed by the remaining ones. As the glass transition 
temperature one should take the temperature at which the 
great mass of chain units becomes activated. Conse- 
quently, the most appropriate way to determine the glass 
transition temperature of a network from a DSC scan is 
by the so-called midpoint method. 

Table I1 contains the glass transition temperatures de- 
termined in this manner and the incremental change in 
specific heat for three different degrees of cross-linking of 
styrenefdivinylbenzene netw0rks.I Also included are the 
experimental and the predicted values of (dTgfd~2)xz=0,  
using ethylbenzene, which is known to be a good solvent 
for polystyrene?JO as a diluent. The latter are obtained 
from eq 4 using data of Tables I and 11. As has been noted 
previ~usly,~-~ there is an increasing discrepancy between 
observed and predicted depressions with increasing degree 
of cross-linking. This has also been noticed for a number 
of other polymer networkldiluent  system^.^ 

So far, this failure has been ascribed to the inadequacy 
of the assumptions involved in the derivation of the ex- 
pression for dTgfdx2. However, as pointed out before, 
there is no reason to believe that approximations which 
are apparently valid for pure polystyrene/ethylbenzene 
mixtures will cease to be valid for styrenefdivinylbenzene 

As,  = - 4 d ~ 1  In 41 - 4 2  In 42 

The fraction of the chain units between two cross-links 
that are capable of being activated depends on the distance 
between the cross-links. For styrene/divinylbenzene 
networks, for instance, this fraction drops to zero for 
distances of less than four carbon atoms. Uberreiter and 
Kanig showed that for a low degree of cross-linking the 
fraction of excluded units is approximately equal to the 
fraction of divinylbenzene units. For larger degrees of 
cross-linking the number of excluded units increases much 
faster. A way to obtain an approximate value for this 
number is to assume that the incremental change in spe- 
cific heat ACPFt(X) is independent of the degree of 
cross-linking. A similar procedure is followed in the study 
of melting point depression of cross-linked systems.I2 This 
melting point depression is a result of a reduction of the 
concentration of segments of length suitable for crystal- 
lization. One obtains a value for the concentration of chain 
units prevented from crystallization by considering the 
heat of fusion with increasing cross-link density. If the 
heat of fusion per mole of crystallizable units is taken to 
be temperature independent, the number of excluded units 
follows simply from the measured heat of fusion. In our 
case the fraction of units participating in the glass tran- 
sition would then be given by 

f?X) = AC,,(X)/AC,,(X = 0) (9 )  

and eq 8 reduces to 
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ACP2 
[dTg(X)/dX21X2=0 = ac,l(x = o) [Tg,(X) - Tg,l  (10) 

The increase of the depression of Tg by a small amount 
of diluent with increasing cross-linking would then exclu- 
sively be the result of the increase of Tgl(X). This is, 
however, an oversimplification. The incremental change 
in specific heat per mole of units capable of being activated 
does depend on the freezing-in temperature and we will 
consider this in more detail in the next section. 
Incremental Change in Specific Heat 

Studies of statistical mechanical properties of polymer 
systems are usually based on quasi-lattice models. A 
polymer molecule is assumed to consist of a number of 
segments, each occupying one lattice site. The hard-core 
interaction is simulated by the constraint that a lattice site 
can only be occupied once. In addition, there are purely 
intramolecular interactions of the rotational isomeric type. 
They give rise to one trans and usually two gauche con- 
formations. The latter correspond to links in the chain. 
Using this lattice model, Gibbs and DiMarzio13J4 derived 
an approximate expression for the configurational entropy 
of a system consisting of polymer molecules and holes. 
They argued that the configurational entropy per lattice 
site becomes zero a t  a certain temperature Tz > 0 and 
remains zero below T2. At T2 there is a second-order phase 
transition characterized by a discontinuity in specific heat, 
thermal expansion coefficient, and compressibility. The 
experimentally observed glass transition Tg is treated as 
a kinetic process but should ultimately coincide with Tz 
at  infinitely slow cooling. This model has proven to give 
a very useful description of a number of phenomena con- 
nected with a glass t ran~i t i0n. l~ In particular the ex- 
pression for the discontinuity in specific heat is given by16P 

I AC,, = n${( &)kl - f ,  4- 4TAa1(1 - 4.17TAal) 

(11) 
where n, is the number of flexible bonds, R the gas con- 
stant, k Boltzmann's constant, T the absolute temperature, 
t the energy difference between the gauche states and a 
trans state, f the fraction of bonds in the gauche state, and 
Aal the discontinuity in the thermal expansion coefficient. 
The freezing-in of the conformational population a t  the 
glass transition temperature gives rise to the first term 
between the brackets, whereas the second term is due to 
the freezing-in of free volume or number of holes. 

