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Abstract

In the present paper, flows of granular materials impacting wall-like obstacles down inclines

are described by depth-averaged analytic solutions. Particular attention is paid to extending the

existing depth-averaged equations initially developed for frictionless and incompressible fluids down

a horizontal plane. The effects of the gravitational acceleration along the slope, and of the retarding

acceleration caused by friction as well, are systematically taken into account. The analytic solutions

are then used to revisit existing data on rigid walls impacted by granular flows. This approach

allows establishing a complete phase-diagram for granular flow-wall interaction.
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† School of Civil Engineering, University of Sydney, NSW 2006, Australia
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I. INTRODUCTION

The influence of obstacles on the propagation of granular flows is today a booming re-

search area. Flow-obstacle interactions in granular flows have recently drawn attractions

from different disciplines in science and technology because the flows past obstacles are lo-

cally complex and highly non-linear. Flow regimes can change from fast to slow states, as

well as from diverging to converging states, and vice versa.

There are for instance several studies in geophysics which used laboratory tests on gran-

ular flows to mimic full-scale mitigation structures against avalanches, in order to analyse

some complex problems yet to be solved: the runup on avalanche catching dams [1–5],

the runout shortening caused by catching dams or dissipative structures such as retarding

mounds [6–11], the deflection induced by a snow shed [12], a catching dam [13] or a deflect-

ing dam [14], and the effect of a complex protection system including mounds and dams

[15]. Other small-scale studies used numerical simulations based on depth-averaged models

[16], discrete element method [17] or full dimensional models coupled with depth-averaged

models [18] to tackle the influence of retarding mounds, wedges or walls on the flow geome-

try. Many authors have recently combined small-scale numerical simulations and laboratory

tests [19–24]. More rarely, some controlled experiments on flows of geomaterials—such as

snow—interacting with obstacles were carried out on large-scale flumes to investigate the

effect of snow sheds [25], retarding mounds [26] or deflecting dams [27] but those experiments

remain costly.

The overarching aim of the present paper is to pay attention to rigid walls spanning the

whole width of the incoming granular flow. The numerical simulations based on discrete

element method [17, 23, 28–31] or the full dimensional continuum models, as recently de-

veloped by Domnik and Pudasaini [32], are important and necessary contributions to the

topic. In the present paper, various analytic solutions are proposed for describing the main

kinematics of the granular patterns formed when flows of granular materials hit walls down

inclines. A depth-averaged approach, which ignores the details of the discrete nature of

the flowing material, is proposed. The particular behaviour of flowing grains is considered

through choosing relevant values of the effective parameters that characterize the assembly

of grains.

The depth-averaged analytic solutions proposed in the present study systematically take
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into account the effects of both the potential energy caused by gravity and the energy

dissipated by friction, as recently done for the kinematics of granular flows without any

obstacle by Pudasaini and Domnik [33]. Previous studies on small-scale granular flows past

rigid walls are revisited and cross-compared in order to draw a complete phase-diagram. The

latter is helpful for evidencing the conditions needed to form each of the various granular

patterns induced by flow-wall interaction.

The present paper is organized as follows. Section II describes the general depth-averaged

analytic solutions for bulky frictional granular flows impacting rigid walls down inclines. In

the first place, the depth-averaged equations for flows without any obstacle are shortly pre-

sented (Sec. IIA). Second, a general equation for the stationary granular jump is proposed

(Sec. II B). Third, general equations for propagating granular jumps, namely granular bores,

are given (Sec. II C). Fourth, the critical wall height below which the granular bore does

no longer propagate upstream of an obstruction, and a large airborne jet is formed down-

stream of the wall, is tackled (Sec. IID). Section III revisites a great number of studies

on various granular patterns resulting from flow-wall interaction, such as airborne granular

jets, diffuse and strong granular jumps, and granular dead zones. Finally, a complete phase-

diagram governing the granular flow-wall interaction is prososed in Sec. IV, in line of the

depth-averaged analytic solutions described in Sec. II.

II. ANALYTIC SOLUTIONS FOR GRANULAR FLOWS IMPACTING WALLS

A. Depth-averaged equations for granular flows down inclines

Gravity-driven free-surface flows of granular materials are well described by depth-

averaged mass and momentum conservation equations. These equations were introduced in

1871 in order to describe the non-permanent water flows in application to river floods [34].

Then, the classical assumption of shallow water flows was applied to granular flows [35, 36]

and motivated the mathematical modeling of natural hazards such as landslides [37], debris

flows or mudflows [38, 39], rock avalanches [40] and snow avalanches [22, 41]. The key idea

is to consider that the vertical length scale (the flow thickness h) is small with respect to

the horizontal length scale L along the slope. The assumption ǫ = h/L ≪ 1 is reasonable

for many geophysical flows. It is then possible to depth-average the three-dimensional local
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conservation equations. The full derivation for granular avalanches can be found in [35, 36].

Mass [Eq.(1) below] and momentum [Eq.(2)] balances applied to an infinitesimal portion

of fluid can quickly give the depth-averaged equations for a two-dimensional flow down a

slope making an angle θ with the horizontal [42]:

∂h

∂t
+

∂hū

∂x
= 0, (1)

ρPφ

(

∂hū

∂t
+ β

∂hū2

∂x

)

= ρPφgh cos θ

(

tan θ − µb − k
∂h

∂x

)

. (2)

h is the flow thickness and ū = 1
h

∫ h

0
u(z)dz is the depth-averaged velocity. ρP is the

particle density and φ is the volume fraction of the flowing granular material, which is

constant (the fluid density is ρ = ρPφ) as a direct result of ǫ ≪ 1. The x−coordinate

corresponds to the direction of the main flow and t is the time. β is defined as the ratio

between the depth-averaged value of the velocity square and the square of the depth-averaged

velocity: β = ū2/ū2.

The forces at stake considered in Eq.(2) and balancing the inertial forces are: the flow

weight (ρPφgh sin θ), the friction force (τb = µbφρP gh cos θ, where µb is the basal effective

friction coefficient) and the force related to the thickness gradient (kρPφgh cos θ
∂h
∂x
, where k

is the earth pressure coefficient relating the normal stresses σxx and σzz through σxx = kσzz).

The physical processes associated with the discrete nature of the granular medium—which

forms the flowing layer—are not considered in detail. Relevant values should be given to the

granular constitutive parameters k, β and µb, as it will be shortly discussed thereinafter.

The value of k can be derived from soils mechanics concepts, as early suggested by Savage

and Hutter [35]:

kpass/act =
2
(

1±
√

1− (1 + tan2 δ) cos2 ϕ
)

cos2 ϕ
− 1, (3)

where δ is the bed friction angle, ϕ is the internal friction angle and kpass/act = kpass for

a passive state (∂u/∂x < 0) or kact for an active state (∂u/∂x > 0). Eq.(3) with δ = ϕ

yields kpass/act = (1 + sin2 ϕ)/(1 − sin2 ϕ). Past studies have shown that k = 1 would be

a reasonable assumption for sheared granular flows in the steady and uniform regime [43].

