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Abstract: Cancer is currently considered one of the most threatening diseases worldwide. Diet could
be one of the factors that can be enhanced to comprehensively address a cancer patient’s condition.
Unfortunately, most molecules capable of targeting cancer cells are found in uncommon food sources.
Among them, depsipeptides have emerged as one of the most reliable choices for cancer treatment.
These cyclic amino acid oligomers, with one or more subunits replaced by a hydroxylated carboxylic
acid resulting in one lactone bond in a core ring, have broadly proven their cancer-targeting efficacy,
some even reaching clinical trials and being commercialized as “anticancer” drugs. This review aimed
to describe these depsipeptides, their reported amino acid sequences, determined structure, and
the specific mechanism by which they target tumor cells including apoptosis, oncosis, and elastase
inhibition, among others. Furthermore, we have delved into state-of-the-art in vivo and clinical trials,
current methods for purification and synthesis, and the recognized disadvantages of these molecules.
The information collated in this review can help researchers decide whether these molecules should
be incorporated into functional foods in the near future.
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1. Introduction

Nowadays, cancer is considered the first or second major cause of death in multiple
countries around the world [1,2]. In 2020, more than 19 million new cases and nearly
10 million deaths associated with this disease were reported [3–5]. Unsurprisingly, cancer
cases are expected to reach the 24 million mark by 2035, and their incidence to triple
by 2050 [6,7].

Although recognized cancer therapies are being further enhanced [8], the consumption
of enriched foods to boost the recovery of cancer patients is also gaining attention [9]. To
date, nearly 35% of chemotherapeutic drugs are nature-derived products, making these an
important source of oncological pharmaceuticals [10]. Nonetheless, only a limited number
of recognized molecules found in foods, especially in animals, have been shown to possess
promising cancer cell-targeting abilities in preclinical trials [11].

Among the spectrum of potential therapeutic molecules, the tumor-targeting capa-
bility of natural cyclic peptides has been deeply explored [12,13]. Scientifically known
as depsipeptides, these peptide cyclo-oligomers are characterized by having one or more
amino acids replaced by a hydroxylated carboxylic acid, resulting in one lactone bond in a
core ring (Figure 1) [14]. Interestingly, they account for more than 1300 natural molecules
reported to contain different acyl groups and other moieties [15,16] as well as to perform
varied bioactivities [17,18].

Hitherto, few authors have recognized that the vast majority of depsipeptides are
found in marine species, most of which are not present in easily accessible areas and are
hard to reproduce in the laboratory environment without proper instruction [10,19]. Some
other authors have highlighted that the knowledge on “anticancer” mechanisms, known
limitations, and faced challenges of using these molecules is minimal [20].
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Figure 1. Peptide bond structure of depsipeptides. Lactone bond in the core ring marked in red.

In response, here, we have comprehensively reviewed specific depsipeptides with
known sequences, elucidated their molecular structures, and recognized cell death mecha-
nisms whereby they target tumor cells. Moreover, we have discussed the state-of-the-art
in vivo milestones, current methods of synthesis and encapsulation, their advancement in
clinical trials, and the principal disadvantages of tumor-targeting depsipeptides to deter-
mine if they can be considered as serious candidates for cancer therapeutics, and ultimately,
enrich functional foods.

Methodology Used in Literature Research

We searched both Scopus and the Google Scholar database using the keywords “dep-
sipeptide”, “cancer”, and “targeting”. Both original research and review articles that were
chosen for analysis were published no earlier than 2017. The articles with the keywords “an-
tibody”, “conjugate”, “fraction”, “proteomic”, “saccharide”, and “vaccine” were ineligible
for this review.

2. Depsipeptides with a Recognized Mechanism of Targeting Cancer Cells

Depsipeptides induce cytotoxicity by various mechanisms, with their principal fea-
tures being the capacity to perforate cell membranes and tubulin–microtubule imbalance,
eventually inducing apoptosis [21]. In this section, we classified depsipeptides based on
the mechanisms underlying their targeting cancer effects.

2.1. Depsipeptides Inducing Apoptosis in Tumor Cells

Apoptosis, as the most prevalent and well-defined form of programmed cell death [22],
plays an important role in regulating tumor cells [23]. Unsurprisingly, resistance to
apoptosis—due to the inactivation or loss of caspases [24] and dysregulation of the mito-
chondrial pathway [25]—is considered a major advantage for oncogenic cells [26].

In general, these depsipeptides potently activate caspase-3, Fas/FasL, p21, and p27,
and inhibit histone deacetylases, all of which result in pro-apoptotic signaling [27–30]
Here, we present the state-of-the-art on depsipeptides that induce apoptosis in tumor cells
(Table 1 and Figure 2).
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Table 1. Formula and molecular weight of depsipeptides inducing apoptosis in tumor cells.

Key Depsipeptide IUPAC Condensed Formula Molecular Weight
(g/mol) Ref.

a Apratoxin Cyclo[N(Me)Ala-N(Me)Ile-Pro-Unk-Tyr(Me)] 840.1 [31]
b Aurilide Cyclo[N(Me)Ala-Unk-Val-D-N(Me)Leu-Sar-Val] 834.1 [21]
c Beauvericin Cyclo[D-Oval-N(Me)Phe-D-Oval-N(Me)Phe-D-Oval-N(Me)Phe] 783.9 [32]

d Coibamide N(Me2)Val-Oval-N(Me)Ser(Me)-N(Me)Leu-N(Me)Thr(1)-
N(Me)Ser(Me)-N(Me)Ile-Ala-N(Me)Leu-Tyr(Me)-N(Me)Ala-(1) 1287.6 [33]

e Dehydrodidemnin Pyruvoyl-Pro-D-N(Me)Leu-D-Thr(1)-Unk-Leu-Pro-DL-
N(Me)Tyr(Me)-(1) 1110.3 [34]

f Enniatin Cyclo[DL-Oval-DL-N(Me)xiIle-DL-Oval-DL-N(Me)xiIle-DL-
Oval-DL-N(Me)xiIle] 681.9 [35]

g Grassypeptolide Cyclo[D-N(Me)Leu-D-aThr-Unk-N(Me)Val-Pro-Unk] 1102.4 [36]
h Hantupeptin Cyclo[N(Me)Ile-Ophe-Pro-N(Me)Val-Unk-Val] 740.9 [37]
i Lagunamide Cyclo[Ala-D-N(Me)Phe-Sar-aIle-N(Me)Ala-Unk] 842.1 [38]
j Tiahuramide Cyclo[N(Me)Ile-Unk-Val-N(Me)Val-Ophe-Pro] 736.9 [39]

Figure 2. Models of depsipeptides inducing apoptosis in tumor cells. (a) Apratoxin A; (b) Au-
rilides; (c) Beauvericins; (d) Dehydrodidemnin B; (e) Enniatins; (f) Lagunamides; (g) Coibamide A;
(h) Grassypeptolides; (i) Hantupeptins; (j) Tiahuramides.

2.1.1. Apratoxin A

Originally isolated from multiple species of the genus Lyngbya, apratoxins are
cyclic depsipeptides composed of peptides and polyketide fragments with known
cytotoxic activity [21]. Several apratoxins have been recognized to date and studied in vivo
(Section 3.1) [31,40–42].

Specifically, apratoxin A dose-dependently activates caspase-3 and caspase-7, and
eventually induce caspase-dependent apoptosis as well as autophagy in the absence of
endoplasmic reticulum stress [29]. Additionally, this depsipeptide is cytotoxic toward
human epithelial carcinoma (KB) and colorectal cancer (LoVo) cell lines [43].

Apratoxin A also regulates the transcription of cell cycle genes, inducing the G1 phase
arrest and subsequent apoptosis of HT29 colon cancer cells [44]. Moreover, it inhibits the
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phosphorylation of signal transducer and activator of transcription 3, thereby inhibiting
fibroblast growth factor signaling and angiogenesis [45].