However, it soon appears that an explanation of the 
observed AC for various polymers, based on this ex- 
pression, coufd only be given by making questionable as- 
sumptions for either the number of flexible bonds or the 
number of different gauche states or both."J8 The natural 
choice usually gives too small a value. An additional 
difficulty arises from the fact that GujratiIg recently 
showed that the predicted second-order phase transition 
is most likely an artifact due to the approximation involved 
in evaluating the configurational entropy. 

In spite of this, it is believed that the freezing-in of the 
conformational population is an important part of the glass 
transition. Roe and TonellP showed that the sum of this 
contribution AClconf and the one associated with the 
freezing-in of the free volume AClfi cannot explain all of 
the observed AC 1. Three other possible contributions 
suggested by Gol$steinz1 are associated with changes with 
temperature of vibrational frequencies, anharmonicity, and 
number of groups participating in secondary relaxations. 
Analyzing data obtained by Chang et al., he concludes that 
in most cases the larger contribution is due to either an- 
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harmonicity or secondary relaxations. Roe and Tonelli,22 
however, calculated one part of the vibrational contribution 
due to the freezing-in of the torsional oscillations of the 
chain backbone bonds. For a number of polymers, in- 
cluding polystyrene, it appeared that the sum of this term 
and the aforementioned contributions ACIConf and AClfv 
is, although still smaller, close to the observed incremental 
change in specific heat. 

Recently, DiMarzio and Dowe1lZ3 also introduced a 
contribution due to the change in vibrational frequencies 
into the Gibbs-DiMarzio theory. They claim an average 
agreement within 20% between predicted and observed 
values of AC,, for various polymers. However, the values 
they attribute to the configurational contribution arising 
from the freezing-in of the free volume are much larger 
than those following from the original Gibbs-DiMarzio 
theory. 

The foregoing analysis shows that the incremental 
change in specific heat results largely from the freezing-in 
of the conformational population, the torsional oscillations 
of the backbone, and the free volume. From this it is clear 
that the introduction of cross-links reduces the fraction 
of chain units that contribute to AC,,. The mobility of the 
latter units decreases also, but as stated before, we will 
assume that those degrees of freedom of these units that 
are frozen in at  the glass transition remain, as a first ap- 
proximation, the same. They can, in particular, still be 
in a trans or a gauche state (cf. ref 24). A higher glass 
transition temperature, therefore, results in a larger frac- 
tion of chain units in a gauche state. According to 
O'Reilly,13 the contribution to AC,, arising from the 
freezing-in of the conformational population, the first term 
of eq 11, is approximately inversely proportional to the 
freezing-in temperature. The dependence of this contri- 
bution on the degree of cross-linking is therefore com- 
pletely determined by the dependence of the glass tran- 
sition temperature on the degree of cross-linking. For the 
other contributions, the situation is much more compli- 
cated. However, Simha and Boyer25,26 presented argu- 
ments that for non-cross-linked polymers the product 
ACPlTg, is approximately constant. For cross-linked 
polymers this remains e q d y  valid, provided AC,, is taken 
to be the incremental change in specific heat per mole of 
units capable of being activated, i.e., AC,;". The foregoing 
analysis indicates that instead of assuming that ACpFt(X) 
is independent of X, it is more reasonable to assume the 
following: 

AC,,8"t(X)Tgl(X) = ACp1(X = O)Tgl(X = 0) (12) 

With this assumption eq 6 becomes 
[dTg(X)/dx21,,,o = 

This is the basic equation for the application of the 
Couchman-Karasz approach to polymer network/diluent 
systems, the validity of which will again be demonstrated 
for the styrene/divinylbenzene cross-linked polymers using 
ethylbenzene as a diluent. 