More recent studies have highlighted a slight anisotropy in normal stresses for the steady and

uniform regime: k = σxx/σzz = 1.05 [44]. It is likely that k is influenced by the divergence
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of the flow [45], which may lead to values different from 1 when the free-surface is strongly

non stationary and/or non uniform.

β depends on the shape of the velocity profile. It is generally taken to be equal to 1, which

corresponds to the exact value for plug flows. It can be calculated provided an assumption

on the shape of the velocity profile: β = 4/3 for linear velocity profiles and β = 5/4 for

Bagnold velocity profiles.

µb can be taken as a constant [36] or more complex velocity-dependent friction laws can be

considered. The granular constitutive friction laws are expressed through either frictional-

collisional concepts [46–49] or the dependence of µb on the inertial number, namely the

µ(I)-rheology described by MiDi [50] and Jop et al. [51].

The flow disturbed by the presence of an obstacle may have spatial variations L whose

scale is close to the typical flow thickness h. The shallow water flows assumption (ǫ =

h/L ≪ 1) is then no longer valid, as clearly evidenced by Pudasaini et al. [3], Pudasaini and

Kröner [4], Faug et al. [10], Gray et al. [20], Johnson and Gray [52], etc.

This paper presents general depth-averaged equations in order to describe a steady gran-

ular flow down an incline and interacting with a rigid wall. The wall spans the whole width

of the incident flow. Note that all the equations given in the following sections should apply

to incoming flows (before impacting walls) in steady-state regime.

B. Stationary granular jumps

Granular jumps, namely large discontinuities in depth and velocity, are typically observed

when a rapid granular flow hits a rigid wall. When overflow is possible downstream of the

wall, a stationary granular jump (see Fig.1 in the current section) can be produced. When

the obstruction prevents overflow downstream of the wall, the granular mass is entirely

blocked and a granular bore propagates upstream from the obstruction (see Fig.3a in the

next section).

1. Full equation for steady jumps

By analogy to hydraulic jumps [53], a theory can predict the change in depth in the

granular jump [54–56]. A sketch of a stationary granular jump is given in Fig.1. hi, ūi
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FIG. 1. Sketch of a stationary granular jump down an incline. The subscripts i = 1 and 2 refer

respectively to locations upstream (section S1) and downstream (section S2) of the jump.

and ρ̄i are the thickness, the depth-averaged velocity and the depth-averaged density at the

locations i, where the subscripts i = 1 and 2 refer respectively to locations upstream and

downstream of the jump region. By making use of the continuity equation (ρ̄1ū1h1 = ρ̄2ū2h2),

the momentum equation applied to a control volume surrounding the jump yields:

ρ̄1ū1h1(β2ū2 − β1ū1) = P1 − P2 +W sin θ − Ff . (4)

W is the weight of the granular material in the jump: W = 1
2
K̄gL∗(ρ̄1h1 + ρ̄2h2), where

L∗ is the length of the granular jump region (see Fig.1) and K̄ is a coefficient accounting

for the shape of the jump. P1 and P2 are the lateral pressure forces acting on sections

S1 and S2 (see Fig.1): Pi =
1
2
kiρ̄igh

2
i cos θ, where ki is the earth pressure coefficient (see

discussion in Sec. II A). Ff is the frictional force between locations 1 and 2 which can be

expressed as Ff = µeW cos θ, where µe is the effective coefficient of Coulomb friction within

the jump volume, as early proposed by Savage [55] and recently revisited by Faug [57]. Some

calculation allows deriving the relation between the Froude number Fr1 = ū1/
√
gh1 cos θ

of the incoming flow (defined at section S1 in Fig.1), the jump depth ratio h2/h1 and the

density variation ρ̄2/ρ̄1 across the jump:

Fr21 =
1

2

[

k2
ρ̄2
ρ̄1

(

h2

h1

)2

− k1 −
K̄L∗

h1

(

1 +
ρ̄2
ρ̄1

h2

h1

)

(tan θ − µe)

]









1
(

β1 − β2

ρ̄2
ρ̄1

h2
h1

)









, (5)

where various parameters, such as the earth pressure coefficients ki and the Boussinesq
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momentum coefficients βi, can be estimated for granular flows (see Sec. IIA). Apart from a

recent study by Faug et al. [56] (see extended discussion in Sec.III A), past studies paid little

attention to the other parameters appearing in Eq.(5): the jump shape parameter K̄, the

length of the jump relative to the thickness of the incoming flow L∗/h1, and the difference

between the tangent of the slope angle and the effective friction within the jump (tan θ−µe).

Fig.2a shows the jump depth ratio as a function of the Froude number of the incoming

flow for different values of the density variation across the jump. The following values are

used for the parameters in Eq.(5): ki = 1, βi = 1, L∗/h1 = 10 (typical value measured in

the experiments by Faug et al. [56]), K̄ = 1 and tan θ − µe = 0.11 (which is for instance

obtained from θ = 30◦ and µe = tan δ where δ = 25◦). The jump height increases with the

Froude number but the increase rate is decreased when the density variation across the jump

increases. Recent experiments by Faug et al. [56] showed that, at a given slope angle (which

generally controls the Froude number), dilute flows produce jumps that are thinner than

those produced by dense flows. This result is consistent with predictions shown in Fig.2a.

Incompressible jumps (ρ̄2/ρ̄1 = 1) are considered in the following of the present section.

How the relation between h2/h1 and Fr1 is influenced by ki, βi, L∗/h1, K̄ and tan θ − µe

can be analysed then.

Fig.2b shows the jump depth ratio as a function of the Froude number for different values

of L∗/h1. Other parameters have the same values as in Fig.2a. The results show that the

influence of L∗/h1 is significant, in particular for low values of the Froude number of the

incoming flow. Increasing L∗/h1 generally produces an increase of the jump height relative

to the incoming flow thickness, and the effect is enhanced at low Froude number.

Fig.2c depicts h2/h1 versus Fr1 for two values of k2. k1 is kept equal to 1 (isotropic flow

conditions regarding normal stresses), which appears to be a reasonable assumption for the

incoming flows in steady regime, as previously discussed in Sec. IIA. Moreover, it can be

verified that the influence of k1 remains weak with respect to the influence of k2. The jump

height decreases while k2 is increased from 1 up to 1.43, as shown in Fig.2c. The latter value

for k2 would correspond to an anisotropy in normal stresses under the following assumptions:

(i) ϕ = δ = 25◦ and (ii) passive state downstream of the jump where ∂u/∂x < 0, which yields

a sign + in Eq.(3). Other parameters have the same values as in Fig.2a with ρ̄2/ρ̄1 = 1.