Recently, apratoxin S10, a novel apratoxin analog that inhibits the growth of two
pancreatic cell lines (EC46 and EC68) by inhibiting receptor tyrosine kinases, vascular
endothelial growth factor A (VEGF-A), and interleukin-6 [31], has also demonstrated
potent inhibition of highly vascularized cell models including hepatocellular carcinoma
(Huh-7), renal cell carcinoma (A-498), and neuroendocrine cancer (NCI-H727) [46].

2.1.2. Aurilides

These cyclic depsipeptides, comprising a macrocyclic carbon skeleton and six amino
acid-derived moieties [21], were originally derived from the sea slug Dolabella auricularia.
Aurilides are reported to be potently cytotoxic toward murine neural crest-derived cancer
cells (Neuro-2a), a cervical cancer cell line (HeLa), and NCI-60 cell lines, a cell panel
created by the U.S. National Cancer Institute to characterize the genomic markers of drug
sensitivity [47]. Hence, they serve as promising chemotherapeutic agents [43,48].

Researchers have proposed the use of aurilides in combination with ouabain since
they potentiate its cytotoxicity [49]. Particularly, these depsipeptides bind to prohibitin 1,
a protein located in the mitochondrial inner membrane, which in turn induces the prote-
olysis of optic atrophy 1, a mitochondrial fusion protein that inhibits cristae remodeling
and protects mitochondria from dysfunction [50]. Thus, aurilides induce mitochondrial
fragmentation and cell death via apoptosis [51].

2.1.3. Beauvericins

Beauvericins and allobeauvericins, initially isolated from cultures of the fungus Beau-
veria bassiana [52], are a class of cyclo-hexadepsipeptides with core structures consisting of
three N-Me-l-phenylalanine units connected alternately with three 2-hydroxy-d-isovaleric
acid residues [32]. Interestingly, they can be synthesized in small amounts from bassiano-
lide or beauvericin synthetases [53] or can be assembled as cyclic trimers from three
D-Hiv-N-Me-L-amino acid dipeptidol monomers [54].

Beauvericins have shown cancer-targeting effects against lung cancer (A549), epithe-
lial carcinoma (KB), multidrug-resistant cervical cancer (KBv200), and cervix carcinoma
(KB-3-1) cells [32]. Moreover, they have demonstrated their effect on tumor cells in vivo
(Section 3.2). Beauvericins incorporate themselves into the cell membrane and form a
cation-selective channel that disrupts the concentrations of mono- and divalent intracellular
cations [55]. They can also increase the intracellular calcium levels and induce apoptosis
through oxidative stress [56].

2.1.4. Coibamide A

This marine-derived, cyclic depsipeptide is highly N- and O-methylated [33], and can
selectively exert cytotoxicity toward NCI-60 cells, human myeloid cells (HL-60), melanoma
cells (LOX-IMVI), glioblastoma cells (SNB-75), and breast cancer cells (MDA-MB-231) [21].
It binds to the Sec61α subunit of the Sec61 protein translocon, non-selectively inhibit-
ing endoplasmic reticulum protein import and subsequently arresting a broad range of
membrane-bound and secreted proteins, overall inhibiting cell growth [57].

Coibamide A suppressed the expression of vascular epithelial growth factor A/vascular
epithelial growth factor receptor 2 and reduced the tumor size in glioblastoma xenograft
models [13]. Furthermore, it potentiated the small-molecule kinase inhibitors, lapatinib
and erlotinib, against breast and lung cancers, respectively [58]. Specifically, coibamide A
induces mammalian target of rapamycin-independent autophagy via autophagy-related
protein 5 and apoptosis through a caspase-dependent pathway [29,59].

Interestingly, since coibamide A is highly N-methylated, it shows metabolic stability,
receptor selectivity, and lipophilicity [60]. A loss of N-methylation will disjoin the cyclic
and side chain structures or just drastically linearize the molecule [61].
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2.1.5. Dehydrodidemnin B

Commonly known as plitidepsin, this cyclodepsipeptide was originally obtained from
the Mediterranean tunicate Aplidium albicans [34]. Remarkably, dehydrodidemnin B is
recognized as a part of the latest generation of didemnins, which exert no toxicity while ex-
hibiting enhanced therapeutic and cancer-targeting effects compared with didemnin B [61].
The latter is a predecessor depsipeptide that caused unsafe side effects like anaphylactic
reactions during clinical trials, leading to its suspension from further human research [62].

Multiple studies have evidenced that dehydrodidemnin B causes apoptosis by tar-
geting eukaryotic elongation factor 1A2 [34]. Specifically, it enduringly activates the c-Jun
N-terminal kinase, mitogen-activated protein kinase (MAPK), and p38 pathways [63]:
three pathways that are involved in stress responses such as inflammation, proliferation,
cell death, and survival [64–66], subsequently activating Rac1 GTPase and inhibiting
phosphatases [67], which eventually results in the release of cytochrome c and apopto-
sis [63]. Furthermore, dehydrodidemnin B induces cell cycle arrest in a dose-dependent
manner [68,69].

Nowadays, dehydrodidemnin B can be artificially synthesized [61], which has elevated
it to the status of “drug” in the treatment of different types of cancers in clinical trials
(Section 3.6) [70], despite certain reported limitations [71].

2.1.6. Enniatins

These cyclic depsipeptides are produced by strains of fungi such as Alternaria spp. and
Verticillium spp. [35]. Particularly, the mycotoxin enniatin A from Fusarium spp., a common
contaminant of maize grains, has shown cytotoxicity toward human cervix carcinoma cells
(HeLa and KB-3-1) [72,73]. Moreover, enniatins A, B1, and B4 exerted mild cytotoxic effects
toward human colon carcinoma cells (HT-29), human epithelial colorectal adenocarcinoma
cells (Caco-2), and human liver carcinoma cells (Hep G2) [72].

Enniatin B was shown to halt the growth of cervical cancer cells (Hep 3B and KB-3-1,
both human papillomavirus 18-positive and -negative) via apoptosis induction by activat-
ing caspase-7, depolarizing the membrane, and cleaving poly (ADP-ribose) polymerase [73].
Enniatin was also reported to cause DNA intercalation, suppress the activity of both topoi-
somerases I and II, and eventually induce apoptosis through these mechanisms [74].

The lipophilic nature of these compounds allows them to be easily incorporated into
the plasma membrane, creating selective cation pores and increasing permeability to create
ionic disturbances in the cell [75]. Moreover, enniatin B was reported to be genotoxic to
mice [76]. However, genotoxicity was not involved in enniatin B-induced cell death in a
hamster lung cell line (V79) [75].

Enniatin B has demonstrated potential cytotoxicity toward human lung cancer cells
(VL8), porcine kidney cells (PK-15), embryonic fibroblasts (WI-38), and human glioblastoma
(T98-G) cells [75]. In cervical cancer cells, it has shown a synergistic effect with the multi-
kinase inhibitor sorafenib, both in vitro and in vivo, by interfering with the extracellular
signal-regulated kinase and p38 MAPK pathways [73].

2.1.7. Grassypeptolides

These depsipeptides, especially grassypeptolides F and G, were originally isolated
from Lyngbya spp., whereas grassypeptolides D and E were derived from Leptolyngbya
spp. [77]. They constitute a group of 31-membered macrocyclic depsipeptides with high
D-amino acid content, one beta-amino acid, and two thiazolines [36].

They can induce cell cycle arrest in the G1 phase at low concentrations and in the G2/M
phase at higher concentrations [13]. Grassypeptolides also display antiproliferative proper-
ties by inhibiting the oncogenic transcriptional factor, activator protein-1 [78]. Interestingly,
grassypeptolide C demonstrated higher cytotoxicity than grassypeptolide A toward cervi-
cal carcinoma (HeLa) and colon adenocarcinoma (HT29) cells, whereas grassypeptolides D
and E both displayed significant cytotoxicity toward HeLa and Neuro-2a cells [79].
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Grassypeptolides induce apoptosis by inhibiting nuclear factor erythroid 2-related
factor 2 [80], which may boost the activity of histone deacetylase inhibitors and promote
autophagy-related proteins [81]. Specifically, this pathway is related to survival-induction
proteins such as catalase, nicotinamide adenine dinucleotide phosphate dehydrogenase,
cyclins A and E, and Bcl-2, among others [82]. Inhibiting these proteins has shown increased
cell death, both in vivo and in vitro, demonstrating the importance of this pathway as a
possible therapeutic target [81].