Application 
Equation 12 enables us to obtain AC,;"(X) as a function 

of the degree of cross-linking. The results for the above- 
mentioned systems are presented in the third column of 
Table 111. A comparison with the experimental data for 
AC,,(X) gives an estimation for the fraction of chain units 
Pt capable of being activated. Values for the fraction of 
units excluded from the glass transition, p'" = 1 - $", are 
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Table 111" 
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(dT,/dx,),2=0, K/% dil 
% DVB A c,, act, 
(w/w) f e x c ,  % J / (gK)  eq10  eq13  exptl 

0 0 0.283 6.7 6.7 6.5 
5 9 0.279 6.9 7 .0  6.5 

21 24 0.262 1.5 8.1 8 
35.7 61 0.245 8.2 9.5 10 

a Experimental data; see ref 7.  

presented in the second column of Table 111. They look 
very reasonable. In particular, the large value of 61 % for 
the highly cross-linked sample is illustrative of the property 
that meshes containing less than four carbon atoms are 
largely excluded from activation. A percentage of 35% 
divinylbenzene implies an average mesh width of about 
three carbon atoms. The fact that 39% of the chain units 
can still be activated results primarily from the nonuni- 
formity of the mesh lengths and other network imperfec- 
tions. 

The depression of the glass transition temperature of 
the different styrene/divinylbenzene networks by small 
amounts of ethylbenzene can easily be calculated from eq 
13. The results are presented in column 5 and the 
agreement with the experimental values is within exper- 
imental error. For completeness, column 4 contains the 
calculated values using eq 10. They show a much smaller 
sensitivity for cross-linking. This clearly supports the 
viewpoint that the inverse proportionality of AC,,8ct(X) 
to temperature is a much better approximation than the 
assumption, underlying eq 10, that ACpIact(X) is inde- 
pendent of temperature. The enhanced sensitivity of the 
glass transition temperature of cross-linked polymers to 
small amounts of diluent is therefore due to both the in- 
crease of T ,(X) and the decrease of AC "'YX). The latter, 
however, cfecreases much less than tR'e observed incre- 
mental change in specific heat AC, . 

In the first section we assumed that the extrapolated 
change in specific heat AC,, of the diluent is inversely 
proportional to the temperature in the temperature range 
above Tgz. If one assumes the same to be valid for the 
non-cross-linked polymer in the temperature range below 
Tg,, eq 2 results in 

x lAC,,Tg, + xz AC,, Tgz 
XlAC,, + XZAC,, 

Tg = (14) 

A similar relation has previously been derived by Gordon 
et aLZ7 within the framework of the Gibbs-DiMarzio the- 
ory. Couchman and Karasz' also derived it using the 
classical thermodynamic theory outlined in the first sec- 
tion. The latter derivation, however, suggests a very re- 
strictive applicability. The obvious extension of eq 14 to 
polymer networks is given by 

~iAcp,8"t(x)Tg1(X) + X&p2Tgl 
(15) 

Using this expression and the values of A C p F t ( X )  pres- 
ented in column 3 of Table 111, we have calculated the glass 
transition temperature depression for various amounts of 
ethylbenzene. Figure 1 shows that the agreement with the 
experimental values is good. 

For the system with the highest degree of cross-linking 
the predicted depression is somewhat smaller than the 
observed one, implying that the actual value of AC, act is 
lower than the calculated one based on eq 12. +his 
equation is based on the assumption that the number of 
degrees of freedom, which are frozen in at Tg, of those units 

X ~ A C , ~ ~ ~ ~ ( X )  + xZACp2 T g W )  = 

I \ 3 

100 I 
3 
0 004 008 012 016 

Figure 1. Comparison of the depression of TB by ethylbenzene 
determined experimentally with that predicted by eq 15 for 
polystyrene (1) and two styrene/divinylbenzene networks: (2) 
21.0% DVB; (3) 35.7% DVB. (-) Experimental, (---) theory. 

which can be activated remain the same for different de- 
grees of cross-linking. For a high degree of cross-linking 
it seems likely that there is also a reduction in the number 
of degrees of freedom, resulting in a lower ACplact. 

