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Abstract - A hybrid particle swarm with differential 

evolution operator, termed DEPSO, which provide the 

bell-shaped mutations with consensus on the population 

diversity along with the evolution, while keeps the self-

organized particle swarm dynamics , is proposed. Then 

it is applied to a set of benchmark functions, and the 

experimental results illustrate its efficiency. 

 

Keywords: Particle swarm optimization, differential 

evolution, numerical optimization. 

1 Introduction 

Particle swarm optimization (PSO) is a novel multi-

agent optimization system (MAOS) inspired by social 

behavior metaphor [12]. Each agent, call particle, flies 

in a D-dimensional space S according to the historical 

experiences of its own and its colleagues. The velocity 

and location for the ith particle is represented as iv
r

= 

(vi1,… ,vid,…,viD) and ix
r

= ),...,,...,( D1 iidi xxx , respectively. 

Its best previous position is recorded and represented as 

ipr =(pi1, …,  pid,  …, piD), which is also called pbest . The 

index of the best pbest is represented by the symbol g , 

and gp
r

 is called gbest. At each step, the particles are 

manipulated according to the following equations [15]: 

vid =w·vid+c1·rand()·(pid-xid)+c2·rand()·(pgd -xid) (1a) 

xid = xid + vid        (1b ) 

where w  is inertia weight, c1 and c2 are acceleration 

constants, rand() are random values  between 0 and 1.  

Several researchers have analyzed it empirically [1, 

11, 20] and theoretically [3, 5], which have shown that 

the particles oscillate in different  sinusoidal waves and 

converging quickly , sometimes prematurely , especially  

for PSO with small w [20] or constriction coefficient[3]. 

The concept of a more -or-less permanent social 

topology is fundamental to PSO [10, 12], which means 

the pbest and gbest should not be too closed to make  

some particles inactively  [8, 19, 20] in  certain stage o f 

evolution. The analysis can be restricted to a single 

dimension without loss of generality. From equations 

(1), vid can become small value, but if the |pid-xid| and 

|pgd-xid| are both small, it cannot back to  large value and 

lost exploration capability in some  generations. Such 

case can be occured even at the early stage for the 

particle to be the gbest, which the |pid-xid| and |pgd-xid| 

are zero , and vid will be damped quickly with the ratio w.  

Of course, the lost of diversity for |pid-pgd| is typically  

occured in the latter stage of evolution process. 

To maintain the diversity, the DPSO version [20] 

introduces random mutations on the xid o f particles with 

small probability  cl, which is hard to be determined 

along with the evolution, at least not be too large to  

avoid disorganization of the swarm. It can be improved 

by a bell-shaped mutation, such as Gaussian distribution 

[8], but a function of consensus on the step-size along 

with the search process is preferable [11]. A bare bones 

version [11] for satisfying such requirements is to 

replace the equations (1) by a Gaussian mutation with 

the mean (pid+pgd)/2 and the standard deviation |pid-pgd|, 

which maybe also be inefficient when |pid-pgd| is very 

small, and is too radically since it turns the PSO into a 

variaty of in evolution strategies (ES) [2]. 



 

 

This paper describes a hybrid particle swarm with 

differential evolution (DE) operator[16], termed DEPSO,  

which also provide the bell-shaped mutations with 

consensus on the population diversity , while keeps the 

particle swarm dynamics. Then the DEPSO is applied to 

several benchmark functions [4, 13, 15], and the results 

illustrate the significant performance improvement. 

2 DEPSO algorithm 

For proposed DEPSO, the mutations are provided by 

DE operator [16] on the ip
r

, with a trail point iT
r

= ip
r

, 

which for dth dimension: 

IF (rand()<CR  OR d==k) THEN  idT =pgd+ 2, dδ  (2) 

where k  is a random integer value within [1, D],  which 

ensures the mutation at least one dimension., CR  is a 

crossover constant, and 2δ
r

 is the case of N=2 for the 

general difference vector Nδ
r

, which is defined as:  

( )1

N

N Nδ = ∆∑
r r

                   (3) 

where  the  ∆
r

 is the essential difference vector [16],  

means the diffe rence of two elements that random 

chosen from a common point set, which include all the 

pbest in current case. N  is the number of ∆
r

 involved.  