2.1.8. Hantupeptins

Three different cytotoxic cyclic depsipeptides, hantupeptins A–C, consisting of a
phenyllactic acid and a β-hydroxy acid unit with variable degrees of unsaturation have
been isolated from L. majuscula [37]. Specifically, they can induce apoptosis in cancer
cells [83]. In particular, hantupeptin A, a 19-membered cyclic depsipeptide, has shown
potent cytotoxicity against breast cancer (MCF-7) and leukemia cells (MOLT-4) [21], while
hantupeptins B and C have exhibited a more modest cytotoxic effect on the same cells [77].

2.1.9. Lagunamides

Belonging to the aurilide class, these depsipeptides have demonstrated cancer-targeting
activity as well as antimalarial and antimicrobial effects [21,37]. They consist of four consec-
utive chiral centers at C37–40 and have an α,β-unsaturated carboxylic acid unit produced
by cross-metathesis [38].

Derived from the cyanobacterium Lyngbya majuscula, lagunamides exhibit cytotoxicity
via mitochondria-mediated apoptosis toward colorectal carcinoma cells (HCT-8), lym-
phoma cells (P388), lung adenocarcinoma cells (A549), ovarian cancer cells (SK-OV-3),
and prostatic adenocarcinoma cells (PC-3) [21,44,84]. Specifically, lagunamides induce
apoptosis in these cells by stimulating the production of reactive oxygen species [51].

Additionally, lagunamide A has been shown to induce caspase-mediated mitochon-
drial apoptosis in lung adenocarcinoma (A549) cells [44]. Likewise, lagunamide D, a
macrocyclic depsipeptide derived from Dichothrix spp. and Lyngbya spp. [85], displayed
antiproliferative activity against A549 cells, triggering apoptosis in a time- and dose-
dependent manner [86].

2.1.10. Tiahuramides

Tiahuramides, recently described as marine cyclic depsipeptides derived from L. majus-
cula [39], are compounds from the kulolide superfamily consisting of seven amino acids that
include a non-proteinogenic residue such as an alkane (tiahuramide C), alkene (tiahuramide
B), or alkyne (tiahuramide A) [87]. Interestingly, tiahuramides A–C contain a residue with
a triple-, double-, and single-bond fatty acid termination point, respectively [37].

In general, tiahuramides have demonstrated cytotoxicity via both apoptosis and
secondary necrosis in animal models compared with necrosis in human neuroblastoma
cells (SH-SY5Y) [39]. The half-maximal inhibitory concentrations (IC50) of tiahuramides B
and C against SH-SY5Y cells were found to be 6.0 µM and 14 µM, respectively [88].

2.2. Depsipeptides Inducing Autophagy in Tumor Cells

Autophagy is the process that uses autophagosomes to deliver cytoplasmic material
to the lysosome for degradation [89]. Autophagy-inducing depsipeptides can activate
intracellular messengers such as adenosine monophosphate-activated protein kinase and
transcription factor EB [90] (Figure 3). They can also inhibit survival-inducing molecules
such as hypoxia-inducible factor 1-alpha and mammalian target of rapamycin [29], thereby
inducing autophagy through various mechanisms [91,92].

Beauvenniatins

Initially isolated from a mycelial extract of Acremonium spp., with additional analogs
also produced by Fusarium and Isaria spp. [93], the structure of these peptides is a hybrid
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between the aromatic and aliphatic cyclodepsipeptides, with moieties of N-Me-valine,
N-Me-leucine, and N-Me-phenylalanine (Table 2) [54].

Figure 3. Staging model of depsipeptides inducing autophagy in tumor cells.

Table 2. Formula and molecular weight of beauvenniatin, a depsipeptide triggering autophagy in
tumor cells.

Depsipeptide IUPAC Condensed Formula Molecular Weight
(g/mol) Ref.

Beauvenniatin Cyclo[D-OaIle-N(Me)Phe-D-OaIle-N(Me)Val-D-OaIle-N(Me)Val] 729.9 [54]

Beauvenniatin F has exhibited strong cytotoxicity against adriamycin-resistant myel-
ogenous leukemia cells (K-562), with an IC50 of 2.78 µM, and autophagy-inducing activity
at a concentration of 20 µM in green fluorescent protein-light chain 3-stable HeLa cells [94].
These depsipeptides also displayed cytotoxicity against epithelial carcinoma (KB), lym-
phoma (BC), and lung carcinoma cells (NCI-H187), with IC50 values ranging from 1.00 to
2.29 µM as well as against kidney epithelial cells (Vero) at 1.9–5.5 µM [95].

2.3. Depsipeptides Inhibiting Elastases

Elastases are a group of proteases that degrade and lyse elastin, one of the main
components of the extracellular matrix [96]. These enzymes are also involved in tumor cell
migration [97]. Consequently, any dysregulation of elastase may result in the genesis of
various diseases such as cancer [98] as well as metastasis [97].

In this section, we elaborate on the depsipeptides with elastase-inhibiting potential
(Table 3 and Figure 4).

Table 3. Formula and molecular weight of depsipeptides inhibiting elastases in tumor cells.

Key Depsipeptide IUPAC Formula Molecular Weight
(g/mol) Ref.

a Micropeptins

(3S)-4-[[(2S,5S,8S,11R,12S,15S,18S,21R)-15-(4-aminobutyl)-2-[(2S)-butan-
2-yl]-21-hydroxy-5-[(4-hydroxyphenyl)methyl]-4,11-dimethyl-

3,6,9,13,16,22-hexaoxo-8-propan-2-yl-10-oxa-1,4,7,14,17-pentazabiCyclo
[16.3.1]docosan-12-yl]amino]-3-(hexanoylamino)-4-oxobutanoic acid

945.1 [99]

b Tutuilamides

(2S)-N-[(2S,5S,8S,11R,12S,15Z,18S,21R)-2-benzyl-15-ethylidene-21-
hydroxy-5-[(4-hydroxyphenyl)methyl]-4,11-dimethyl-3,6,9,13,16,22-

hexaoxo-8-propan-2-yl-10-oxa-1,4,7,14,17-pentazabiCyclo
[16.3.1]docosan-12-yl]-2-[[(2S)-2-[[I-4-chloro-3-methylbut-3-

enoyl]amino]propanoyl]amino]-3-methylbutanamide

1007.6 [100]
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Figure 4. Micropeptins (a) and tutuilamides (b), depsipeptides capable of inhibiting elastases.

2.3.1. Micropeptins

Micropeptins are serine protease inhibitors that act against both crustacean and mam-
malian serine proteases, with proven activity against HeLa cell proteases [101]. They were
originally isolated from Microcystis spp. from diverse water reservoirs [85] as well as
from planktonic fresh water species such as Anabaena, Anabaenopsis, Nostoc, and Oscillato-
ria spp. [102].

Micropeptins are cyclic depsipeptides that possess a 3-amino-6-hydroxy-2-piperidone
moiety [99]. Their IC50 for elastase inhibition ranges from 4.4 to 50 µM [103]. Interestingly,
the elastase inhibitory activity of most micropeptins can be attributed to the leucine moiety
in the fifth position from the C-terminus [103].

2.3.2. Tutuilamides A–C

Recently isolated from the cyanobacteria Schizothrix spp. (tutuilamides A and B) and
Coleofasciculus spp. (tutuilamide C) [104], these protease inhibitor peptides have a unique
vinyl chloride-containing structure [105]. In tutuilamide A, an additional hydrogen bond
between the 4-chloro-3-methylbut-3-enoic acid residue and the backbone amide group of
elastase confers a greater inhibitory potency upon this compound [100].

Tutuilamides A–C inhibited elastase in lung cancer cells (H-460) with an IC50 of
0.53 µM, 1.27 µM, and 4.78 µM, respectively [104].

