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Abstract

Recent research demonstrates that visual prostheses are

able to provide visual perception to people with some kind

of blindness. In visual prostheses, image information from

the scene is transformed to a phosphene pattern to be sent

to the implant. This is a complex problem where the main

challenge is the very limited spatial and intensity resolu-

tion. Moreover, depth perception, which is relevant to per-

form agile navigation, is lost and codifying the semantic in-

formation to phosphene patterns remains an open problem.

In this work, we consider the framework of perception for

navigation where aspects such as obstacle avoidance are

critical. We propose using a head-mounted RGB-D camera

to detect free-space, obstacles and scene direction in front

of the user. The main contribution is a new approach to

represent depth information and provide motion cues by us-

ing particular phosphene patterns. The effectiveness of this

approach is tested in simulation with real data from indoor

environments.

1. Introduction

The ability to navigate and move around complex or

unfamiliar environments is essential for people, and this

is a non-trivial task to be automated. People solve these

tasks primarily through vision, combined with their abil-

ity to memorize and learn. These tasks are even more

critical for visually impaired people, since additional per-

sonal safety issues appear. While mobility aids such as the

white cane are helpful in short-range navigation, the usage

of cameras enable the recovery of mid- and long-range in-

formation from the environment and thus, a more effective

navigation. A key issue in Navigation Assistance for Visu-

ally Impaired (NAVI) is obstacle avoidance. Different ap-

proaches for NAVI have been developed based on vision

sensors such as in [47, 36, 38, 2], or with other types of sen-

sors [12, 35, 18]. In the context of prosthetic vision, differ-

ent visual processing techniques were proposed for obstacle

avoidance [40, 46, 31, 29].

In the following sections we provide some background

on the topic of prosthetic vision. Then, we describe the

main aspects of phosphene mapping techniques and how

they are usually tested with users. Finally, we describe the

problem of depth and motion perception considered and the

proposed contributions.

1.1. Background on prosthetic vision

Since 1968, different research works have found that

electrical stimulation of the visual cortex or other parts of

the visual pathway (such as retina) caused patients to per-

ceive bright dots of light called phosphenes [6]. Thus, vi-

sual prostheses generally consist of retinal or cortical im-

plants that apply electrical stimulation using an electrode

array to generate a grid of phosphenes similar to a low res-

olution dot image [11].

The typical components of this technology are as fol-

lows: A small camera mounted on the eyeglasses is used

for image acquisition. The images are then processed by a

portable computer to convert the image data into an elec-

tronic coded signal. This signal is transferred to the implant

via wireless communication and the signal finally reaches

the microelectrode array causing the grid of phosphenes.

Experimental results demonstrate that patients with this

kind of devices can detect phosphenes at individual elec-

trodes and they were able to develop coordination in using

their visual prosthetic device [1].

1.2. Models of phospene patterns

Unfortunately, the resolution of the phosphene grid pro-

duced by visual prostheses is constrained by biology, tech-

nology and safety [30, 34], and current devices provide a

few dozens of phosphenes. Therefore, implanted visual

prostheses provide bionic vision with very limited spatial

and intensity resolution when compared against healthy vi-

sion. According to [7] a pattern of 25×25 phosphenes al-

lows to recognize text in a reading speed of 100 words per

minute for stationary text and 170 words per minute for text

moving automatically. Other related works also study per-

formance in the task of reading [17], or finding text [13].
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However, other tasks like face recognition require hundreds

of phosphenes [41, 45].

Given the highly limited resolution, important efforts

have been performed on the application of vision algorithms

to improve the phosphene patterns for prosthetic vision [4].

For example, vision processing can make better use of the

limited resolution by highlighting salient features such as

edges [30, 32, 14]. Currently, the way to process and code

the image information to the low resolution device to be

useful and meaningful is still an open issue.

Moreover, traditional works generally assume regular

phosphene patterns to be created with the prosthetic vision

device. However, there is clinical and biological proofs

that phosphene patterns are irregular and patient-specific

[39], [28]. Still, regular patterns are usually assumed, and

works that cope with irregular phosphene maps generally

consider close to regular patterns where small spatial shifts

in phosphene locations and electrode dropouts are modelled

[42], or only irregular phosphene shapes are considered

over a regular grid [25]. Regarding the particular shape of

the visual phosphenes, there is a large variety of profiles de-

scribed in the literature. For simplicity most works choose

either perfectly circular or square shaped phosphenes for

their simulation studies [8]. However, neither perfectly cir-

cular nor square phosphenes capture the exact shape of real

phosphenes.

