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ABSTRACT

This paper describes a depth-based inpainting algorithm which

efficiently handles disocclusion occurring on virtual viewpoint

rendering. A single reference view and a set of depth maps are

used in the proposed approach. The method not only deals

with small disocclusion filling related to small camera base-

line, but also manages to fill in larger disocclusions in dis-

tant synthesized views. This relies on a coherent tensor-based

color and geometry structure propagation. The depth is used

to drive the filling order, while enforcing the structure diffu-

sion from similar candidate-patches. By acting on patch prior-

itization, selection and combination, the completion of distant

synthesized views allows a consistent and realistic rendering

of virtual viewpoints.

Index Terms— DIBR, FTV, 3DTV, view synthesis, im-

age completion, exemplar-based inpainting

1. INTRODUCTION

3DTV and FTV are promising technologies for the next gen-

eration of home and entertainment services. Depth Image

Based Rendering (DIBR) are key-solutions for virtual view

synthesis on multistereoscopic display from any subset of ste-

reo or multiview plus depth (MVD) videos. Classical meth-

ods use depth image based representations (MVD, LDV [1])

to synthesize intermediate views by mutual projection of two

views. Then, disoccluded areas due to the projection of the

first view to the new one could be filled in with the remaining

one.

However, in freeviewpoint video (FVV) applications, lar-

ger baseline (distance or angle between cameras) involves

larger disoccluded areas. Traditional inpainting methods are

not sufficient to complete these gaps. To face this issue the

depth information can help to guide the completion process.

The use of depth to aid the inpainting process has already

been considered in the literature. Oh et al. [2] based their

method on depth thresholds and boundary region inversion.

The foreground boundaries are replaced by the background

one located on the opposite side of the hole. Despite the

use of two image projections, their algorithm relies on an as-

sumption of connexity between disoccluded and foreground

regions, which may not be verified for high camera baseline
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configurations. Indeed, upon a certain angle and depth, the

foreground object does not border the disoccluded part any-

more. Daribo et al. [3] proposed an extension to the Crimin-

isi’s [4] algorithm by including the depth in a regularization

term for priority and patch distance calculation. A prior in-

painting of the depth map was performed.

Our approach relies on the same idea. However, our con-

tributions are threefold. The relevance of patch prioritiza-

tion is improved by first using the depth as a coherence cue

through a 3D tensor, and then by using a directional term pre-

venting the propagation from the foreground. A combination

of the K-nearest neighbor candidates is finally performed to

fill in the target patch.

We present in Section 2 contributions to this priority cal-

culation, based on tensor and then on depth, before describ-

ing depth-based patch matching. Section 3 describes the im-

plementation of the method in a MVD context. Results are

given in Section 4, as well as a comparison with existing ap-

proaches. Conclusions are drawn in Section 5.

2. ALGORITHM

The motivation to use a Criminisi-based algorithm resides in

its capacity to organize the filling process in a deterministic

way. As seen in fig.1, this technique propagates similar tex-

ture elements Ψq̂ to complete patches Ψp along the structure

directions, namely the isophotes. Their algorithm basically

works in two steps. The first step defines the higher order

patch priorities along the borders δΩ. The idea is to start

from where the structure is the strongest (in term of local in-

tensity, with D(p)) and from patches containing the highest

number of known pixels, C(p). The priority is then expressed

as P (p) = D(p)× C(p). The second step consists in search-

ing for the best candidate in the remaining known image in

decreasing priority order.

In the context of view synthesis, some constraints can be

added to perform the inpainting and improve the natural as-

pect of the final rendering. The projection in one view will

be along the horizontal direction. For a toward-right cam-

era movement the disoccluded parts will appear on the right

of their previously occluding foreground (Fig.1a), and oppo-

sitely for a toward-left camera movement. Whatever camera’s

movement, these disoccluded areas should always be filled in

with pixels from the background rather than the foreground.



Fig. 1. Illustration of principle. On (a) a warped view, (b) a

zoom on the disoccluded area behind the person on the right,

with the different elements overlaid.

Based on this a priori knowledge, we propose a depth-based

image completion method for view synthesis based on robust

structure propagation. In the following, D(p) is described.

2.1. Tensor-based priority

First, the data term D(p) of the inpainting method proposed

by [4] involving the color structure gradient is replaced with

a more robust structure tensor. This term is inspired by partial

differential equation (PDE) regularization methods on multi-

valued images and provides a more coherent local vector ori-

entation [5]. The Di Zenzo matrix [6] is given by:
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with ∇Il the local spatial gradient over a 3x3 window. This

tensor can also be smoothed with a gaussian kernel Gσ to give

robustness to outliers, without suffering from cancellation ef-

fects. We call it Jσ = J∗Gσ . Finally, the local vector orienta-

tion is computed from the structure tensor Jσ . Its eigenvalues

λ1,2 reflect the amount of structure variation, while its eigen-

vectors v1,2 define an oriented orthogonal basis. Of particular

interest is v2 the preferred local orientation and its “force” λ2.

Based on the coherence norm proposed in [7], the data term

D(p) is then defined as:

D(p) = α+ (1− α)exp

(

−C

(λ1− λ2)2

)

with C a constant positive value and α ∈ [0, 1]. Flat regions

(when λ1 ≈ λ2) do not favor any direction, it is isotropic,

while with strong edges (λ1 >> λ2) the propagation begins

along the isophote.

2.2. Depth-aided and direction-aided priority

The priority computation has been further improved by ex-

ploiting the depth information, first by defining a 3D tensor

product, secondly by constraining the side from where to start

inpainting.