Concluding Remarks 
It has been demonstrated that the classical thermody- 

namic theory that worked so well in predicting mixture 
Tis  for some polymer blends works equally well for at least 
one polymer network/diluent system. The application to 
polymer networks is based on the assumption that the 
main effect of cross-linking is to reduce the number of 
chain units which can be thermally activated. Moreover, 
these chain units are the only ones involved in the observed 
glass transition temperature depression by diluents. For 
not too high degrees of cross-linking, the observed decrease 
of AC, is primarily due to this reduction. A smaller part 
arises hom the higher glass transition temperature and 
from a decrease of the number of degrees of freedom of 
the activated units. At a very high degree of cross-linking, 
AC,, becomes vanishingly small and the glass transition 
can no longer be observed by a DSC scan. It is, however, 
still possible to detect a Tg using dynamic mechanical 
measurements. The foregoing analysis shows that one 
should expect a much larger depression of the Tg of such 
a system by small amounts of diluent than for the systems 
discussed in this paper. 

Acknowledgment. This work was supported in part 
by AFOSR 80-0101 and partly by the Center for University 
of Massachusetts-Industry Research on Polymers (CU- 
MIRP). 

Registry No. Divinylbenzene-styrene copolymer, 9003-70-7. 

References and Notes 

Mole fraction of ethyl benzene 

(1) Couchman, P. R.; Karasz, F. E. Macromolecules 1978,11,117. 
(2) Couchman, P. R. Macromolecules 1978, 11, 1156. 
(3) Moy, P. Ph.D. Thesis, University of Massachusetts, 1981. 
(4) Ellis, T. S.; Moy, P.; Karasz, F. E. Polym. Prepr., Am. Chem. 

SOC., Diu. Polym. Chem. 1981, 22, 121. 
( 5 )  Ellis, T. S.; Karasz, F. E. 11th NATAS Conference, New Or- 

leans, 1981. 
(6) Angell, C. A,; Sare, J. M.; Sare, E. J. J .  Phys. Chem. 1978,82, 

2529. 
(7) Ellis, T. S.; Karasz, F. E.; ten Brinke, G. J .  Appl. Polym. Sci. 

1983, 28, 23. 



Macromolecules 1983,16, 249-252 249 

(8) Florv. P. J. 'Princides of Polvmer Chemistrv": Cornel1 Uni- . ,  _ I  

versity Press: Ithka, NY, 1953. 
(9) Hocker, H.: Flow, P. J. Trans. Faraday SOC. 1971, 67. 2270. 
(10) Palmen, K.' J. Thesis, Technische Hochschule Aachen, West 

Germany, 1965. 
(11) Ueberreiter, K.; Kanig, G. J .  Chem. Phys. 1950, 18, 399. 
(12) Posthuma de Boer, A.; Pennings, A. J. Faraday Discuss. Chem. 

SOC. 1979, 68, 345. 
(13) Gibbs, J. H.; DiMarzio, E. A. J .  Chem. Phys. 1958, 28, 373. 
(14) Gibbs, J. H.; DiMarzio, E. A. J.  Chem. Phys. 1958, 28, 807. 
(15) Gibbs, J. H. "Modern Aspects of the Vitreous State", Mac- 

Kenzie, J. D., Ed.; Butterworths: Washington, D.C., 1960; pp 

(16) DiMarzio, E. A.; Gibbs, J. H.; Fleming, P. D., 111; Sanchez, I. 
C. Macromolecules 1976, 9, 763. 

152-187. 

(17) O'Reilly, J. M. J .  Appl. Phys. 1977,48, 4043. 
(18) Havlicek, I.; Vojta, V.; Ilavsky, M.; Hrouz, J. Macromolecules 

(19) Gujrati, P. D. J .  Phys. A: Math. Gen. 1980, 13, L437. 
(20) Roe, R.-J.; Tonelli, A. E. Macromolecules 1978, 11, 114. 
(21) Goldstein, M. J.  Chem. Phys. 1976, 64, 4767. 
(22) Roe. R.-J.: Tonelli. A. E. Polvm. Prem.. Am. Chem. SOC.. Diu. 

1980, 13, 357. 

. ,  ,-  
Polym. Chem. 1981,21, 419: 

(23) DiMarzio, E. A,; Dowell, F. J .  Appl. Phys. 1979, 50, 6061. 
(24) DiMarzio, E. A. J.  Res. Natl. Bur. Stand., Sect. A 1964, 68A, 

61 1 
(25) Simha, R.; Boyer, R. F. J.  Chem. Phys. 1962, 37, 1003. 
(26) Boyer, R. F. J .  Macromol. Sci., Phys. 1973, B7, 487. 
(27) Gordon, J. M.; Rouse, G. B.; Gibbs, J. M.; Risen, W. J., Jr. J .  