Changes in βi from 1 to 5/4 or 4/3 (see discussion about those values in Sec.II) have very

weak influence on the relation between h2/h1 and Fr1 (not shown here). Keeping βi = 1 is
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FIG. 2. Depth ratio h2/h1 versus the Froude number Fr1 from Eq.(5) for various values of ρ̄2/ρ̄1

(a), L∗/h1 (b) and k2 (c). The following values of the parameters needed for Eq.(5) are used for

all graphs (unless one of these parameters is varied): ρ̄2/ρ̄1 = 1, βi = 1, ki = 1, L∗/h1 = 10,

tan θ − µe = 0.11, and K̄ = 1.

then a reasonable assumption. The influence of K̄ and tan θ − µe remain generally weak.

A significant influence appears if the length of the jump relative to the thickness of the

incoming flow, L∗/h1, is large.

It can be concluded that the relation between h2/h1, Fr1 and ρ̄2/ρ̄1 is strongly influenced

by the length of the jump, and, to a lesser extent, by a possible change in the earth pressure

coefficient across the jump.
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2. Simplified solution for incompressible steady jumps

This section considers incompressible, or slightly compressible jumps, for which ρ̄2 = ρ̄1.

Such jumps are obtained if the incoming flow are not too dilute. Dilute flows produce

compressible jumps for which the change in density across the jump cannot be ignored, as

recently evidenced by [56]. Under the additional assumptions ki = k (no change in earth

coefficient across the jump) and βi = β (no variation of velocity profiles across the jump),

it is worth establishing that Eq.(5) can be written in the following form:

(

h2

h1

)2

+
h2

h1

−
2βFr21

k − K̄ L∗

h2−h1

(tan θ − µe)
= 0. (6)

In hydraulics [53], it is generally assumed that the product K̄ L∗

(h2−h1)
, which accounts for

the geometry of the jump, can be expressed as a simple function of Fr1. Recent experiments

on the shape of standing granular jumps [56] suggested that it is a reasonable assumption

for granular flows too, provided that the jumps are incompressible or slightly compressible—

meaning that the density variation across the jump is nil or weak. The assumption that the

Froude number of the incoming flow strongly controls the shape of the jump will be further

discussed at section IIIA 1. Eq.(6) has the following solution:

h2

h1

=
1

2





(

1 +
8βFr21

k − K̄ L∗

h2−h1

(tan θ − µe)

)1/2

− 1



 . (7)

For frictionless flows (µe = 0) with no deviation from a purely hydrostatic pressure (k = 1)

and uniform velocity profiles (β = 1), Eq.(7) leads to the traditional equation proposed for

hydraulic jumps on steep slopes by Chow [53]:

h2

h1

=
1

2





(

1 +
8Fr21

1− K̄ L∗

h2−h1

tan θ

)1/2

− 1



 . (8)

3. Asymptotic solution for a granular flow over a small bump

Eq.(7) can be used to describe a granular flow passing slowly over a bump of height H0.

The latter situation is similar to a very diffuse granular jump for which h2 = H0+h3 (where

h3 is the critical depth at the top of the bump), h3 − h1 = ǫ0 (where ǫ0 ∼ 0) and K̄ 7→ 1.

Eq.(7) yields:
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H0

h1

+
ǫ0
h1

+ 1 =
1

2





(

1 +
8βFr21

k − L∗

H0+ǫ0
(tan θ − µe)

)1/2

− 1



 . (9)

By considering ǫ0 7→ 0 and H0/h1 7→ 0 (small bump), one can derive a critical value Frc

for the Froude number of the incoming flow:

Frc =

√

1

β

(

k −
L∗

H0

(tan θ − µe)

)

. (10)

The above equation suggests that the critical value of the Froude number—classically

equal to 1 for horizontal water or air flows over a bump—would depend on β, k, (tan θ−µe),

and L∗

H0

in the case of frictional granular flows down inclines.

C. Propagating jumps upstream of an obstruction

The granular jump propagating upstream of an obstacle at speed U (see sketch in Fig.3a),

namely the granular bore, is for instance observed when a rapid granular flow hits a wall

spanning the entire width of the flow [3, 58]. Detailed features of that type of granular bore

have been investigated with the help of computations by Pudasaini and Kröner [4]. The

granular bore can be also observed when the material flows past a change in slope from a

high slope to a lower slope [3, 59]. In geophysics, this situation is typical of some avalanches

paths with a sharp change in slope which occurs at the transition from the flowing zone to

the runout zone.

1. Full equation for bores

By choosing a reference frame travelling at the speed U in the direction opposite to the

incoming flow, mass and momentum conservation equations across the jump give (Fig.3a):

ρ̄1h1(ū1 + U) = ρ̄2h2U, (11)

ρ̄2h2U
2 − ρ̄1h1(ū1 + U)2 =

1

2
k1ρ̄1gh

2
1 cos θ −

1

2
k2ρ̄2gh

2
2 cos θ +W sin θ − Ff . (12)

Vertical velocity profiles are assumed uniform for a sake of simplicity (β = 1). The

weight of the jump W and its effective friction Ff with the bottom (and side-walls for

10



confined flows) are determined by the equations proposed by Savage [55] and detailed in the

previous section. A relation between the Froude number Fr1 = ū1/
√
gh1 cos θ, the depth

ratio h2/h1 and the density ratio ρ̄2/ρ̄1 can be derived from Eqs.(11) and (12):

Fr21 =
1

2

[

k2
ρ̄2
ρ̄1

(

h2

h1

)2

− k1 −
K̄L∗

h1

(

1 +
ρ̄2
ρ̄1

h2

h1

)

(tan θ − µe)

](

1−
1

ρ̄2
ρ̄1

h2

h1

)

. (13)

Similarly to the stationary granular jump, one can analyse how the depth ratio of the

propagating bore is influenced by the various parameters: ki, tan θ−µe, K̄ and L∗/h1. Such

an analysis, which gives similar results to those obtained for the stationary granular jump,

is not detailed here.

Eq.(13) is slighly different from Eq.(5). Figure 3b shows the depth ratio h2/h1 versus

Fr1 for a propagating jump [Eq.(13)] compared to a steady granular jump [Eq.(5)]. It is

considered that the density variation across the jump is nil (ρ̄2/ρ̄1 = 1) and the following

values for the various parameters are used: ki = 1, K̄=1, L∗/h1 = 10 and tan θ−µe = 0.11.

At a given value of the Froude number of the incoming flow, the propagating bore is thicker

than the stationary jump. This result is not general but depends on the combination of

parameters, as detailed in [57].