1.3. Simulated Prosthetic Vision

In order to avoid complex and costly trials on patients, a

non-invasive method to evaluate the efficacy of visual pros-

theses is by means of Simulated Prosthetic Vision (SPV)

[30]. Most SPV systems make use of a head mounted dis-

play with a forward facing camera, which allows fast testing

of a great variety of methods while constraining the user to

a particular model of bionic vision such as visual angle or

resolution. A discussion about different SPV is provided in

[8, 9].

Most of the current approaches used in prosthetic vision

and SPV are based on basic image processing techniques

[3, 4]. However, this vision-based configuration allows ex-

ploring more advanced computer vision techniques to en-

hance the semantics and the relevance of the information

displayed to the patient [5]. For example, visual recogni-

tion can be used for enhancing the saliency of meaningful

objects [22, 24]; face detection can be used for human in-

teraction [30]; or clarity of symbolic information can be im-

proved with image segmentation techniques [22]. Recently,

[23, 43, 48] used virtual-reality-based environments to eval-

uate the user response with different models of visual rep-

resentation.

1.4. Problem definition and contributions

As previously said, in prosthetic vision a visual scene

is composed of relatively large and isolated spots of light

called phosphenes. However, very low resolution images

are frequently meaningless to the user. Moreover, repre-

senting depth in phosphene maps is very relevant to achieve

adequate navigation, but its implementation is particularly

challenging. Notice that depth perception cannot be trans-

mitted using stereo displays because of intrinsic technical

limitations of prosthetic vision. Thus, it requires alternative

strategies to transmit depth such as using an iconic repre-

sentation.

Our proposal consists of a perception system module

(Section 3) and the iconic representation module (Section

4) for the camera-computer configuration in prosthetic vi-

sion. The goal of our perception module is to retrieve:

• The relative movement of the user in the scene.

• The orientation of the scene.

• A collision-free walkable path.

The type of camera we choose for information acquisition is

an RGB-D camera, carried by the user mounted in the head.

The RGB-D cameras provide a colour image with also the

depth of each pixel in the image. These devices are cur-

rently in development and are subject to intensive research.

In our framework, this type of information is particularly

useful to reliably detect obstacles and, for example, warn of

other potentially dangerous situations such as the presence

of curbs or stairs [37], or detect the location of an empty

chair [44]. Usually, it is assumed that man-made environ-

ments are essentially composed of three main directions or-

thogonal to each other. Taking this assumption into account,

denoted as Manhattan world assumption, some works have

been proposed for recovering the scene layout [26, 20, 16],

or just the orientation of the scene [10] as we do in this

work.

In the proposed iconic representation module we code

the information perceived to the phosphene map. This task

is challenging, since our approach tries to accommodate to

the current state of technology of prosthetic visual devices.

Despite the recent progress in the field, the resolution and

dynamic range are still low. Moreover, related works focus

on 2D information neglecting the three-dimensional nature

of the world, and depth perception is lost to the user. Sys-

tems displaying depth and contrast edges in a phosphene-

based display are described in [27, 30] and more recently in

[33]. In [21], a semantic labelling of the image provides a

representation for obstacle avoidance. Here we aim to the

ambitious goal of providing depth information by designing

appropriate processing algorithms to be used on the vision-

based input information.
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Figure 1: Components of a Plücker description of a 3D line.

The direction vector l and the moment vector l̄. Under Man-

hattan World assumption a main direction vvp is coincident

with the direction li of lines following this direction and

orthogonal with their moment vectors l̄i.

In this paper, we present a novel phosphene map cod-

ing for navigation tasks based on a ground representation

of the obstacle-free space as a polygon and a ceiling repre-

sentation based on vanishing lines pointing towards a pre-

viously determined moving direction. The ground polygon

is codified with a chess pattern to provide the effect of dis-

placement over the ground with the relative pose obtained

with the odometry. The effectiveness of the proposed repre-

sentation is illustrated with real data from indoor scenes in

Section 5.