2.4. Depsipeptides Inhibiting Histone Deacetylases

Histone deacetylases constitute a group of enzymes catalyzing the deacetylation
of lysine residues found in histones and other proteins [106]. The acetylation of these
residues results in a less condensed chromatin structure due to increased space between the
nucleosome and DNA, thus modulating cell cycle progression [107]. Interestingly, histone
deacetylase inhibitors can induce apoptosis, delay cell cycle progression, and inhibit cancer
cell differentiation [30].

Here, we describe depsipeptides that inhibit histone deacetylases in cancer cells
(Figure 5 and Table 4).



Molecules 2023, 28, 670 9 of 30

Figure 5. Depsipeptides inhibiting histone acetyltransferases in tumor cells. (a) Bassianolide; (b) Clava-
tustides; (c) Cryptophycins; (d) Largazole; (e) Lyngbyabellins; (f) Romidepsin; and (g) Sansalvamide.

Table 4. Formula and molecular weight of depsipeptides inhibiting histone deacetylases in tumor cells.

Key Depsipeptide IUPAC Formula Molecular Weight
(g/mol) Ref.

a Bassianolide Cyclo[N(Me)Leu-D-Oval-N(Me)Leu-D-Oval-N(Me)Leu-D-Oval-
N(Me)Leu-D-Oval] 909.2 [108]

b Clavatustide Cyclo [2Abz-2Abz-D-Ophe-N(Et)Gly] 471.5 [109]

c Cryptophycin
10-[(3-chloro-4-methoxyphenyl)methyl]-6-methyl-3-(2-methylpropyl)-
16-[1-(3-phenyloxiran-2-yl)ethyl]-1,4-dioxa-8,11-diazacyclohexadec-13-

ene-2,5,9,12-tetrone
655.2 [110]

d Largazole
S-[I-4-[(5R,8S,11S)-5-Me-6,9,13-trioxo-8-propan-2-yl-10-oxa-3,17-dithia-

7,14,19,20-tetrazatriCyclo
[14.2.1.12,5]icosa-1(18),2(20),16(19)-trien-11-yl]but-3-enyl] octanethioate

622.9 [111]

e Lyngbyabellin

(7S,14S,18S)-7-[(2S)-butan-2-yl]-14-(4,4-dichloropentyl)-18-(2-
hydroxypropan-2-yl)-15,15-dimethyl-13,17-dioxa-9,20-dithia-3,6,22,23-

tetrazatriCyclo
[17.2.1.18,11]tricosa-1(21),8(23),10,19(22)-tetraene-2,5,12,16-tetrone

691.7 [18]

f Romidepsin 7-ethylidene-4,21-di(propan-2-yl)-2-oxa-12,13-dithia-5,8,20,23-
tetrazabiCyclo [8.7.6]tricos-16-ene-3,6,9,19,22-pentone 540.7 [112]

g Sansalvamide Cyclo[L-leucyl-N-oxa-L-leucyl-L-valyl-L-leucyl-L-phenylalanyl] 586.8 [113]

2.4.1. Bassianolide

Initially discovered by Suzuki et al. in 1997, bassianolide is a cyclo-oligomer of a
tetramer of the depsipeptide D-Hiv-N-Me-L-leucine [108]. Once isolated from B. bassiana,
Lecanicillium spp. (formerly V. lecanii), and Xylaria spp. BCC1067 [114], this compound was
successfully synthesized and demonstrated tumor-targeting activity by inducing G0/G1
arrest in breast adenocarcinoma cells (MDA-MB-231) [115].

A synthetic analog, (−)bassianolide, is cytotoxic against human lung cancer cells
(A549), liver cancer cells (Hep G2), ovarian cancer cells (SK-OV-3), colon adenocarcinoma
cells (HCT-15), and MDA-MB-231 cells [108].



Molecules 2023, 28, 670 10 of 30

2.4.2. Clavatustides A and B

Clavatustides A and B, initially isolated from the cultured mycelia and broth of
Aspergillus clavatus [13], contain an anthranilic acid dimer and D-phenyl lactic acid [109].
Both depsipeptides suppress the proliferation of hepatocellular carcinoma cell lines (Hep
G2, SMMC-7721, and BEL-7402), induce the arrest of Hep G2 cells in the G1 phase, and
reduce the proportion of cells in the S phase [116].

Cyclin E2 was proved to crucially regulate clavatustide B-induced inhibition of G1/S
transition in several cancer cell lines [117]. Compared with normal human hepatocytes,
Hep G2 cells were more sensitive to clavatustide-induced suppression of proliferation [13].
Clavatustide B also inhibited the growth of human pancreatic epithelioid carcinoma (PANC-
1) and prostate cancer (PC-3) cell lines, both of which had shown resistance to chemo- and
radiotherapy [118].

2.4.3. Cryptophycin

Isolated from Nostoc spp. [119], cryptophycin has demonstrated potent cytotoxicity
against HeLa cells [120]. This depsipeptide contains a constrained ring structure that se-
cures its bioactive conformation and protects its bonds from degradation [110]. Specifically,
even picomolar concentrations of cryptophycin were found to arrest the cell cycle in the
G2/M phase [13], interacting with the tubulin interdimer interface, inducing curvature both
between and within dimers, inducing changes in α- and β-tubulin [121], and eventually
causing depolymerization and apoptosis [43].

Cryptophycin 1 induces apoptosis in ovarian cancer cells (SK-OV-3) by activating
caspase-3 [122], also known as CPP32/YAMA/apopain [120]. The cysteine protease
CPP32/YAMA/apopain activates apoptosis by targeting specific effector proteins like
protein kinase C [123,124]. Moreover, it has inhibited the growth of murine lymphocytic
leukemia cells (L1210), epithelial ovarian cancer cells (SK-OV-3), and breast cancer cells
(MCF-3), with some studies reporting a cancer-targeting potency nearly 100-fold higher
than that of paclitaxel [13].

The effect of this depsipeptide has also been tested in vivo (Section 3.3).

2.4.4. Largazole

Originally isolated from Symploca spp. [21], largazole is a strong antiproliferative cyclic
depsipeptide that selectively induces cell cycle arrest in human mammary epithelial cells,
specifically targeting histone deacetylases [120].

Its structure is characterized by a depsipeptide macrocyclic core, with L-valine residues
in the C1–C5 portion, an unsaturated lateral chain as a thioester moiety, and a thiazole–
thiazoline fragment [111].

Largazole inhibited hypoxia-inducible factor and VEGF receptor 2, showed anti-
angiogenic activities in vitro [125], and upregulated p21, a cell cycle inhibitor [126]. It also
upregulated E-cadherin and increased its association with γ-catenin in breast cancer cells
(MDA-MB-231), thus suppressing their invasiveness [127].

Furthermore, largazole demonstrated potent antiproliferative effects by stimulating
histone hyperacetylation in tumor cells, subsequently inducing cell cycle arrest, in cells of
colon cancer (HCT116), fibroblastic osteosarcoma (U2OS), glioblastoma multiforme (SF-268
and SF-295), neuroblastoma (IMR-32 and SH-SY5Y), and multiple NCI-60 cell lines [48,128].

Unsurprisingly, largazole has shown important effects on tumor cells when tested
in vivo (Section 3.5).

2.4.5. Lyngbyabellins

Lyngbyabellins are secondary metabolites derived from L. majuscula and Moorea bouil-
lonii [85] with proven antifungal and antibiotic activities [37]. Lyngbyabellins A and B,
both of which contain a β-hydroxy acid analog and thiazoline rings [18], have displayed
moderate cytotoxicity against human colon cancer (LoVo) and cervical cancer (KB) cells [44].
Both lyngbyabellin A and E possess potent actin polymerization activity [129]. They induce
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cell cycle arrest in the human Burkitt lymphoma (BL) cell line [48], e.g., lyngbyabellin
B arrests BL cells in the G2/M phase [130]. Lyngbyabellin E showed significant activity
against human lung tumors (NCI-H460) and Neuro-2a cell lines [131], and lyngbyabellin N
against colorectal carcinoma cells (HCT116) [44].