The equations proposed above are a slight extension of the equations which were initially

proposed by Hákonardóttir [60] but did not consider the source term related to friction

acting within the jump volume. Through accounting only for the source term related to the

component of the gravitational acceleration along the slope, Hákonardóttir [60] distinguished

two cases: the angle of repose of the granular material ϕ is either smaller or greater than the

slope θ. The analysis by [60] leads to two schematic diagrams of the granular bore. When

ϕ ≥ θ, the depth h2 of the bore is constant, and the free-surface downstream of the jump

is parallel to the bottom, as drawn in Fig.3a. In contrast, when ϕ ≤ θ, the depth h2 is

increased while the flow approaches the wall [60], and the slope of the free-surface is equal

to ϕ. The latter situation was studied in detail by Pudasaini et al. [3] through small-scale

laboratory tests. The shape of the granular bore evolving over time could be reproduced

well by depth-averaged numerical simulations—including shock capturing technique—once

the measured model parameters were carefully implemented, as demonstrated by Pudasaini

and Kröner [4]. In their study, Pudasaini and Kröner [4] evidenced a strong influence of the

internal friction angle of the granular material.
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FIG. 3. a) (Color online) Sketch of a granular jump propagating upstream of a rigid wall (namely

a granular bore). b) Depth ratio h2/h1 versus the Froude number Fr1 for a propagating granular

jump [Eq.(13)] and for a steady granular jump [Eq.(5)]. Incompressible jumps and bores are

considered (ρ̄2/ρ̄1 = 1). Identical values of the parameters (βi = 1, ki = 1, K̄=1, L∗/h1 = 10 and

tan θ − µe = 0.11) are considered for Eqs.(13) and (5).

2. Simplified solution for bores

For frictionless materials (µe = 0) flowing down an horizontal plane (θ = 0), and under

the assumption ki = 1, an estimate of the depth ratio can be obtained:

Fr1 =
h2

h1

√

√

√

√

1

2

(

ρ̄2/ρ̄1 −
1

h2/h1

−
(

1

h2/h1

)2

+

(

1

h2/h1

)3
1

ρ̄2/ρ̄1

)

. (14)

Eq.(14) with ρ̄2/ρ̄1 = 1 yields a cubic function of h2/h1:

(

h2

h1

)3

−
(

h2

h1

)2

− (1 + 2Fr21)
h2

h1

+ 1 = 0, (15)

which can be solved with the Cardano’s method. Eq.(15) has only one physically mean-

ingful solution, as earlier discussed by Jóhannesson et al. [61]:

h2

h1

=
1

3

(

2 cos δ0

√

6Fr21 + 4 + 1

)

, (16)

where δ0 is given by:
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δ0 =
1

3
arctan

(

Fr1
√

27(16 + 13Fr21 + 8Fr41)

9Fr21 − 8

)

. (17)

Note that Eqs.(16) and (17) are currently considered as important criteria in the European

guidelines for the design of protection dams against avalanches [62]. However, it is worthy

to stress that those equations do not take into account some important aspects of granular

flows, such as possible changes in density and velocity profiles across the jump, and the effect

of friction as well. The equation proposed to derive the height of a granular bore [Eq.(13)]

needs to be verified on new relevant laboratory tests and/or discrete numerical simulations.

Attention should be paid to low and moderate values of Fr1, and to all parameters involved

in Eq.(13): ki, K̄, L∗/h1 and µe.

D. From a granular bore (upstream of the wall) to a large airborne jet (down-

stream of the wall)

The previous section addressed the granular bore upstream of a wall while overflow down-

stream of the wall was prevented. One can wonder what might occur when the wall height

H relative to the incident flow h1 is decreased, which causes overflow downstream of the

wall. The latter situation is depicted in Fig.4a. As H/h1 decreases, an increasing proportion

of the flow can escape. Finally the bore no longer propagates upstream of the wall, and a

large jet forms downstream of the obstacle, as displayed in Fig.4b. Hence, as suggested by

Hákonardóttir [60], there exists a minimum height of the wall for which a bore is present

upstream of the wall. A mathematical description of the bore upstream of the wall when

some flow overtops the wall can be formulated indeed. A description, which accounts for the

source terms (gravitational acceleration along the slope and retarding acceleration caused

by friction), is proposed in the following. This is again a slight extension of the earlier

analytical solution proposed by Hákonardóttir [60] for frictionless flows down a slope.

The conservations of mass and momentum fluxes across the jump in the reference frame

travelling upstream with the bore at speed U give (Fig.4a):

ρ̄1h1(ū1 + U) = ρ̄2h2(ū2 + U), (18)

ρ̄2h2(ū2 + U)2 − ρ̄1h1(ū1 + U)2 =
1

2
ρ̄1gh

2
1 cos θ −

1

2
ρ̄2gh

2
2 cos θ +W sin θ − Ff , (19)
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FIG. 4. (Color online) a) Sketch of a propagating granular jump (or bore) upstream of a wall with

an overflow downstream of the wall; b) Large airborne jet formed downstream of the wall when

the wall height is decreased and the bore no longer exists.

where notation similar to that used for the stationary granular jump equation (see Eq.(4)

in section II B 1) is considered.

The mass flux conservation between the granular jump and the top of the wall gives

h3ū3 = h2ū2. Following the assumption of a critical flow at the top of the wall [60], with

Fr3 = Frc (it is assumed a generalized critical value of the Froude number likely to be

different from 1), it yields:

ū3 = Frc
√

gh3 cos θ. (20)

As described by Hákonardóttir [60], the bore propagates upstream until the mass flux

over the jump equals the mass flux over the obstacle (ū1h1 = ū2h2 = ū3h
crit
3 ) and the critical

depth of the flow over the obstacle is then given by:

hcrit
3 =

(

ū1h1√
g cos θ

)2/3

Fr−2/3
c , (21)

by considering the critical value Frc of the Froude number, which can be different from 1

for frictional granular flows down inclines. The lower the obstacle height is, the more mass

is transported over the obstacle, and when:

H

h1

6
h2

h1

−
hcrit
3

h1

, (22)
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all the approaching mass flux is transported directly over the obstacle and the bore does

not need to propagate upstream. In this context, ones moves from a granular bore to a

standing granular jump [U = 0 in Eqs.(18) and (19)]. The critical wall height below which

the bore does not exist is then given by the following relation:

Hjet
c

h1

=
h2

h1

−
(

Fr1
Frc

)2/3

, (23)

where the ratio h2/h1 is given by Eq.(5) (full equation) or Eq.(7) (approximate solution

for incompressible granular fluids). Eq.(23) includes the effect of the slope and the effective

friction, and will be used to interpret some of the existing experimental data described in

section III B.

The propagation of granular bores at high slope over a smooth bottom (meaning that the

typical size of roughness is much smaller than the grain size) has been studied by laboratory

tests [3] and successfully captured by depth-averaged numerical simulations [4], provided

that the constant friction parameters, measured independently, were carefully implemented

in the numerical model. It would be of interest to design new tests on the propagation of

bores on lower slopes, and/or over rough bottoms. The latter conditions would reduce the

Froude number of the flows and produce more elongated and diffuse bores. It is likely that

depth-averaged models implemented with constant friction parameters would not describe

those diffuse bores as well as they can do for bores in very fast granular flows.