Then for the dth dimension: 

, ,d A d B dp p∆ = −
r r r

         (4) 
where Apr , Bpr  are chosen from the pbest set at random. 

The experimental analysis f or Nδ
r

 will be restricted 

to a single dimension without loss of generality. Fig. 1 

and 2 shows a histogram of points that were tested in 

one million iterations for 1δ
r

 and 2δ
r

, respectively. Each 

one dimensional element pr  for calculating ∆
r

 is  a real-

value that picked from [-1, 1] at random. It can be seen 

that 1δ
r

 is a triangle  distribution and 2δ
r

is a bell -shaped 

distribution, which the latter is better for problem-

solving [11]. Hence the N=2 is selected in equation (2). 

The mutation is performed on the pbest instead of ix
r

 

[8, 20] so as to prevent the swarm from disorganizing 

by unexpected fluctuations, since the replacement of 

pbest will follow the steady-state strategy, i.e., iT
r

 will 

replace ip
r

 only if it is better than ip
r

. 

The mutation is also based on gp
r

 provides the social 

learning capability, which might speed up convergence. 

The learning ratio is determined by CR, which is the 

counterpart of interaction probability IP [11]. If CR=1, 

then the equation (2) becomes a bell-shaped mutation 

operator on gp
r

 as ES  [2]. If CR<1, it may retain some 

dimensions of ip
r

, which will facilitate the convergence 

for the fitness landscape that some dimensions are 

irrelevantly. Such capability is also implemented 

implicitly in the some former mutation versions [8, 20] 

but is not in the canonical version. 

 

 

 

 

 

 

 

 

 

FIG. 1 Histogram of points tested for 1δ
r

 

 

 

 

 

 

 

 

 

 

 

FIG. 2 Histogram of points tested for 2δ
r

 

 

The original PSO operator and the DE operator will 

be performed alternately, i.e. the equations (1) will be 

performed at the odd generations, and the equation (2) 

at the even generations. The 2δ
r

 will provide a consensus 

mutation on ip
r

along with diversity of swarm, which 

emerge from the nature of the search itself , while  try ing 

to keep the diversity of pbest and gbest by changing ip
r

. 

3 Results and discussions 

For DEPSO, c1=c2 =2, w=0.4, the maximum velocity 

VMAX was set to the half range of the search space on 

each dimension [9, 20]. If without declaration specially, 
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each test case ran for T=2000 generations and all the 

cases were run 100 runs each. 

The constraint-handling method is following the 

criteria [6]: a) any feasible solution is preferred to any 

infeasible solution; b) among two feasible solutions, the 

one having better objective function value is preferred; 

c) among two infeasible solutions, the one having 

smaller constraint violation is preferred. 

The boundary constraints are handled by Periodic 
mode. For each point ix

r
, its fitness will be calculated 

by a mapping point izr = )( D1 iidi z,...,z,...,z , which for dth 

dimension, it has: 
  IF xid< dl  THEN zid= du -( dl -xid)% ds     (5a) 

  IF xid> du  THEN zid= dl +(xid- du )% ds    (5b) 

Where ‘%’ is the modulus operator, dl  and du  are 

lower and upper values, and ds =| du - dl | is the 

parameter range of the dth dimension. 

3.1 Unconstrained functions 
The tested unconstrained problems  include the 

Rosenbrock function, the generalized Rastrigrin and the 

generalized Griewank function [15, 19, 20], which all in 

30-D and have same minimum value  (Fopt) as zero. 

Table 1 lists the mean fitness values of such 

functions by FPSO [15], DPSO (w=0.4, cl=0.001) [20], 

and DEPSO (w=0.4, CR=0) with different number of 

agents  (m). The CR  is set small, since there is little 

correlation between the parameters  for these functions. 

It shows that DEPSO performs better than both old PSO 

versions, especially for the Rastrigrin and the Griewank 

functions, which with uncorrelated parameters. 