2.4.6. Romidepsin

Romidepsin is a potent, structurally unique, selective histone deacetylase inhibitor
approved by the Food and Drug Administration to treat both cutaneous and peripheral
T-cell lymphoma [132]. It is a cage-shaped, bicyclic pentapeptide composed of D-valine,
D-cysteine, dehydrobutyrine, L-valine, and 3-hydroxy-7-mercapto-4-heptenoic acid [112].

Romidepsin increases both the mRNA and protein levels of p53, p21, caspases 3, 7,
and 8, and poly (ADP-ribose) polymerases, thus inducing apoptosis and inhibiting the
proliferation of endometrial cancer cells [133]. It synergistically acts with a wide array
of chemotherapeutics such as lenalidomide for T-cell lymphomas or rituximab for B-cell
lymphomas [132].

2.4.7. Sansalvamide A

This cyclic depsipeptide, isolated from the marine fungus Fusarium spp. [134], exhibits
broad antitumor activity against 60 cancer cell lines including those of breast (MDA-MB-
231), colon (COLO 205 and HCT116), melanoma (WM-155 and SK-MEL-2), pancreatic,
(AsPC-1), and prostate cancers (PC-3) [21,113,135,136]. Its chemical structure comprises
four proteogenic amino acids and one hydroxyl acid [113]. Specifically, sansalvamide A
demonstrated higher potency against colorectal carcinoma (COLO 205) and melanoma
cells (SK-MEL-2) [43].

Sansalvamide A arrests cells in the G1 phase, inhibits topoisomerase I [21,135], and
subsequently triggers apoptosis of tumor cells [48]. It causes in vitro pancreatic cancer cell
death by downregulating cyclins A, CD4, D1, E, and upregulating p21, resulting in cell cycle
arrest in the G0/G1 phase [13,135]. N-methylation of sansalvamide A enhances its antitu-
mor cytotoxicity and selectivity [137]. Its derivative H-10 has also shown antiproliferative
effects, particularly against murine melanoma cells (B16), by inducing apoptosis [138].

2.5. Depsipeptides Disrupting Microfilaments

Microtubule–actin interactions are fundamental for many cellular processes such as
cell motility, cell division, and cytoskeleton dynamics [139]. Many depsipeptides derived
from bacteria exert activities against microfilaments, causing complete depolymerization
of microtubules and hyper-polymerization of actin [140]. Moreover, they have shown
the ability to destabilize microtubules, inducing caspase and Bcl-2 activation, eventually
resulting in cell cycle arrest and apoptosis [141].

In this subsection, we explore the depsipeptides that disrupt microfilaments in tumor
cells (Figure 6 and Table 5).

Table 5. Formula and molecular weight of depsipeptides inducing microfilament disruption in tumor cells.

Key Depsipeptide IUPAC Formula Molecular Weight
(g/mol) Ref.

a Desmethoxymajus-
culamide C Cyclo[Ala-Unk-Ala-Unk-Gly-N(Me)Ile-Gly-N(Me)Val-N(Me)Phe] 955.2 [142]

b Dolastatin N(Me2)Val-Val-Unk 785.1 [143]

c Miuraenamide
(3E,15E)-6-[(3-bromo-4-hydroxyphenyl)methyl]-3-

[methoxy(phenyl)methylidene]-7,9,16,19-tetramethyl-1-oxa-4,7,10-
triazacyclononadec-15-ene-2,5,8,11-tetrone

684.6 [144]

d Nobilamide Propionyl-D-Phe-D-Leu-Phe-D-aThr-Val-Ala-Abu(2,3-dehydro)-OH 836.0 [145]
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Figure 6. Models of depsipeptides inducing microfilament disruption in tumor cells. (a) Desmethoxy-
majusculamide C; (b) Dolastatin 10; (c) Miuraenamide; (d) Nobilamide I.

2.5.1. Desmethoxymajusculamide C

Derived also from L. majuscula [146], this cyclic depsipeptide has demonstrated selec-
tive and potent cancer-targeting activity against human colorectal (HCT116) and breast
(MDA-MB-435, MDA-MB-231, and MCF7) cancer cells by disrupting cellular microfilament
networks [43], specifically via the depolymerization of the actin cytoskeleton [44].

Notwithstanding, desmethoxymajusculamide C displays cancer-targeting activities
both in its cyclic and ring-opened forms [142]. Both the linear and the cyclic forms of this
depsipeptide caused the same cytotoxicity [13].

2.5.2. Dolastatin 10

Dolastatin 10, originally isolated in the 1980s from the mollusk D. auricularia in the
Indian Ocean, is a pentapeptide that contains three unique amino acid residues [147]
and five subunits: L-valine, N,N-dimethyl valine, (3R,4S,5S)-dolaisuleucine, (2R,3R,4S)-
dolaproine, and a protected (S)-dolaphenine [143,148].

This depsipeptide induces apoptosis by interacting with microtubulin and interfering
with microtubule assembly [149]. Since dolastatin 10 was first discovered, its cytotoxic
activity was deemed more potent than that of anticancer drugs, and due to its simple
chemical structure, it was considered a promising anticancer agent [147].

Consequently, this depsipeptide, along with some of its derivate analogs such as sobli-
dotin and tasidotin has reached clinical trials with significant results (Sections 3.7 and 3.8).

2.5.3. Miuraenamide

Derived from the myxobacterium Paraliomyxa miuraensis [150], miuraenamides are
cyclic depsipeptides containing a polyketide unit and an N-terminal alanine bound to an
N-methylated halogenated aromatic amino acid, specifically tyrosine [144]. They inhibit
cell migration, favor actin polymerization by stabilizing the oligomers formed during
nucleation, and promote the assembly and stabilization of such filaments [151].

Moreover, treatment with miuraenamide impairs the migration and enhances the
nuclear stiffness of ovarian epithelial carcinoma cells (SK-OV-3) cells. It downregulates
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the expression of proteins in the Wnt pathway and myocardin-related transcription factor-
associated proteins [152]. Additionally, miuraenamide A has shown the ability to signifi-
cantly change the morphology of the cytoplasm and nucleus of HeLa cells [153].

2.5.4. Nobilamide I

Nobilamide was originally isolated from a mollusk-associated bacterium, Streptomyces
sp. CN48 [154]. It is a linear heptapeptide with a Z-di-dehydroamino butanoic acid moiety,
which is considered to be responsible for its inhibitory effects on the transient receptor
potential vanilloid-1 cation channel [145].

Nobilamide I inhibits cancer cell motility and tumorigenesis in gastric (AGS), lung
(A549), and colon carcinoma (Caco-2) cells by suppressing the expression of E- and
N-cadherins, the transcription factors Snail, Slug, and Twist, and matrix metallopro-
teinase 2/9 [155].

2.6. Depsipeptides Inhibiting Cell Growth

The loss of normal cell cycle regulation is one of the cornerstones of human cancer
emergence [156]. Thus, compounds that inhibit or terminate mitosis have been the emphasis
of clinical trials for many years, with some achieving significant success [157]. Certain
depsipeptides are of particular interest in this field [120,122], mainly skyllamycins and
stereocalpin compounds that inhibit transcription factors and survival signaling [158,159].

Thus, we delved into the depsipeptides that inhibit cell growth (Table 6 and Figure 7).

Table 6. Formula and molecular weight of depsipeptides inhibiting the growth of tumor cells.

Key Depsipeptide IUPAC Formula Molecular Weight
(g/mol) Ref.

a Skyllamycins
N-[I-3-[2-[(Z)-1-Propenyl]phenyl]propenoyl]-Cyclo[L-Thr*-L-Ala-[(3S)-3-
Me-L-Asp-]-Gly-[(βS)-β-hydroxy-L-Phe-]-L-Pro-[(βS)-β-hydroxy-O-Me-
L-Tyr-]-D-Trp-[(2S)-2-hydroxy-Gly-]-D-Leu-[(3S)-3-hydroxy-D-Leu-]-]

1483.6 [160]

b Stereocalpin Cyclo[Phe-N(Me)Phe-Unk] 492.6 [161]

Figure 7. Models of skyllamycins (a) and stereocalpin (b) depsipeptides inhibiting the growth of
tumor cells.