III. EXPERIMENTS ON GRANULAR PATTERNS NEXT TO WALLS REVIS-

ITED

A. The granular jump

The stationary jumps and the propagating jumps (or bores) generated by an obstruction

normal to the incident flow have been investigated by several authors, from the pioneering

works of Morrison and Richmond [54], Savage [55], Brennen et al. [63], Campbell et al. [64]

to more recent studies [3–5, 10, 20, 56, 60, 65]. The following sub-sections revisits some of

the existing data on granular jumps, in line with the analytic solutions proposed in section

II.
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1. The stationary granular jump

Brennen et al. [63] distinguished two types of stationary granular jumps and identified

three types of flows between the jump and the wall (flat plate weir in their tests). At low

Fr1, the flow in the jump consisted of a smooth expansion whereas, at high Fr1, the jump

contained a recirculating eddy necessarily accompanied by a stagnation line. The smooth

expansion, namely the very diffuse jump, characterized by a low value of the ratio h2/h1

would correspond to the so-called granular dead zone process described by Faug et al. [66],

as it will be discussed in section III C. At the lowest slopes, the flow between the jump

and the weir was shearing over its entire depth. At highest slopes, the jump was followed

immediately by the formation of a base wedge. An intermediate situation corresponded to

a more complex jump structure, as detailed by Brennen et al. [63]. However, Brennen et al.

[63] found that the comparison between theory and their experimental data was not affected

by the type of jump (smooth expansion or jump with recirculating eddy) or of downstream

flow. Their experimental data were compatible with data reported earlier by Savage [55].

Figure 5 shows the depth ratio h2/h1 measured by Savage [55] and Brennen et al. [63]

as a function of Fr1. Faug et al. [56] have recently designed a laboratory chute equipped

with a discharge gate at the exist of the chute, able to produce standing jumps over a wide

range of slope angle and mass discharge. They identified compressible jumps for which the

density variation across the jump cannot be neglected. Above a critical mass discharge for

which the incoming flow are not too dilute, the jumps were incompressible. Their data on

incompressible jumps is also included in Fig.5.

The collection of data available in literature [55, 56, 63] show that all data merge into

one single group. The prediction from the hydraulic jump equation, namely h2/h1 =

(
√

1 + 8Fr21 − 1)/2, which is strictly valid for frictionless flows down a horizontal plane,

is also shown by the line drawn in Fig.5. The line is systematically below the laboratory

data. This result clearly highlights the need of an equation suitable for granular media.

As a first step, and under the assumption of incompressible jumps (ρ̄2/ρ̄1 = 1), Eq.(7) is

fitted on all laboratory data reported in Fig.14. The following parametrization is considered:

h2

h1

=
1

2

(

√

1 + 8χFr21 − 1

)

, (24)
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FIG. 5. h2/h1 versus Fr1 measured experimentally by Savage [55], Faug et al. [56], Brennen et al.

[63]. The line shows the prediction from the traditional hydraulic equation h2/h1 = (
√

1 + 8Fr21 −

1)/2.

where χ = β/
[

k − K̄L∗(tan θ−µe)
(h2−h1)

]

is used as a tuning parameter. Figure 6 depicts the

exact values for χ as a function of the Froude number for each couple (Fr1,h2/h1) measured

by Savage [55], Faug et al. [56], Brennen et al. [63]. Though the data remain scattered,

one can note the following trend: χ is close to 1 at high Fr1 while it starts diverging when

Fr1 is decreased. This is the proof of a transition—which occurs around Fr1 ∼ 3 − 4, as

clearly demonstrated by the recent experiments by Faug et al. [56]. By decreasing Fr1,

there is a transition from granular jumps (in rapid flows) relatively well predicted by the

traditional hydraulic equation toward granular jumps (in slower flows) whose height is much

higher than the height predicted by the traditional hydraulic equation. Fig.6 shows that

this finding could be extracted from the existing data provided in earlier studies by Savage

[55] and Brennen et al. [63].

In contrast to previous studies by Savage [55] and Brennen et al. [63], Faug et al. [56]

paid a detailed attention to the shape of granular jumps and found that the jumps were

steep at high Fr1, while they became much more diffuse at lower Fr1, as depicted in the

pictures provided in Fig.7.

Fig.8a and b summarize the key experimental results by Faug et al. [56] through depicting

how the shape coefficient K̄ and the ratio L∗/(h2−h1) evolve with Fr1 (see details in [56] on

how the jump length L∗ was defined experimentally). K̄ increases roughly linearly with Fr1,
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FIG. 6. Exact value of χ as a function of the Froude number from the cross-comparison between

Eq.(24) and the laboratory data of Savage [55], Faug et al. [56], Brennen et al. [63]. The line χ = 1

would correspond to the prediction of the traditional hydraulic equation.

FIG. 7. Transition observed by Faug et al. [56] between steep jumps at high Fr1 (high slope) and

diffuse jumps at lower Fr1 (lower slope). Some recirculation was observed at the highest slopes.

while L∗/(h2 − h1) depicts a sharp increase when the Froude number decreases. By fitting

Eq.(7) (with k = 1 and β = 1) to the experimental data, the friction µe could be derived

(see detail in [56]) and compared to tan θ, as shown in Fig.8c. The difference tan θ − µe

remains tiny and weakly influenced by Fr1 (a small increase with Fr1 may be detectable

but remains within the uncertainty of measurements), as drawn in Fig.8d. From the curves

drawn in Fig.8, it can be concluded that the dramatic increase of L∗/(h2 − h1) when Fr1 is
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below 3 − 4 prevails. This produces an increase of the product K̄ L∗

(h2−h1

(tan θ − µe), which

makes χ higher than 1 in Eq.(24). The height of the diffuse jumps is then higher than the

height predicted by the traditional hydraulic equation. This result is interpreted as a direct

consequence of the forces caused by the gravity acceleration balanced by friction, and acting

within the jump volume. Not considering those forces would lead to an underestimate of

the height of the diffuse granular jumps observed at low Fr1, typically smaller than 3 − 4.

The traditional hydraulic equation is only suitable for (incompressible) granular jumps at

high Fr1. Predicting the height of granular jumps at low Fr1 is yet a problem to be fully

solved for two reasons: (i) Eq.(7) remains implicit (h2/h1 being a function of h2 − h1) and

(ii) it does not exist any theory to predict the length of the jump L∗.

In want of a better knowledge of the geometry of jumps, one can propose an empirical

approach by fitting the following relations on the measured values of K̄ and L∗/(h2 − h1),

which are assumed to depend primarily on Fr1 (as usually stated in hydraulics [53]):

K̄ = 1 + a(Fr1 − Frc), (25)

L∗

h2 − h1

=
b

(Fr1 − Frc)c
, (26)

where a, b, and c are constant parameters. The relation for L∗/(h2 − h1) is a power law

able to capture the increase of L∗/(h2 − h1) when Fr1 approaches the critical value Frc.

Note that Fr 7→ Frc, yielding h2 7→ h1, is a singular point. Describing what happens at tiny

values of h2 − h1 is challenging because the processes are strongly driven by the complex

interplay between hydrodynamic properties and the frictional nature of the granular fluid.

The relation for K̄ is an affine function which satisfies the following property: K̄ 7→ 1 when

Fr 7→ Frc (very diffuse jumps). The fitted lines for K̄ and L∗/(h2 − h1) are reported in

Fig.8a and b, respectively, and the values of parameters a, b and c are indicated as well.