2. Geometry and notation details

Consider a set of points planes and lines in a given ref-

erence. We denote X ∈ P
3 a 3D point in homogeneous

coordinates. We denote U =
(

u
T, u0

)T

a plane in homoge-

neous coordinates. We denote L ∈ P
5 a 3D line in Plücker

coordinates composed by two vectors L =
(

l
T, l̄T

)T

being

l ∈ R
3 a vector describing the direction of the line, l̄ ∈ R

3 is

a vector representing the normal to a plane passing through

the 3D line and the origin of the reference system O, and

the ratio between its norms dl = ‖̄l‖
‖l‖ is the minimum dis-

tance from the line to the origin of the reference system

(see Fig. 1). To allow L being a 3D line l
T̄
l = 0. Rays

are also codified as Plücker coordinates but denoted with

Ξ =
(

ξT, ξ̄
T
)T

.

Consider a reference system composed of a rotation R ∈

SO(3) and a translation t ∈ R
3. A change of reference

of points is performed by using the linear transformation

T ∈ SE(3) such that T =

(

R t

0
T 1

)

. A change of ref-

erence of a plane is done through T−T. Finally, a change of

reference of a line or a ray is described by the linear trans-

formation G =

(

R 0

[t]× R R

)

.

3. Perception of free moving space and scene

orientation

The proposed system includes an RGB-D camera for the

perception part. In this section we describe the main sub-

tasks as defined in the introduction: to obtain the relative

movement of the user in the scene (Section 3.1), to get the

orientation of the scene (Section 3.2), and to retrieve a lay-

out of free moving space (Section 3.3).

3.1. Relative movement of the user in the scene

In robotics, the estimation of the position of the robot

with respect to the starting location is called odometry.

When the information to compute the odometry comes from

a camera, it is called visual odometry. This is a classic topic

in computer vision, which recently has been enhanced with

the advent of RGB-D cameras. We use the algorithm from

[19], which is a method for dense visual odometry estima-

tion performed by minimizing photometric (in the RGB im-

age) and geometric (in the inverse depth map) errors, and

therefore takes advantage of the RGB-D camera.

With this method, for each frame we compute the pose

T0,k ∈ SE(3) that transforms the reference frame from k

to 0, being 0 the initial reference frame. These transforma-

tion T0,k consists of a rotation matrix R0,k ∈ SO(3) and

a translation vector t0,k. These transformation is necessary

to provide sense of movement in the environment.

3.2. Orientation of the scene

In our work we assume scenes satisfy the Manhattan

World assumption [10], meaning the world is organized ac-

cording to three orthogonal directions, we call Manhattan

directions or main directions. In order to get these direc-

tions, we perform a vanishing point extraction, since all

lines directed in one of the Manhattan directions intersect

in one of the three main vanishing points.

First, from the distribution of the normals of the point-

cloud we obtain a set of rough candidates for being the main

three directions. Then, lines are extracted from the RGB-

image and clustered in main directions following a Random

Sample Consensus (RANSAC) approach [15]. Assuming

Manhattan directions, we can assemble the direction vec-

tors to create the rotation matrix Rk,Abs ∈ SO(3), being

Abs the reference of the system with the axis aligned with

the Manhattan directions, called absolute reference. To en-

force the obtained directions to be orthogonal we optimize

ωk,Abs ∈ so(3) such that Rk,Abs = exp
(

[ωk,Abs]×

)

. The

distance of the minimization dopt = v
T

vp l̄i exploits the con-

straint that the direction vector of a 3D line Li must be

orthogonal to its corresponding projection plane (see Fig.

1). For considering that the original clusters could contain

some misclassified lines we use a L1-norm as loss function.
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(a) (b) (c) (d)

Figure 2: Four basic steps for the construction of the floor polygon following the explanation from Section 3.3. Four obstacles

are drawn with the projection to the floor in different colors and bounding boxes. Valid vertices are colored in green while

invalid vertices are dark red. In (d) the floor polygon is drawn in green.

Finally, the result is fine-tuned with a L2-norm using only a

selected collection of well conditioned lines.

In practice, this procedure can be performed only once

and then carried over by the odometry. For example, let

us consider we obtain RAbs,0 at first frame. At frame k

we can compute the pose TAbs,k with tAbs,k = t0,k and

RAbs,k = RAbs,0 ·R0,k. We choose the axis in Abs to be as

follows: zAbs pointing upwards (to where the ceiling should

be), xAbs to the front of the user in that moment and yabs to

its left.

3.3. Perception of free space

The free space around the user is retrieved using the

information from the depth camera, specifically the point

cloud data. A point cloud is a set of 3D points Xi =

(xi, yi, zi, 1)
T

, each one corresponding to a pixel in the

depth camera. To speed up the algorithm, instead of mak-

ing operations to the whole cloud we perform downsam-

pling via voxel grid filter. We particularly apply a voxel size

of 0.10 meters, with could reduce the cloud approximately

100 times without major loss of relevant data for this task.