2.6.1. Skyllamycins

Skyllamycins are a group of non-ribosomal cyclic depsipeptides produced by Strep-
tomyces spp. [162], constituted, among others, by D-leucine, D-tryptophan, a pseudo-N-
terminal cinnamic acid residue, and a β-Me-aspartic acid residue [160]. Additionally, these
compounds possess a particularly rare α-OH-glycine residue [163] and a unique cinnamoyl
side chain connected to a serine/threonine residue [162] (Figure 7).

Skyllamycin A inhibits the platelet-derived growth factor pathway [158], resulting
in the inhibition of mitosis in tumor cells [164]. Since it selectively blocks the binding of
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the platelet-derived growth factor BB homodimer to the β-receptor, skyllamycin A could
exert effects like those of imatinib on cancer, particularly against chronic myelogenous
leukemia [165].

2.6.2. Stereocalpin A

Initially isolated from the Antarctic lichen Stereocaulon alpinum, stereocalpin A is a
cyclic depsipeptide with a unique structure involving a 5-hydroxy-2,4-dimethyl-3-oxo-
octanoic acid [161]. It has demonstrated moderate cytotoxicity against three solid tumor
cell lines: B16-F10, Hep G2, and HT-29 [166].

Stereocalpin A inhibited tumorigenesis by preventing the accumulation of tumor
necrosis factor-α-induced adhesion molecules by inhibiting MAPK, protein kinase B (Akt),
and the pro-inflammatory transcription factor nuclear factor-κB [159]. This mechanism also
suggests that this depsipeptide can exert a protective effect by modulating inflammation
within atherosclerotic lesions [166].

2.7. Depsipeptides Inhibiting Topoisomerases

Topoisomerases are enzymes that relieve torsional stress within DNA during replica-
tion and transcription by cleaving one strand to unwind the supercoiled DNA [167,168].
Inhibiting these enzymes leads to DNA damage, nicotinamide adenine dinucleotide phos-
phate oxidase-dependent generation of reactive oxygen species, p21 activation, and even-
tual cell cycle arrest and senescence [169].

Here, we describe the relevant depsipeptides targeting topoisomerases in cancer cells
(Table 7 and Figure 8).

Table 7. Formula and molecular weight of depsipeptides targeting topoisomerases in tumor cells.

Key Depsipeptide IUPAC Formula Molecular Weight
(g/mol) Ref.

a Fusaristatin A
3-[6,13-dimethyl-10-methylidene-2,5,9,12-tetraoxo-14-[(5E,7E)-

3,7,11-trimethyl-4-oxoheptadeca-5,7-dienyl]-1-oxa-4,8,11-
triazacyclotetradec-3-yl]propanamide

658.9 [170]

b N-methylsansalvamide Cyclo[Leu-Oleu-Val-N(Me)Leu-Phe] 600.8 [28]

Figure 8. Models of fusaristatin A (a) and neo-N-methylsansalvamide (b) depsipeptides targeting
topoisomerases in tumor cells.

2.7.1. Fusaristatin A

Fusaristatins A and B, isolated from the endophytic fungus Fusarium spp. [171], contain
β-aminoisobutyric acid, dehydroalanine, and glutamine moieties [170]. Both compounds
moderately inhibited topoisomerases I and II as well as the growth of lung cancer (LU65)
cells [172]. Moreover, they exhibited cytotoxicity against non-small-cell lung cancer (SCLC,
NCI-H460) and melanoma cells (MDA-MB-435) with an IC50 of 8.15 µM [173,174].
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2.7.2. N-Methylsansalvamide

N-methylsansalvamide, an analog of sansalvamide A, is a cytotoxic cyclic pentadep-
sipeptide derived from the marine fungus Fusarium solani KCCM90040 [175,176]. In vitro,
it inhibited the growth of human lung cancer cells (A549), ovarian cancer cells (SK-OV-3),
melanoma (SK-MEL-2), and uterine sarcoma (MES-SA) cells with IC50 values ranging from
10 to 14.74 µM [13]. Specifically, this novel depsipeptide inhibited topoisomerase I and
inhibited the growth of colorectal carcinoma (HCT-15) cells [28].

Interestingly, neo-N-methylsansalvamide effectively reversed multidrug resistance in
tumor cells and may be used as a resistance reversal agent in chemotherapeutic regimens [28].

2.8. Oncosis

Oncosis is a form of programmed cell death characterized by organelle swelling
and membrane disruption [177]. It is a type of cell injury that involves energy depletion,
impairment of ionic pumps, swelling, dilation of the Golgi apparatus and endoplasmic
reticulum, chromatin clumping, and the formation of cytoplasmic blebs [178].

Compared with apoptosis, oncosis eventually results in necrosis with karyolysis and
cell swelling, instead of karyorrhexis and cell shrinkage [179]. One of the most studied
oncosis-inducing depsipeptides in cancer cells is kahalalide F (Figure 9 and Table 8), a
molecule that causes disruption of the mitochondrial membrane potential and alters the
permeability of lysosomal membranes [91].

Figure 9. Model of kahalalide F: the only depsipeptide inducing oncosis in tumor cells.

Table 8. Formula and molecular weight of kahalalide F, the only depsipeptide inducing oncosis in
tumor cells.

Depsipeptide IUPAC Formula Molecular Weight
(g/mol) Ref.

Kahalalide F
L-Val, N-(5-Me-1-oxohexyl)-D-valyl-l-threonyl-l-valyl-D-valyl-D-

prolyl-l-ornithyl-D-alloisoleucyl-D-allothreonyl-D-alloisoleucyl-D-
valyl-l-phenylalanyl-(2z)-2-amino-2-butenoyl-, (13->8)-lactone

1477.9 [180]

Kahalalide

Kahalalide F is a tridecapeptide with a C75 cyclic structure containing dehydro-
aminobutyric acid and a 19-membered ring formed by five residues [18]. It was originally
isolated from the sea slug Elysia rufescens and has shown that it can induce cancer cell
necrosis [180].

Kahalalide F has displayed potent cytotoxicity against cancer cells of the breast (BT-474,
MCF7, MDA-231, and SK-BR-3), colon (HT29 and LoVo), liver (Hep G2), lung adenocarci-
noma (A549), ovaries, and prostate (DU145 and LNCaP) [181–183]. It targets lysosomes
and induces extreme vacuolization and swelling [18,180].

Specifically, it induces karyolysis and necrosis or oncosis, with IC50 values between
0.2 and 10 µM [184] via aggregation of DNA, deactivation of Akt and receptor tyrosine
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kinase (ErbB/Her), eventually creating pores in the cell membrane [181]. Recently, modi-
fying kahalalide F by coupling with a biotinylated linker, prepared from biotin and tetra-
ethylene glycol, has enhanced its cancer-targeting properties via the human ribosomal
protein S25 [185].

3. Depsipeptides Studied In Vivo and Clinical Trials

While in vitro testing is the first step to assess candidates in the drug development
pathway, in vivo studies represent the second stage, in which molecules reveal both their
potential and limitations in physiological conditions [186]. Clinical trials represent the
third stage of this effort, intending to detect variabilities derived from a matrix effect in the
human body [19].

The mechanism of action of depsipeptides in vivo relies on apoptotic, necrotic, or lytic
phenomena [20]. Unfortunately, in vivo studies demonstrating the potent inhibition of
different cancers are limited, mainly due to toxicity, which hinders the cancer-targeting
activity of these peptides and precludes them from reaching clinical trials [44]. Regardless,
some depsipeptides have achieved relevant milestones in cancer therapy, based on their
clinical trial reports [187].

We have delved into such depsipeptides here, which have displayed tumor-targeting
capabilities in vivo and during clinical trials.

3.1. Apratoxin

Apratoxin can downregulate receptor tyrosine kinases and VEGF-A in colorectal
tumor models [188]. Specifically, apratoxin S4 demonstrated potent anti-angiogenic activity
as it prevented pathological ocular neovascularization in vivo [126].