Frc = 0.6 provided the best fits. Using Frc = 1 does little to change the fitted curves but

it is not consistent with the laboratory results by Faug et al. [56] who could observe very

diffuse jumps at values of Fr1 lower than 1. In want of any further knowledge at the present

time, the empirical relations for K̄ and L∗/(h2−h1) will be used in the following to estimate

the bore height and the critical wall height below which jumps no longer exist.
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FIG. 8. (a) K̄ versus Fr1; the continuous line shows the fit with 1 + a(Fr − Frc), where a = 0.07

and Frc = 0.6. (b) L∗/(h2−h1) versus Fr1; the continuous line shows the fit with
b

(Fr−Frc)c
, where

b = 8, c = 0.75 and Frc = 0.6. (c) tan θ and µe versus Fr1. (d) tan θ − µe versus Fr1 (summary

of laboratory data by Faug et al. [56]).

2. Bores and critical wall height below which jumps no longer exist

In particular studies conducted in geophysics to understand the interaction between

avalanches of granular materials and walls, the key role played by the occurrence—or the

non-occurrence—of granular bores has been pointed out. Hákonardóttir [60] and Faug et al.

[10] investigated the impact of granular avalanches with walls that mimick avalanche bar-

riers, and observed different granular patterns depending on the wall height relative to the

incoming flow depth.

Faug et al. [10] designed laboratory tests on a granular avalanche (Fr1 ∼ 3.75), which

overflowed dams of various heights from H/h1 = 0.7 to H/h1 = 7.4. Those tests were

initially performed to study avalanche run-out shortening caused by dams, which is crucial

for avalanche protection in geophysics [6, 8–10, 67]. In their experiments, Faug et al. [10]

observed a distinct transition, around H/h1 = 2− 3, from a gentle overflow of the granular

material to a bore regime (see figure 4 in [10]). A sharp jump propagated far upstream of

the wall in the latter situation. In the former situation, a quasi-steady dead zone formed

against the wall and other incoming grains were able to pass smoothly on the dead zone to

overflow the wall. This situation is discussed in more detail in section III C. Eq.(23) that
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predicts the critical wall heightHjet
c below which bores no longer exist can be checked against

the experimental observations by [10]. Each couple (Fr1,H/h1) tested by [10] is reported

in Fig.10a, by distinguishing between the experiments with a bore propagating upstream

(crosses) and the ones without any bore (circles). The prediction from Eq.(23) is reported

as well, where h2/h1 is calculated with the approximate solution given by Eq.(7). The

following values were considered for the parameters needed: k = 1, β = 1, and L∗/(h2 − h1)

and K̄ were derived from the empirical relations proposed in Sec IIIA 1. Two values of the

difference tan θ − µe were tested: 0.05 and 0.10, which are typical values recently measured

by [56] (see Fig.8d). Eq.(23) is found to be quite efficient at demarcating the experiments

with the sharp jump (crosses in Fig.10a) from the experiments with the more diffuse overflow

(circles in Fig.10a).

Hákonardóttir [60] designed laboratory tests on much more rapid granular avalanche

(Fr1 ∼ 12) impacting dam-like obstacles of four different heights: (i) H/h1 = H∞/h1

(H = H∞ prevented overflow), (ii) H/h1 = 18, (iii) H/h1 = 15, and (iv) H/h1 = 6.7. As

shown in Fig.9b, a granular jump propagating upstream was observed for test (i) for which

the incoming flow was entirely blocked upstream of the dam (H = H∞). For tests (ii)

and (iii), the granular bore was still present, while some material was able to overflow the

smaller dam. In contrast, a long airborne granular jet formed downstream of the dam in

test (iv), when H/h1 was reduced to 6.7. Eq.(23) that predicts the critical wall height Hjet
c

below which bores no longer exist can be checked against the experimental observations

by Hákonardóttir [60]. Fig.10a shows each point (Fr1,H/h) corresponding to tests (ii)–

(iv) conducted by Hákonardóttir [60]. The prediction from Eq.(23) is reported as well.

Again, the following values were considered for the parameters needed: k = 1, β = 1

and L∗/(h2 − h1) and K̄ were derived from the empirical relations proposed in Sec IIIA 1.

Two values of tan θ − µe were tested: 0.05 and 0.10. Again, Eq.(23) allows to demarcate

roughly the experiments with bores [tests (ii) and (iii) represented by cross symbols] from

the experiment without a bore and a large jet formed downstream of the wall [test (iv)

shown in a circle symbol].

It is worthy to note that the predictions from traditional hydraulics (Frc = 1 and tan θ−

µe = 0), reported in dashed lines in Fig.10, are very close to predictions from the approximate

solution stemming from Eq.(7) implemented with the empirical laws for K̄ and L∗/(h2−h1).

They are thus efficient at capturing the transitions observed by [10, 60] for experiments at
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FIG. 9. (Color online) Hákonardóttir [60] studied granular flows at high Froude number (Fr1 ∼ 12)

impacting a rigid wall. At large wall height preventing overflow, a granular jump propagate up-

stream [test(i)]. While decreasing the wall height, a clear transition from a granular bore propa-

gating upstream of the wall with some overflow downstream of the wall [tests (ii) and (iii)], to a

large airborne jet formed downstream of the dam [test (iv)] was observed. The photographs by

K.M. Hákonardóttir were adapted from Hákonardóttir [60].

high Froude numbers. However, it is likely that hydraulic theory would fail for lower values

of the Froude number for which the term K̄ L∗

h2−h1

starts playing a role in Eq.(7).

B. The granular airborne jet

Granular airborne jets are observed in very rapid granular flows (Fr1 ≫ 1) interacting

with a relatively small wall (H/h1 ≪ 1), as shown in Fig. 11a. The length of the influence

zone upstream of the obstacle is small and reduced to a small wedge of stagnant grains (the

size of the wedge is typically close to the wall height). In geophysics, the length of granular

airborne jet is for instance relevant for the design of the minimum distance between two

rows of dissipative structures against snow avalanches [26, 68]. Predicting accurately the

jet length avoids designing dissipating structures that are ineffective because they would be

overtopped by the jet.
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FIG. 10. Points (Fr1, H/h1) tested by Faug et al. [10] (top graph) and Hákonardóttir [60] (bottom

graph). Cross symbols (+) correspond to tests for which a bore propagated upstream and circle

symbols (◦) represent tests for which the bore was not present. The continuous lines show predic-

tions from Eq.(23) implemented with Eq.(7) for various values of tan θ−µe (see text). The dashed

lines show the prediction from traditional hydraulics for horizontal flows.