 

TABLE 1. The mean fitness values for the unconstrained functions 
f m FPSO[15] DPSO[20] DEPSO 

20 183.8037 132.1512 80.8259 
40 175.0093 82.7209 66.8730 

30-D 
Rosenbrock 

(Fopt=0) 80 124.4184 57.2802 60.6405 
20 48.47555 7.3258 0.8656 
40 35.20146 6.2107 0.009950 

30-D 
Rastrigrin 
(Fopt=0) 80 22.52393 4.2265 3.919E-9 

20 0.021560 0.01793 0.009073 
40 0.012198 0.01356 0.006930 

30-D 
Griewank 
(Fopt=0) 80 0.014945 0.01190 0.005589 

3.2 Constrained functions 
The selected problems  include eleven functions that 

are proposed by Z. Michalewicz et al (G1  to G11) [13], 

which include eight functions without equality 

constraints and three functions (i.e. G3, G5, G11) with 

equality constraints, and an engineering optimization 

problem: design of a pressure vessel (Vessel) [4, 9]. The 

dimension of S (D), the optimization type and optimum 

value (Fopt) of each function are list in Table 2. 

 

TABLE 2. Summary of constrained functions 
f D Type Fopt 

G1 13 Minimum -15 
G2 20 Maximum 0.803612 
G4 5 Minimum -30665.539 
G6 2 Minimum -6961.814 
G7 10 Minimum 24.306 
G8 2 Maximum 0.095825 
G9 7 Minimum 680.630 
G10 8 Minimum 7049.248 
G3 10 Minimum -1 
G5 4 Minimum 5126.498 
G11 2 Minimum 0.75 

Vessel 4 Minimum 6059.714 

 

Table 3 lists the mean fitness values for eight 

functions without equality constraints by a (30, 200)-ES 

(T=1750) [17], the DE (CR=0.1), the canonical PSO 

(w=0.4), and the DEPSO (w=0.4, CR=0.1), where m=70. 

For G8, the maximum generation T=200, and for all the 

other cases, T=2000. It shows that the DEPSO 

outperforms either the DE or the PSO. By the way, it 

also provides better results than GA [13] and ES [17] 

with much less evaluation times. 

 

TABLE 3. The Fopt for the functions without equality constraints 
f ES[17] DE PSO DEPSO 

G1 -15.000 -15.000 -14.945  -15.000 
G2 0.7820 0.7805 0.6891 0.7868 
G4 -30665.5 -30650.1 -30665.5 -30665.5 
G6 -6875.94 -6961.81 -6961.81 -6961.81 
G7 24.374 25.064 25.286 24.586 
G8 0.095825 0.095825 0.095825 0.095825 
G9 680.656 681.063 680.652 680.641 
G10 7559.192 7565.4 7526.6 7267.4 
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FIG. 3 Mean relative performance for G1 
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FIG. 4 Mean relative performance for G2 

0 400 800 1200 1600 2000
1E-10

1E-8

1E-6

1E-4

0.01

1

100

F
no

rm

t

Function: G4

 PSO(w=0.4)
 DE(CR=0.1)
 DEPSO (w=0.4, CR=0.1)

 

FIG. 5 Mean relative performance for G4 
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FIG. 6 Mean relative performance for G6 
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FIG. 7 Mean relative performance for G7 
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FIG. 8 Mean relative performance for G8 
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FIG. 9 Mean relative performance for G9 
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FIG. 10 Mean relative performance for G10 

 

Figure 3 to 10 show the relative mean fitness value 

Fnorm=Fmean-Fopt during the evolution generations (t) for 

the eight functions, respectively, where Fmean is the 

mean best fitness value in each generation. It shows that 

DEPSO outperform DE in at least mentioned cases. For 

some problems, such as G4, G6, G8, PSO perform better 

than DE and DEPSO with CR=0.1, which may due to 

the fitness landscape of such problems are epistasis , i.e. 

need to covary the parameters at the same time to 

improve fitness. Notes although there is no correlation 



 

 

between the parameters of G6, but its constraints 

construct such a SF. This also can explain why PSO is 

performing worse for such as G1, since lack of the 

capability of varying only few dimensions for a point. 

For G3, G5, G11, which have almost 0% feasible space 

(SF) due to the equality constraints, are needed to 
replace the constraint ( ) 0g x =r

by an inequality 

constraint | ( ) |g x ε<r
 for some small ε >0 [13, 14, 17]. 

Here we choose two ε  values: 1E-3 [14], and 1E-4 [17], 

which the SF of the former is la rger than that of the 

latter and will more easily to be solved. 