Chem. Phys. 1977,66,4971. 

Method for Estimating the Entropy of Macromolecules with 
Computer Simulation. Chains with Excluded Volume 

Hagai Meirovitch 
Chemical Physics Department, Weizmann Institute of Science, Rehouot 76100, Israel. 
Received March 18. 1982 

ABSTRACT: An approximate method for estimating the entropy of macromolecules with computer simulation 
is developed and applied preliminarily to relatively short (N I 49) self-avoiding walks (SAWS) on a 3-choice 
square lattice and a Schoice simple-cubic lattice. The accuracy of SEV, the contribution of the excluded volume 
(EV) effect to the entropy, is estimated for both lattices to be better than 1 %. However, when the SAWS 
are confined within a "box", additional long-range contacts are formed and the estimated accuracy of SEV 
becomes not better than 2-7%. We discuss ways to improve the accuracy of the method and explain how 
it can be extended to polymer models with EV and finite interactions (attractive or repulsive) as well. 

Introduction 
Calculation of the entropy of systems with short-range 

interactions (e.g., simple liquids) by means of computer 
simulation is not trivial1+ and becomes very difficult for 
macromolecules, where long-range interaction prevail. Gb 
and S~heraga'*~ developed a method (based on normal 
coordinate analysis) for calculating the conformational 
entropy of macromolecules undergoing small (i.e., har- 
monic) fluctuations around their stable state (e.g., the 
a-helical state of a polypeptide) and applied it to several 
short polypeptide~.~J~ They also calculated' the entropy 
of a polypeptide in its random coil state at the 8 point,11J2 
i.e., neglected the excluded volume effect (see also ref 13). 
Recently, Karplus and Kushick14 suggested calculating the 
covariances of the internal coordinates directly from the 
molecular dynamics or Monte Carlo simulation rather than 
performing normal coordinate analysis and applied their 
method to the molecular dynamics simulation of deca- 
glycine and butane. These approximate treatments cover 
only the two extreme cases of very small and very large 
conformational fluctuations and are not applicable to states 
with intermediate chain flexibility. 

In the present work, we develop a different procedure 
for estimating entropy, which, in principle, can be applied 
to any macromolecular state simulated with any computer 
simulation technique.1k1s In this preliminary study, 
however, we apply the method to a relatively simple model, 
the self-avoiding walks (SAWS) (or chains with excluded 
volume (EV)) simulated with the direct Monte Carlo 
(DMC) procedurelg on a square and a simple-cubic (SC) 
lattice. To model the strong, long-range, attractive in- 
teractions in a protein molecule, for example, we also 
confine the chains within a small "box" of varying size. 
Because of "sample attr i t i~n", '~ we were able to study with 

0024-9297/83/2216-0249$01.50/0 

DMC only short SAWS of N I 49 (where N is the number 
of links in a walk). However, the DMC procedure enables 
us to obtain accurate estimates for the entropy using an 
asymptotically exact formula and thereby to examine the 
accuracy of our results. Our results are also compared to 
estimates for the entropy obtained with series expansion, 
and we also discuss how to extend our method to self-in- 
teracting SAWS. 

Theory 
Direct Monte Carlo. Self-avoiding walks of N steps 

with equal probability can be generated on a lattice by 
successively selecting random steps until a walk of N steps 
has been constructed or until double occupancy occurs at 
some lattice site; in this case the process stops and a new 
walk is started. This procedure, known as direct Monte 
Carlo (DMC),lg is very inefficient for generating samples 
of long walks. It is due to the law of sample attrition, 
saying that the ratio of walks of N steps that avoid self- 
intersection, WN, to the total number of walks started, Wo, 
constitutes a fraction decreasing exponentially with N.15 
However, this ratio enables one to estimate the entropy. 
The following relation holds: 

where q is the lattice coordination number (reverse steps 
are forbidden) and C N  is the total number of possible 
SAWS of N links starting from a given point. The entropy 
S is20921 

s = k g  log C N  kB[log + (N - 1) log (4 - 1) + 
1% (wN/wO)] (2) 

where kB is the Boltzmann constant. The first two terms 
in eq 2 define SI, the entropy of an ideal chain without EV 
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