2.2.1. 3D tensor

The 3D tensor allows the diffusion of structure not only along

color but also along depth information. It is critical to jointly

favor color structure as well as geometric structure. The depth-

aided structure tensor is extended with the depth map taken as

an additional image component Z:

J =
∑

l=R,G,B,Z

∇Il∇ITl

2.2.2. One side only priority

The second improvement calculates the traditional priority

term along the contour in only one direction. Intuitively, for

a camera moving to the right, the disocclusion holes will ap-

pear to the right of foreground objects, while out-of-field area

will be on the left of the former left border (in orange in

Fig.1a). We then want to prevent structure propagation from

foreground by supporting the directional background propa-

gation, as illustrated in Fig.1b with the blue arrows.

The patch priority is calculated along this border, the rest

of the top, bottom and left patches being set to zero. Then

for disocclused areas, the left border possibly connex to fore-

ground will be filled at the very end of the process. For out-of-

field areas, even if left borders are unknown, we will ensure

to begin from the right border rather than possible top and

bottom ones.

These two proposals have been included in the prioritiza-

tion step.

2.3. Patch matching

Once we precisely know from where to start in a given pro-

jected image, it is important to favor the best matching can-

didates in the background only. Nevertheless, starting from

a non-foreground patch does not prevent it from choosing a

candidate among the foreground, whatever the distance met-

ric used. Thus, it is crucial to restrict the search to the same

depth level in a local window: the background. We simply

favor candidates in the same depth range by integrating the

depth information in the commonly used similarity metric,

the SSD (Square Sum of Differences):

Ψq̂ = arg min
Ψq∈Φ

d(Ψp̂,Ψq) with d =
∑

p,q∈Ψp,q∩Φ

αl ‖Ψp̂ −Ψq‖
2

The depth channel is chosen to be as important as the

color one (l ∈ R,G,B,Z with αR,G,B = 1 and αZ = 3).

Then it will not prevent the search in foreground patches, but

will seriously penalize and unrank the ones having a depth

difference above, i.e in front of the background target patch.

As proposed by [8], a combination of the best candidates

to fill in the target patch shows more robustness than just du-

plicating one. We use a weighted combination of the K-best

patches depending on their exponential SSD distances to the

original patch. (K = 5 in our experiments).



3. IMPLEMENTATION

Experiments are performed on an unrectified Multiview Video-

plus-Depth (MVD) sequence “Ballet” from Microsoft [9]. The

depth maps are estimated through a color segmentation algo-

rithm [9] and are supplied with their camera parameters. The

choice of this sequence is motivated by the wide baseline un-

rectified camera configuration as well as its highly depth-and-

color contrast resulting in distinct foreground-background.Th-

is makes the completion even more visible and the issue even

more challenging.

First, the central view 5 is warped in different views. Stan-

dard cracks (unique vacant pixels) are filled in with an aver-

age filter. We then suppress certain ghosting effects present

on the borders of disoccluded area in the background: the

background ghosting. Indeed, as we start the filling process

by searching from the border, it is of importance to delete

ghostings containing inadequate foreground color values. A

Canny edge detection on the original depth map, followed by

a deletion of color pixels located behind that dilated border

successfully removes this ghosting.

Finally, our inpainting method is applied on each warped

image, using the depth of the final view. The depth inpainting

issue is out of the scope of this paper, but encouraging meth-

ods are proposed in the literature [3]. In the context of MVD

applications, it is realistic to consider a separate transmission

of depth information through geometric representation (cur-

rently under investigation).

4. RESULTS

Fig.2 illustrates the results obtained with the proposed method,

comparatively with methods from the literature [4], [3], when

rendering views located at varying distances from the refer-

ence viewpoint. The three versions take in input the same

color and depth information, except for the approach in [4]

using color only. Our method not only preserves the con-

tour of foreground persons, but also successfully reconstructs

the structure of missing elements of the disoccluded area (i.e.

edges of the curtains and bars behind the person on the right,

background wall behind the left one).

Thanks to our combination term, we can even extend the

synthesis to very distant views, without suffering of alias-

ing effects. As illustrated, the view 5 is projected to view 2

(V5→2) and the out-of-field blank areas occupying one quarter

width of the warped image are reconstructed. The counterpart

of the patch combination is the smoothing effect appearing on

the bottom part of this area. By taking different numbers of

patches for combination, it is possible to limit this effect. We

encourage people to refer to additional results available on our

webpage1 with videos illustrating the priority-based progres-

sive inpainting principle. The results can indeed be essentially

address visually, as argued by [10].

1http://www.irisa.fr/temics/staff/gautier/inpainting

5. CONCLUSION AND PERSPECTIVES

A robust depth based completion method for view synthe-

sis has been presented. We address the disocclusion issue

by going beyond the limitations of scene warping. To start

inpainting, coherent depth and color structures are favored

along contour through a robust tensor-based isophote calcu-

lation while directional inhibition prevents to start from fore-

ground borders. For target patch propagation, a combination

of closest geometric and photoconsistent candidates manages

effective natural filling. Future works will focus on comple-

tion of synthesized views extremely far from the reference

view. The natural aspect of this filling in situation, i.e for

video, will also be investigated.
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(a) V5→4 after warping and background antighosting (b) V5→2 after warping and background antighosting

(c) V5→4 inpainted with Criminisi’s method (d) V5→2 inpainted with Criminisi’s method

(e) V5→4 inpainted with Daribo’s method (f) V5→2 inpainted with Daribo’s method

(g) V5→4 inpainted with our method (h) V5→2 inpainted with our method

Fig. 2. Illustration of different methods of inpainting. Our approach relying on 3D tensor and directional prioritization shows

efficient filling.