Table 4 lists the mean fitness values for the three 

functions with equality constraints DE (CR=0.9), the 

canonical PSO (w=0.4), and DEPSO (w=0.4, CR=0.9), 

where m=70. In order to compare with existing results, 

when ε =1E-3, for G5, T=2500, and for G11, T=300; 

when ε =1E-4, for G3 and G5, T=5000. For other cases, 

T=2000. The values in the brackets gives the number of 

trails that are failed in entering SF, and only those trails 

that are succeeded in entering SF are counted for the 

calculation of mean fitness values. DEPSO outperforms 

DE and PSO in all cases, and it can find the optimum 

solution in all runs when ε =1E-3. Table 5 summarizes 

the evaluation times for existing DE results in [14] and 

DEPSO, which shows DEPSO is also much fast. 

 

TABLE 4. The Fopt for the functions with equality constraints 
f ε  DE PSO DEPSO 

G3 1E-3 -0.8572 -1.0048 -1.0050 
G3 1E-4 -0.3985 -0.8364 -0.9849 
G5 1E-3 5129.50 5356.15(10) 5126.484 
G5 1E-4 5133.834 5334.97(12) 5130.864 

  G11 1E-3 0.74909 0.74941 0.74900 
G11 1E-4 0.75061 0.75459 0.74990 

 
TABLE 5. Summary of the evaluation times when ε =1E-3 

f DE[14] DEPSO 
G3 8000000 140000 
G5 1200000 175000 
G11 30000 21000 

 

When ε =1E-4, DEPSO also cannot always find the 

optimum point, which is  better than normal ES [17] but 

is worse than ES with stochastic ranking [17] for G3 and  

G5 in same evaluation times. 

The objective of the vessel  problem is to minimize 

the cost of the material, forming and welding of a 

cylindrical vessel [4, 9]. It is a mixed-integer-discrete-

continuous problem which has four design variables, 

two are integer and two are continuous. Here the closest 

integer value will be used to evaluate the fitness 

although the algorithms still works internally with 

continuous variables. 

 

TABLE 6. The mean fitness values for the vessel problem 
Results MGA[4] DE PSO DEPSO 

Best 6069.3267 6062.740 6059.714 6059.714 
Mean 6263.7925 6126.658 6332.784 6108.177 
Worst  6403.4500 6408.792 6820.410 6410.087 
S.D. 97.9445 76.0619 263.4612 93.45319 

 

Table 6 lists the comparison of results for the vessel  

problem by MGA (population size is 50, and T=1000, 

which costs 50000 evaluation times) [4], DE (CR=0.1), 

the canonical PSO (w=0.4), and DEPSO (w=0.4, 

CR=0.1), where for the three algorithms, m=70, and 

T=700, which costs 49000 evaluation times . It can be 

seen that the PSO is not stable [9], which may due to 

the step-type landscape created by integer variables. 

However, PSO also shows the capability to catch the 

optimum point comparing to MGA and DE. DEPSO 

inherits the merits of PSO and DE, and performs much 

better that MGA within almost same evaluation times. 

4 Conclusions 

This paper presents a hybrid particle swarm with 

differential evolution operator called DEPSO. The 

hybrid strategy provides the bell-shaped mutations with 

consensus on the population diversity by DE operator, 

while keeps the self -organized particle swarm dynamics,  

in order to make the performance is not very sensitive 

to the choice of the strategy parameters as in DE [7]. It  

is shown to outperform the PSO and DE for a set of 

benchmark functions. However, more comparative 

works with different parameter settings for more  

problems should be performed to provide a full view. 

The DEPSO seems performing well for the problems 

with integer variables by the help of the bell-shaped 

mutations. However, as declared for PSO [9], it  is als o 

not very efficiently for handling those problems with 

extremely small feasible space, such as the problems 



 

 

with equality constraints. Since each agent in DEPSO 

(and DE, PSO) only refers to few points (pbest  and 

gbest), it cannot employs some strategies  (such as 

stochastic ranking [17]), which needs a big population. 

Future investigation may employ extending memory 

with a set of points to satisfy such strategies. 

Moreover, according to No-Free-Lunch (NFL) theory  

[18], taken the problem information into account will 

improve the performance of algorithm. For DEPSO, the 

appropriate CR  can be chosen if the correlation of the  

parameters is known. But for the black-box problems , it 

is still a great challenge to learning such parameters  

during run-time with efficiently strategies . 
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