Nonetheless, apratoxin was found to be ineffective against breast tumor cells [189].
Furthermore, exposure to apratoxin A caused pancreatic atrophy and significant toxicity,
thus limiting its widespread use [190].

3.2. Beauvericin

The in vivo cancer-targeting activity of beauvericin has been assessed in an allograft
and xenograft mouse model [32]. After three days of a subcutaneous injection of murine
CT26 colon carcinoma cells in BALB/c mice, 5 mg/kg/day of beauvericin treatment
markedly reduced tumor growth after a second treatment cycle two weeks later [32,191].

The efficacy of beauvericin was also demonstrated in a cervix carcinoma xenograft
model (KB-3-1) where it significantly reduced tumor volumes [191]. The drug accumulated
in tumor tissues and necrotic areas within tumors significantly increased [56].

3.3. Cryptophycins

These cyclic depsipeptides of a bacterial origin and exerting significant cytotoxicity
against various cancer cell lines including multidrug-resistant tumors [192], demonstrated
improved biological activity in vivo compared with paclitaxel and vinblastine, with a
100- to 1000-fold greater activity against the same cell lines [193].

A novel compound composed of acetazolamide and cryptophycin reduced in vivo
tumor growth in nude mice bearing renal cell carcinoma cells (SK-RC-52) [192]. Newer
compounds like cryptophycin-8 have demonstrated lower toxicity and greater therapeutic
efficacy than cryptophycin-1 in vivo [194].

3.4. Dolastatin 10

Aside from its proven antiproliferative activity [149], dolastatin 10 showed in vivo anti-
cancer activity against multidrug-resistant diffuse large cell lymphoma (WSU-DLCL2) [195],
SCLC (NCI-H69, -H82, -H446, -H510) [196], murine leukemia (P388 and L1210), melanoma
(B16 and LOX), sarcoma (M5076), and breast cancer (MX-1) cell lines in xenograft murine
models [184].



Molecules 2023, 28, 670 17 of 30

Dolastatin 10 was evaluated in SCID mice with metastatic and subcutaneous SCLC
xenoplantation models, where it demonstrated proapoptotic abilities at an IC50 in the
range of 0.032–0.184 nM [147]. Moreover, it showed potent antiproliferative activity against
murine leukemia cells, with an effective dose of 50 of 4.6 × 10−5 mcg/mL [197].

Recently, dolastatin 10 started phase II clinical trials in patients with non-SCLC,
metastatic melanoma, colon, breast, and multidrug-resistant ovarian cancer, with demon-
strated toxicity against these tumors [149]. Interestingly, dolastatin 10 showed more potent
activity than paclitaxel or vinblastine in a variety of murine cancer models [198].

3.5. Largazole

This macrocyclic depsipeptide, containing a thiazole unit linked to a 4-Me-thiazoline,
a non-modified L-valine residue, and a thioester responsible for its mechanism of ac-
tion [199,200], has exhibited a wide range of in vitro and in vivo biological activities such
as antitumor, anti-osteogenic, and antifibrotic [201]. In particular, largazole potently stim-
ulates histone hyperacetylation by inducing apoptosis in murine colon cancer (HCT116)
cells [200]. An intraperitoneal dose of 5 mg/kg of a largazole peptide isostere effectively
inhibited tumor growth in a non-SCLC (A549) xenograft model [202].

3.6. Plitidepsin (Dehydrodidemnin B)

Initially, plitidepsin potently inhibited osteoclast differentiation and bone resorptive
activity in vivo [203]. Moreover, it could halt the progression of the myc-oncogenic signal-
ing pathway by inhibiting protein synthesis and enzymatic activity, thereby demonstrating
potent efficacy in phase I trials, especially against medullary thyroid carcinoma [204].

Subsequently, plitidepsin entered various phase II and III trials for the treatment of
multiple cancers [205], where it displayed cancer-targeting effects against BL, diffuse large
B-cell lymphoma (HT and RL), leukemia (MOLT-4), multiple myeloma (5TMM), pancreatic
cancer, and T-cell lymphoma [206,207]. These clinical trials further underscore the promise
of plitidepsin as a cancer-targeting agent [68,208,209].

Since 2018, after completing a phase III trial, plitidepsin is currently approved as a ther-
apeutic agent for relapsed/refractory multiple myeloma patients [210]. Interestingly, studies
are testing its combination with gemcitabine, sorafenib [211], and dexamethasone [70].

Currently, plitidepsin is under further clinical trials [70]. The marketed drug is being
tested against solid and hematological malignancies such as T-cell lymphoma, leukemia,
and prostate cancer [212]. These phase II trials, which involve the intravenous application
of 5 mg/m2 of plitidepsin, have yielded heterogeneous results: some patients achieved
disease stabilization, whereas only a few achieved a partial response [211].

3.7. Soblidotin

Soblidotin, an analog of dolastatin 10 with tubulin-inhibiting and vascular-disrupting
abilities [18], has demonstrated in vivo anticancer activity against human xenograft models
of breast (MX-1) and lung (LX-1) cancer [213]. Injected intravenously in mice, it significantly
inhibited the growth of leukemia cells (P388) and reduced the tumor volume of three solid
tumor cell lines: colon-26 adenocarcinoma, B16 melanoma, and M5076 sarcoma [197].

Soblidotin demonstrated in vivo antivascular effects against tumors overexpress-
ing VEGF in nude BALB/c and CDF1 mice inoculated with SCLC (SBC-3/VEGF) [214]
and showed antitumor activity against tumors resistant to docetaxel, paclitaxel, and vin-
cristine [149]. In 2002, soblidotin began phase I clinical trials in Europe, Japan, and the
USA, and is currently in phases II and III with multiple companies [18].

Moreover, soblidotin was demonstrated to be superior or at least comparable to
paclitaxel and vincristine in their antimicrotubular activities [198]. However, reports of
significant hematological toxicity have stalled the progression of soblidotin as a potential
anticancer agent [215].
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3.8. Tasidotin

Tasidotin is a third-generation analog of dolastatin 15 that is metabolically stable due
to its resistance to hydrolysis [149]. It showed in vivo anticancer activity in preclinical
models of pediatric sarcomas [216], LOX melanoma xenografts [217], and xenograft models
of breast, ovarian, prostate, and colon cancer [216].

Additionally, tasidotin has also been effective in vivo against a murine P388 leukemia
model [216]. Tasidotin induces cell cycle arrest in the G2 and M phases and also inhibits
tubulin polymerization, even at low concentrations, demonstrating activity against rhab-
domyosarcoma, synovial sarcoma, and osteosarcoma [149].

4. Current Methods for Purification and Synthesis of Depsipeptides
4.1. Proved Methods for Purifying Depsipeptides

Nowadays, depsipeptides can be purified using different methods [218,219]. When
derived from natural sources, the organism-produced depsipeptides can be analyzed using
high-performance liquid chromatography (HPLC) [220,221]. Some studies have coupled
a photo-diode array and used ultra-performance liquid chromatography in tandem with
high-resolution mass spectrometry [222].

Frequently, in vitro and even in vivo assays are performed simultaneously during
purification to analyze the biological properties of interest [223]. Yu et al. used reversed-
phase HPLC (RP-HPLC) to purify and quantify depsipeptides and short oligomers of
glycine [220]. In 2006, Matsuo et al. also used RP-HPLC to purify urukthapelstatin [224], a
depsipeptide with inhibitory effects on human lung cancer (A549) cells [221].

RP-HPLC was also used to purify trikoveramides A–C, peptides that belong to the
kulolide superfamily and inhibited the growth of human leukemia cells (MOLT-4) [225].
The well-known anticancer peptide, coibamide A, was also purified by RP-HPLC [226]. In
2015, Kaur et al. achieved the purification of the novel cyclic depsipeptide, YM-280193,
with the ability to inhibit platelet aggregation [227].

4.2. Synthesis of Depsipeptides

Depsipeptides were originally synthesized to improve the solubility of ultra-long
peptides by adding an ester-linked residue that would alter the linear structure [228].
In addition to the presence of at least one ester and one amide bond in their structures,
most depsipeptides contain a wide variety of acyl groups and moieties added through the
assembly line [16].