The trajectory of these airborne jets was studied in detail by Hákonardóttir et al. [13]

(note that airborne snow jets have been also studied [26]). The experiments showed that the

rapid flow detached from the top of the obstacle as a coherent granular jet, the motion of

which being well described by theory for a two-dimensional irrotational flow of an inviscid

fluid over a dam [69]. As suggested by Hákonardóttir [60], the theory from Yih [69] gives a

relation between the launch angle βjet, the angle of the uptream face of the wall α and the

obstacle height relative to the incoming flow H/h1. Notation used is shown in Fig.11a, and

further details for the theory of Yih can be found in [60]. Hákonardóttir et al. [13] showed

that on colliding with a barrier, a shallow granular flow of high Froude number becomes

airborne and follows a coherent ballistic trajectory, with negligible effect of resistive forces

within the deflection region. Thus, for a given flow speed and depth of the avalanche relative

to that of the obstacle, the length of the airborne jet can be estimated by combining the

prediction of the angle of deflection βjet with the parabolic trajectory of the jet, on the

assumption that air resistance plays only a negligible role for these trajectories (note that

similar conclusion was obtained for rapid snow-chute flows [26]).
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FIG. 11. a) (Color online) Photograph of the granular jet as it detaches from the top of the obstacle

(photograph by K.M. Hákonardóttir); b) Values of the couple (Fr1, H/h1) tested in the laboratory

experiments on airborne jets with granular materials [13] and snow [26]. The predictions from

Eq.(23) for the critical height Hjet
c , below which the granular bore no longer exists, are drawn for

k = 1 and β = 1. L∗/(h2 − h1) and K̄ are derived from the empirical functions of Fr1. Three

different values are considered for tan θ − µe: 0.05, 0.10 and 0.15. The dashed line shows the

prediction from traditional hydraulics.

Figure 11b displays the experimental values of the couple (Fr1, H/h1) tested by

Hákonardóttir et al. [13] (note that tests from snow-chute flows are also included [26]).

Those values correspond to tests for which large airborne granular jets were observed down-

stream of the wall, without any granular jump formed upstream of the wall, thus offering

a test for Eq.(23) described in Sec. IID. Eq.(23) gives the critical wall height, Hjet
c , which

demarcates the granular bores propagating upstream of the wall from the large airborne jets

formed downstream without any granular jump formed upstream. The prediction of that

equation should be above all the points corresponding to couples (Fr1, H/h1) tested by

Hákonardóttir et al. [13, 26]. The values of each parameter needed for Eq.(23) implemented

with Eq.(7) are given in caption of Fig.11. It is verified that all the points corresponding

to couples (Fr1, H/h1) tested by Hákonardóttir et al. [13], and by Hákonardóttir et al. [26]

for snow-chute flows, are below the prediction of Hjet
c shown by the group of lines drawn in

Fig.11b.
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FIG. 12. a) (Color online) Photograph of the granular dead zone created upstream of a wall:

creation of the dead zone (Inset: stationary dead zone [66]); b) Values of couples (Fr1, H/h1)

which correspond to the experiments on dead zones by Faug et al. [66]. The predictions from

Eq.(23) for the critical height Hjet
c , below which the granular bore no longer exists, are drawn for

k = 1, β = 1 and tan θ − µe = 0.15. L∗/(h2 − h1) and K̄ are derived from the empirical functions

of Fr1. Two values of the b−constant are considered: b = 8 and b = 12. The prediction from

traditional hydraulics is reported too.

C. The granular dead zone regime

Relatively slow flows (Fr1 ∼ 1) impacting relatively small walls (H/h1 ∼ 1) produce the

formation of a quasi-static stagnant zone upstream of the wall, which can reach a station-

ary length, while the incoming grains start to flow gently over the static pile and form a

stationary jet whose energy is much smaller than the airborne jet discussed in section III B.

This granular pattern is illustrated in Fig.12a (see also Fig.9b).

The co-existence between this stagnant zone and the flowing grains above the dead zone

has been observed and studied in detail by Faug et al. [66]. This so-called dead zone

process [28, 66, 70] differs from the granular jump because it is not accompanied by a

sharp discontinuity in depth (strong jump). It consists more of a dense granular stream

flowing down a pile made of quasi-static grains. The thickness and the depth-averaged

velocity, and the density as well, of the flowing zone vary smoothly. The values of couples

(Fr1,H/h1) tested by Faug et al. [66] are drawn in Fig.12a. The reasons why such a dead
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zone (without any sharp jump formed) was observed even for relatively high Fr1 and H/h1

in the experiments by Faug et al. [66] still remains unclear. However, it is worthy to note

that increasing b, which corresponds to an increase of the length of the jump, produces an

increase of Hjet
c . Increasing Hjet

c then leads to an increase of the area for which dead zones

(in absence of a bore) can be observed. The predictions from Eq.(23) for the critical height

Hjet
c , below which the granular bore no longer exists, are drawn in Fig.12b for k = 1, β = 1

and tan θ− µe = 0.15. L∗/(h2 − h1) and K̄ are derived from the empirical functions of Fr1.

Two values of the b-constant are considered: b = 8 and b = 12.

Fig.13 displays the measured length of the dead zone [66] scaled by the thickness of the in-

cident flow, Ldz/h1, as a function of the Froude number of the obstacle, FrH = ū/
√
gH cos θ.

FrH is defined by Fr21 = Fr2H(H/h1). Fig.13 shows that Ldz/h1 is strongly correlated to

FrH , which demonstrates the importance of the dimensionless number FrH . For FrH ∼ 1,

the dead zone length starts diverging. For the largest values of FrH , Ldz/h1 reaches a con-

stant value around 10. Most of the studies about flow-wall interactions investigated rapid

granular flows down steep slopes and/or over smooth bottoms (typical size of roughness

much smaller than the grain size). That rapid dynamics remains of course important but

attention should be paid to the slower dynamics too. New tests should be designed to in-

vestigate slow granular flows on lower slopes and/or over a rough bottom. The dead zone

process stems from the ability of granular materials to form stagnant zones (solid-like be-

haviour) which can co-exist with inertial zones (fluid-like behaviour). It is worthy to note

that recent developments have been conducted to predict the force experienced by the wall

when a dead zone is present, as discussed in [71] and references therein.

IV. DISCUSSION AND OUTLOOK

The analytic solutions presented in the present study reveal the crucial importance of

the following depth-averaged dimensionless numbers needed to describe how the geometry

of the granular flow is influenced by the presence of a wall: (i) the Froude number Fr1 =

ū1/
√
gh1 cos θ of the incident flow and (ii) the obstacle height relative to the incoming flow

depthH/h1. The Froude number of the obstacle FrH = ū1/
√
gH cos θ is also a dimensionless

number of interest, which depends on the two aforementioned numbers. The difference

between tan θ and the effective basal friction µe, and the earth pressure coefficient k are
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FIG. 13. Dead zone length scaled by the thickness of the incident flow, Ldz/h1, versus the Froude

number of the obstacle, FrH , as measured by Faug et al. [66].

additional dimensionless parameters to take into account the granular nature of the fluid at

stake. Under specific conditions (steep slope and smooth bottom, which lead to jumps short

in length), µe = tan δ may be a good approximation. More complex effective friction laws,

for which µe depends on depth-averaged flow variables h1 and ū1, need the introduction of

other dimensionless numbers [46–51].