The point cloud can be transformed to the absolute refer-

ence frame by X
Abs = TAbs,k ·X

k.

Once we have our data pre-processed and in the abso-

lute reference frame, we compute the floor plane. To do so,

we have a tentative orientation of the normal of the floor

plane, since it should align with the main direction cor-

responding to zAbs. Thus, we proceed by computing the

normals of the points nX via principal component analysis,

and selecting the points whose normal is near zAbs. Then, a

RANSAC procedure for planes is applied to that subset of

points, and among the resulting plane candidates computes

their distance to the origin u0 and chooses as solution that

with highest value of u0. Note that we are assuming that the

floor is visible and that there is no other horizontal plane be-

low it. Again, like with the main directions, the floor plane

does not need to be retrieved every frame, and it can be car-

ried over by the odometry. This has an important advantage,

since then the floor does not need to be in the image all the

time and the user can be looking elsewhere.

The points of the cloud that are not classified as floor

points are considered obstacles unless they are considerably

higher than the person (e.g. ceiling). Since the camera is de-

signed to be on the head, we choose z = 0.5 meters over the

head as a safe maximum threshold to consider points out of

reach. The points are then grouped in planes and clusters

combining a RANSAC approach with Euclidean cluster ex-

traction (i.e. points that are close to each other under certain

threshold are grouped in clusters). Each plane or cluster is

considered obstacle, meaning that no further semantic rea-

soning has been performed. To determine the layout of free

space we project the points to the floor plane to reason in

2D. The layout of free space will be the polygon on the

floor plane whose edges are given by the bounding boxes of

the obstacles and the rays from the camera. The procedure

to build the floor polygon goes as follows (see Fig. 2 for

graphical explanation):

(a) We look for visible vertices in the corners of the

bounding boxes of the floor projections of the obsta-

cles. Visibility is checked by the intersection of the

segments from the origin to the vertices and the seg-

ments of the bounding boxes. Also, intersection points

between bounding boxes are considered.

(b) We project rays from the origin to the previous vertices

to verify if they intersect with their bounding boxes

or not. Those who do not intersect are extended until

intersection with other bounding box or to a maximum
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distance (e.g. 10 meters).

(c) We remove those vertices outside the field of view

(FoV) of the camera, and include the origin as vertex.

(d) We sort the vertices clockwise with the angle α, sort-

ing accordingly vertices with same angle (i.e. coming

from (b)).

The output of the proposed procedure is a 2D polygon in

the floor plane that we can transform in 3D since we know

the plane equation (see Fig. 2 (d)).

4. Iconic representation of layouts

Even when the environment is known, the lack of dy-

namic range and resolution in prosthetic visual devices

complicates the perception of depth. On the one hand, the

quantification given by the low resolution hinders the pos-

sibility of stereographic vision. In the other hand, the low

dynamic range dilutes the texture of landmarks that humans

use for locating themselves.

In order to tackle with these perception problems, we

consider using an iconic representation of the scene capable

of giving support for navigation tasks. Our proposal con-

sists of: a layout representation of the ground describing

the free space and a simplified representation of the ceiling

suggesting the motion direction which has been planned in

a higher level. The displacement with respect the ground is

evoked by using a chess pattern in the ground map. This

representation, inspired by old low-resolution 3D games, is

useful as an iconic description of perspective projection.

As introduced in Section 3, we estimate the free ground

and represent it with a polygon. This polygon is defined in

a global reference we have obtained from the main direc-

tions of the scene and the odometry we get from a RGB-D

SLAM system [19]. For representing the ground, we first

estimate which rays intersect with the polygon defining the

layout. For this we use the Plücker polygon-ray intersec-

tion approach which works with convex polygons. Since

the polygon is in general non-convex we estimate the rays

intersecting the convex-hull of the polygon and then we re-

move the outlier points.

4.1. Plucker polygon-ray intersection method

Given a line L =
(

l
T, l̄T

)T

and a ray Ξ =
(

ξT, ξ̄
T
)T

represented in Plücker coordinates, the side operator

side (L,Ξ) = l
Tξ̄ + l̄

Tξ (1)

returns a signed distance. The sign of this side distance de-

fines the relative wise between the lines (see Fig. 3). If we

define the sides of a convex polygon with their correspond-

ing Plücker coordinates and we follow a clockwise sense in

Figure 3: The sign of the distances from ray A
(

ξA, ξ̄A
)

to

the sides (si, s̄i) are (−,−,−,−,−). By contrast, the sign

of the distances from ray B
(

ξB , ξ̄B
)

to the sides (si, s̄i)
are (−,+,−,−,−).

this definition we can determine if a ray intersects the inte-

rior of the polygon or not by using the following rule.