Certain authors have proposed the synthesis of these peptides using solid-phase
peptide synthesis with a fluorenylmethoxycarbonyl (Fmoc)-protected N-terminus, lysine,
or aspartic acid as the charged entities, and lactic acid as the ester moiety to maintain
hydrophobicity [219]. A stepwise Fmoc-based solid-phase methodology to create a highly
complex depsipeptide has been reported, with the addition of small amounts of organic
acids to improve this stepwise approach and minimize secondary reactions [229].

For instance, coibamide A has been synthesized using Fmoc-based solid-phase syn-
thesis, but with the initial step being the attachment of the Fmoc-Tyr-allyl ester to the free
hydroxyl group on a 2-chlorotrityl chloride resin [226]. Another depsipeptide, teixobactin,
and its analogs have also been synthesized using Fmoc-based solid-phase synthesis [230].

A recent modification of the Fmoc-based solid-phase synthesis involved the use of
ultrasonication methods, an intervention that saved both material and reaction time while
improving the synthesis yield of complex peptide sequences [231]. A novel and efficient
approach to generate depsipeptides emerged in the form of isocyanide-based consecutive
Bargellini–Passerini multicomponent reactions [232].

5. Recognized Disadvantages of Depsipeptides

Even though depsipeptides are derived from natural resources, their commercializa-
tion requires synthetic production, which generates a vast amount of waste [233]. To tackle
these issues, cyclization has been proposed to minimize dimerization and oligomerization,
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which in turn involves high dilutions of the peptide [234]. However, a synthetic route
needs to be designed, optimized, and tailored to each particular depsipeptide, rendering a
general synthetic method impossible [229].

Synthetic depsipeptides have to replicate the capability of modulating DNA methy-
lation, acetylation, and histone methylation through specific biomolecules with unique
structural characteristics [235], making this a complex, strenuous, and most likely, high-cost
process. Furthermore, these peptides tend to be ionophoric in nature and require metal
salt templates to be added to the macrocyclization reactions as they enhance the rate of
cyclization [233]. Moreover, the cell-binding capacity of these peptides and the uncertain
toxicity of their degradation products are some other concerns [236].

6. Discussion

Depsipeptides are molecules with remarkable features that can be exploited for both
health and nutrition. Currently, researchers are using these molecules in innovative ways
(e.g., as radio-diagnostic imaging agents) [237]. Their cancer-targeting capability (“anti-
cancer”), which we have addressed in this review, has been studied for numerous years.

As depicted in the different sections of this review, cyclic depsipeptides are quite
common [92]. Several authors sort them based on their structure, mainly according to the
existence and number of ester bonds, if these occur regularly or irregularly, and the position
of ester oxygen (i.e., α or β) [238,239]. However, an amendment to this system has been
proposed, which classifies depsipeptides according to the introduction of the ester bond as
well as the origin of the ester hydroxy group, among other revisions [16].

This latter modification proved to be important for defining the structure of depsipep-
tides in future research projects. We observed that the number of depsipeptides having
cytotoxic effects on cancer cells decreases as the number of ester groups increases. Likewise,
the number of candidate depsipeptides dramatically decreased in different sources as the
number of ester groups increased.

To date, studies on depsipeptides have been primarily focused on fungi, insects, and
marine lifeforms. No depsipeptides have been reported from common food sources like
maize or wheat, both of which are widely consumed worldwide [240]. This is attributed to
the synthesis of these compounds, which requires the participation of multi-domain non-
ribosomal peptide synthetases. These are a part of the large biochemical arsenal encoded
in microbial genomes [16,241].

Likewise, depsipeptides, as secondary metabolites, are especially copious in filamen-
tous fungi than in plants [242]. Cutting-edge peptides are being engineered from proteins of
these organisms with relevant activities for cancer therapy [8,243]. Furthermore, proposals
for the use of other common substrates to produce bioactive peptides such as fruits and
vegetables have been proposed, but their low level of protein (0.5–3.9%) limits their use in
this setting [11].

Hence, we encourage specialists to delve into the native sequences of large-scale
consumed foods, intending to find candidate peptides prone to being cyclized and enhanced
as needed, but always according to in silico prediction and complementary design such as
in linear peptides [244]. The cyclic nature of depsipeptides is reported to bestow upon them
advantages such as increasing both protease resistance and protein-binding capability [16].

Most of the molecules we covered in this review eventually induce apoptosis. Certain
molecules such as micropeptins and the tutuilamides A–C have demonstrated elastase
inhibition properties [103,245], making them suitable anticancer agents because the levels of
this protease are significantly elevated in various cancers [246]. Likewise, some specific dep-
sipeptides that induce autophagy include apratoxin A, coibamide A, and plitidepsin, which
induces macroautophagy via the autophagy-related protein 5–ubiquitin system [29,247].

Although this review encompasses notable findings of specific depsipeptides and gen-
erally known disadvantages, certain drawbacks of specific candidates must be highlighted.
For instance, apratoxin has been shown to be ineffective against breast tumor cells [189].
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Moreover, exposure to it caused pancreatic atrophy and significant toxicity in vivo, which
limited its widespread use [190].

Likewise, dolastatin 15, a compound quite similar to dolastatin 10 (addressed in
Sections 2.5.2 and 3.4 herein), demonstrated an effect on growth and differentiation in
leukemia cell lines and G2/M cell cycle arrest in human myeloma cell lines during in vivo
trials [149]. However, further studies revealed that it was nearly seven times less active
than its counterpart [140]. This slightly weaker in vivo activity was also reported for other
molecules such as dolastatin 10 and isodolastatin H [248].

Based on our analysis, the only depsipeptide that might be considered for encapsula-
tion studies on food matrices would be dehydrodidemnin B (plitidepsin). Thus far, two
nanoparticles formulated with plitidepsin have produced successful results when targeting
renal cancer in a xenograft model [216]. Notably, these nanoparticles achieved a similar
targeting result as Cremophor, a marketed adjuvant for hydrophobic and insoluble drugs
for cancer treatment [181].

Nonetheless, assessing the effect of the route of administration of any candidate
depsipeptide would be mandatory for food enrichment purposes, principally because these
molecules lack specific properties to be encapsulated within lipid vesicles, for instance,
some contain arginine residues within their amino acid sequence [249]. Some synthetic
depsipeptides derived from human C-reactive protein, however, have been successfully
encapsulated in multi-lamellar vesicles [250].

Even with promising in vitro results for multiple cyclic peptides, most of the studies
delving into the toxicity profile of these molecules are significantly lacking in the effects on
normal cells [10,193]. Other authors have generalized the applicability of a few metabo-
lites that have progressed in early phases of clinical trials [120], claims that may prove
deleterious for these molecules’ approval and use.

Likewise, emphasis should be given to the characteristics of many review stud-
ies on depsipeptides, most of which delve into significant detail regarding promising
findings [120,181,251], but fail to discuss the reliability of results and few refer to quality
control measures and the reproducibility of results. Nonetheless, other authors have ex-
celled in describing their methods, strategies, and limitations [252], thus yielding important
information that will most likely pave the way for the rapid development of novel and
reliable depsipeptides.

Therefore, we encourage researchers to reevaluate the concept of using these molecules
as food additives to achieve an “anticancer” effect from the consumption of a routine diet.
Studies should be directed toward effective encapsulation techniques and the potential
tumor-targeting “pharmacokinetics” of these elite candidates.

7. Conclusions

Depsipeptides are complex molecules that have attracted significant interest in the
field of cancer therapeutics. To date, several elite cancer-targeting candidates have been
identified, and investigations range from in vitro assays to clinical trials. This could indeed
be the key for functional food purposes.

However, in their pristine form, depsipeptides are still far from being introduced
into foods, mainly due to their structure and susceptibility to the matrix environment.
Purification and synthesis methods have certainly enhanced the proficiency of depsipep-
tide management.

Consequently, research efforts should focus on effective encapsulation techniques
while retaining their cancer-targeting capacity and considering the physiological impact of
their degradation products, so that these elite candidates can be used as cancer therapeutics
in the future.
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