Let’s define L+ and L− the length of the zones of influence upstream and downstream

of the wall, respectively. d is the grain diameter. Both L+/d and L−/d are functions—

respectively called f and g—of Fr1 and H/h1, and L+/d may be additionnally influenced

by µe, ϕ and k:

L+

d
= f

(

Fr1,
H

h1

, µe, ϕ, k

)

, (27)

L−

d
= g

(

Fr1,
H

h1

)

(28)

Including any influence of µe, ϕ and k on L−/d is considered as negligible–or even ir-

relevant, because granular flows downstream of the wall essentially consist of detached jets

formed of free falling particles in a relatively dilute regime. The three important steady

regimes are defined below depending on the magnitude of the scaled lengths L+/d and

L−/d, and the value of FrH as well. This allows establishing a complete phase-diagram of

the granular flow-wall interaction.
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A. The granular airborne jet regime: L−/d ≫ L+/d (FrH ≪ 1)

At low H/h1 and high Fr1, the incoming flow is able to flow easily over the wall forming

a large granular airborne jet downstream of the wall, as depicted in Fig.4b. A steady state

can be achieved. L−/d is high and approximately determined by the length of the stationary

airborne jet formed downstream of the wall, while L+/d is small (typically close to the wall

height from laboratory tests: L+ ∼ H) and roughly reduced to the length of the stationary

wedge formed upstream of the wall. The airborne jet regime, mainly controlled by the inertia

of the incoming flow, is defined by L−/d ≫ L+/d and FrH ≪ 1.

B. The granular dead zone regime: L−/d ∼ L+/d (FrH ∼ 1)

At intermediate values of H/h1 and Fr1, all typical energies involved in the flow-wall

interaction (both potential and kinetic energies of the incident flow, and the potential energy

based on the wall height H as well) are of the same magnitude. A steady-state pattern can

be formed: it consists of a quasi-static stagnant zone which co-exists with an inertial flowing

zone above able to flow over the obstacle, as displayed in Fig.12a. L+/d is determined by

the length of the dead zone formed upstream of the wall, while L−/d corresponds to a jet

formed upstream of the wall. The jet formed is shorter, denser and much less energetic than

the granular airborne jet discussed above. The dead zone regime is defined by L+/d ∼ L−/d

and FrH ∼ 1.

C. The granular jump regime: L−/d ≪ L+/d (FrH undetermined)

At high Fr1 and H/h1, the incoming flow has a strong kinetic energy but the potential

energy associated with the obstacle height (∼ gH) is simultaneously high, which makes

FrH undetermined. A thick layer of grains is able to propagate upstream of the wall (sub-

critical flow), and encounters the grains from the incoming rapid flow (supercritical flow). A

granular bore, at the sharp transition between the sub-critical flow (propagating upstream)

and the supercritical (incoming) flow, is formed, as depicted in Fig.4a. The distance at which

the bore is able to propagate upstream defines L+/d. Under certain conditions (H < Hjet
c ),

a stationary granular jump can be formed leading to a steady value of L+/d while a part of

the incoming flow is able to overtop the wall, forming a jet of very low energy (L−/d much
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smaller than L+/d).

D. Phase-diagram for granular flow-wall interaction

In line of the above qualitative considerations and the analytic solutions discussed in the

present study, a phase-diagram for granular flow-wall interaction can be proposed, as drawn

in Fig. 14.

Eq.(7) gives the scaled height h2/h1 of the steady granular jumps. Eq.(23) makes it

possible to predict the critical wall height Hjet
c , which defines the frontier between large

airborne jets (Fr1 > Frc and H < Hjet
c ) and steady granular jumps (Fr1 > Frc and

H > Hjet
c ). There exists a line above which steady-state conditions cannot be achieved and

a granular bore will propagate upstream of the wall provided that the Froude number is

larger than Frc. This line corresponds to the jump height defined by Eq.(7). Once H/h1

is larger than h2/h1, a bore propagates upstream and its height is given by Eq.(13). Below

Frc, the granular bore does not form. Still below Frc but at sufficiently low values of H/h1

(H < Hjet
c ), a steady-state can be reached through the formation of a granular dead zone

co-existing with the flowing grains above able to overtop the wall.

The following values of parameters are used for the predictions given in Fig.14 [Eq.(7) for

h2/h1 and Eq.(23) for Hjet
c ]: k = 1, β = 1, and tan θ− µe = 0.10. K̄ and L∗/(h2 − h1) were

derived from the empirical functions of Fr1. Two values of b in Eq.(26) were considered

for Hjet
c and h2/h1: b = 8 (dashed lines) and b = 12 (dotted lines). The prediction from

traditional hydraulics for horizontal flows is also reported for Hjet
c (continuous line).

The phase-diagram proposed in Fig.14 was established with the help of depth-averaged

analytic solutions for free-surface gravity-driven granular flows interacting rigid walls down

inclines. An effort was made to systematically include the effects of the gravitational accel-

eration along the slope, and of the retarding acceleration caused by friction as well. This

phase-diagram should be very useful for the design of future research studies on the problem

of obstacles impacted by granular flows.

Empirical closure relations were used to estimate the geometry of the granular jump,

i.e. the relations for K̄ and L∗/(h2 − h1), and the difference tan θ − µe was considered as a

constant in the range 0.05−0.15, in accordance to recent laboratory results by [56]. At high

Froude numbers, the semi-empirical solutions obtained provide results which are close to the
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FIG. 14. (Color online) Phase-diagram for granular flow-wall interaction. The zones defining the

conditions under which each of the granular patterns discussed in the present paper are drawn in

the plane (Fr1, H/h1). Predictions from Eq.(7) for the height of steady jumps (thick lines) and

from Eq.(23) for the critical height below which the granular bore no longer exists (thin lines) are

reported (k = 1, β = 1 and tan θ− µe = 0.10). K̄ and L∗/(h2 − h1) are derived from the empirical

functions of Fr1. Two values of b are considered for Hjet
c and h2/h1: b = 8 (dashed line) and b = 12

(dotted line). Also, the prediction from traditional hydraulics for horizontal flows is reported in

continuous line for Hjet
c .

traditional hydraulic equations (strictly valid for horizontal flows without any friction force

considered). This explains the great success of traditional hydraulics for granular jumps

in fast granular flows down steep slopes. However, the differences are more pronounced

at low Froude numbers. Furthermore, changing tan θ − µe and/or the constant b in the

empirical relation for L∗/(h2 − h1) does significant change to the results at low Froude

numbers. This highlights some uncertainty in defining the boundaries of the area of the

phase-diagram at low values of Fr1 and H/h1 (in which steady dead zones co-existing with

flowing grains above can be formed) and a need for further investigations. In particular,

the interaction between slow granular flows and walls should be investigated in more detail

because it is entirely driven by the complex interplay between the hydrodynamic properties

and frictional nature of the granular fluid. This slow dynamics is for instance crucial in

geophysics and natural hazards mitigation, because it is relevant to situations where gravity
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mass movements interact with protection structures in the runout zones while the Froude

number becomes relatively low.
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