(a) Estimate the sign of the side between the ray and each

side.

(b) If all the side distances have the same sign the ray in-

tersects the interior of the polygon.

(c) If this sign is positive we are looking to the front of the

polygon, if negative we are looking to the back.

Once we know the rays intersecting the convex-hull

of the polygon we compute the corresponding projected

points. Then, we collect the projected points which are

inside the polygon and mark them with the chess pattern.

This texture is parametrically defined by quantizing X and

Y coordinates. Since the points are computed in the global

reference (which is aligned with the vanishing points) the

chess pattern follows the main directions of the scene.

5. Experiments and discussion

We have tested our method performing real world situa-

tions. Our experimental setup consisted of a head mounted

RGB-D camera that was attached to a helmet. The RGB-

D camera model is an Asus Xtion Pro Live, a widely used

device in computer vision and robotics research. We used

a laptop to record the sequences, but no direct feedback to

the user (e.g. via virtual reality glasses) was tested yet at

this early stage. However, this approach let us try different

ways of encoding the data in phosphenic representation and

analyze the problems that may emerge in a real scenario.

Here we provide a qualitative insight about the method, its

limitations and possibilities.

5.1. Evaluation of free space perception

First, it is important to have a reliable perception module

to create a safe and useful assistive aid. The recovery of the
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Figure 4: Each row shows an example of the perception of free moving space. The first two columns show the RGB and

depth image, which has been scaled so warmer colors mean farther distances. Column 3 shows the floor plan view of the

moving polygon and in column 4 the chess pattern has been overlaid to the RGB image for visualization.

main orientation of the scene works well considering the

Manhattan World assumption holds for a vast majority of

indoor environments. On the other hand, the visual odom-

etry has a slight drift that is more noticeable the longer the

algorithm is running. However, by re-computing the van-

ishing points and floor plane from time to time the effect of

the drift should be minimized.

The most important part about the perception module

is the obstacle detection, since this is what warns the user

when he is prone to have an accident. Its proper function-

ing depends mostly on the sensor and its limitations. Con-

ventional RGB-D cameras are well known for not work-

ing well at direct sunlight, which should not be problematic

when staying indoors. In this situation most obstacles are

detectable, with the exception of certain materials that ab-

sorb or reflect the infrared light emitted by the camera. In

our experiments, the only type of surface that remains al-

ways undetected was glass, which is also undetectable with

conventional cameras.

We show some examples in Fig. 4, including RGB and

Depth captures, along with a 2D floor projection of the

scene, where the obstacles are drawn as blue points and the

free moving space is the green polygon; and the overlay

of the corresponding chess pattern to the color image. The

first two rows correspond to a corridor scenario: a success-

ful case and an unsuccessful one. The former not only is

able to recover the main path to follow the corridor, but it

also shows the beginning of new paths at the left, that the

user may like to know to explore the environment. The sec-

ond example shows the opposite: a misdetection on the left

wall and the glass surface at the right, showing some mis-

leading free space, which could be problematic. The third

and fourth row in Fig. 4 show another environment, in this

case an office place full of tables and other obstacles. In

both cases the algorithm is able to show the main path to

follow and some additional sidetracks. The last row finds a

traversable path through the door. However, it leaves some

actual free space undetected at the left, next to the door.

5.2. Evaluation of hosphenic representation

Regarding the phosphenic representation, we show some

examples in Fig. 5. Our iconic representation of the floor

includes three levels of intensity of the phosphenes (black,

gray and white), to color the chess pattern in white and gray.

Turned off phosphenes (black) mean no walkable path. In

case only one level of intensity could be used, an alterna-
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RGB Image (1) (2) (3) (4)

Figure 5: Four real examples of our phosphene-based representation including different parameters. In particular, we wanted

to show the difference of using different number of phosphenes (Np) and field of view of simulated phosphene camera (given

by its focal length f ). By columns, RGB Image and four alternative phosphenic representations (1–4) with parameters: (1)

f = 525px, Np = 484; (2) f = 525px, Np = 1862; (3) f = 400px, Np = 1862; (4) f = 200px, Np = 1862.

tive representation would be to keep the pattern white and

black. However, then it would be impossible differenciate

between obstacle and black squares. In that case we pro-

pose to draw the borders of the floor polygon. The ceiling

shows two lines of a corridor pointing to the front vanishing

point, which was selected as direction to follow.

We have tested different parameters of the codification,

including the number of phosphenes and the field of view of

the representation. About the first, we can observe in Fig. 5

the differences among columns (1) and (2), where different

values of number of phosphenes Np = 1862 and Np = 484
phosphenes. While still useful, it is less intuitive the repre-

sentation with fewer phosphenes: the chess pattern is not so

easily observed, and the bigger discretization in the repre-

sentation produces sudden jumps in the representation in the

borders of the obstacles. When the amount of phosphenes

increases, the changes in the phosphene map are usually less

aggressive and the chess pattern can be clearly observed.

We have to note that this is a simulation to show how our

approach works for several levels of detail. In a real-world

prosthetic system the number of phosphenes would be lim-

ited by the current state of technology, which is expected to

increase in the future.

The field of view of the representation is another param-

eter we can tune since we are turning 3D information into

a 2D representation. Column (2) shows a representation

considering a focal length similar to the RGB-D camera

(f = 525 pixels). This has the advantage of representing

only what is actually viewed by the camera, and provides

more accurate delimitation of the obstacles and therefore

how to avoid them. However, the field of view of conven-

tional RGB-D cameras is limited, less than normal human
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vision. An alternative is shown in column (4), where the

field of view selected is very high (f = 200 pixels). This

has the advantage of showing the information in shorter

ranges. For example, when looking at a wall, a low-FoV

representation turns all the phosphenes to black (since there

are no floor viewed). With a high-FoV representation, a por-

tion of the floor still appears in the image showing the user

that he still has some space to move (see third row in Fig. 5).

The high-FoV representation has an important drawback,

since it needs to encode more information in an already lim-

ited display. Note that, in the fourth phosphene map column

in Fig. 5, the path seems narrower than with larger values of

f . This is because we limit the extension of the free mov-

ing polygon to the field of view of the sensor (since it is our

only cue to detect obstacles), and it represents less extension

relative to the large field of view of the phosphene camera

(f = 200 pixels). In column (3) we show a middle ground

(f = 400 pixels), where the information at mid-distance is

informative enough and also gives more information about

the moving space in short distances.

5.3. Video demonstration

We also have included two videos in this submission,

to show the algorithm running in real case scenarios. The

videos can also be found online1. In particular, we show

a video where the user moves in a corridor, and another

where the user moves inside an office. In these sequences

we use Np = 1862 and f = 525px. We can see how the

phosphenic representation shows clearly the moving area

over which the user can walk safely.

Unlike other works, our representation includes a

checkerboard floor which shows the movement of the user

in the scene providing a comfortable sense of depth. This is

more noticeable in the corridor sequence. In that sequence,

the windows at the right part of the corridor sometimes

show absence of obstacles since glass remains undetected,

returning erroneous floor polygons. Note that the floor gives

few valid depth points. However, we can maintain its posi-

tion with respect to the user with the odometry.

The office sequence, on the other hand, presents a clut-

tered environment with many obstacles. Our method shows

the free moving space in front of the user, removing the ta-

bles and other objects from the floor polygon. This scenario

is particularly challenging, and thus some frames show un-

detected portions of obstacles, producing inaccurate poly-

gons. However, these situations occur mostly in isolated

frames, producing an effect similar to flickering. Note that,

our algorithm for obstacle detection is yet in development

and we expect to increase its robustness.

1http://webdiis.unizar.es/%7Eglopez/spv.html

6. Conclusions

Visual prostheses are able to evoke visual perception in

blind people by using electrical stimuli. However, these

prototypes suffer from a lack of spatial and intensity reso-

lution that in practice prevents from transmitting depth per-

ception. In this paper we present an approach to represent

depth and motion cues with phosphene patterns in the con-

text of safe navigation of blind people in complex or un-

familiar environments. This approach takes advantage of

computer vision algorithms for evoking phosphenes-based

stimuli with semantic meaning. In particular, we propose a

free-space and obstacles detection algorithm for depicting

an iconic representation of a safe navigation layout. The ef-

fectiveness of this approach is tested in simulation with real

data from indoor environments.

In the near future we expect to perform experiments with

people in simulated environments. We expect to collect

data from those experiments to support the validity of our

method with a quantitative analysis.
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