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Abstract—Objective: We propose a novel depth-based
photoplethysmography (dPPG) approach to reduce motion
artifacts in respiratory volume–time data and improve the
accuracy of remote pulmonary function testing (PFT) mea-
sures. Method: Following spatial and temporal calibration of
two opposing RGB-D sensors, a dynamic three-dimensional
model of the subject performing PFT is reconstructed and
used to decouple trunk movements from respiratory mo-
tions. Depth-based volume–time data is then retrieved, cal-
ibrated, and used to compute 11 clinical PFT measures
for forced vital capacity and slow vital capacity spirometry
tests. Results: A dataset of 35 subjects (298 sequences) was
collected and used to evaluate the proposed dPPG method
by comparing depth-based PFT measures to the measures
provided by a spirometer. Other comparative experiments
between the dPPG and the single Kinect approach, such as
Bland–Altman analysis, similarity measures performance,
intra-subject error analysis, and statistical analysis of tidal
volume and main effort scaling factors, all show the superior
accuracy of the dPPG approach. Conclusion: We introduce a
depth-based whole body photoplethysmography approach,
which reduces motion artifacts in depth-based volume–time
data and highly improves the accuracy of depth-based com-
puted measures. Significance: The proposed dPPG method
remarkably drops the L2 error mean and standard deviation
of FEF50%, FEF75%, FEF25−75%, IC, and ERV measures by half,
compared to the single Kinect approach. These significant
improvements establish the potential for unconstrained re-
mote respiratory monitoring and diagnosis.

Index Terms—3-D body reconstruction, motion artifacts
reduction, motion decoupling, depth-based photoplethys-
mography (dPPG), forced vital capacity (FVC), lung function
assessment, pulmonary function testing, slow vital capacity
(SVC), spirometry.
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I. INTRODUCTION

L
UNG function diseases, e.g., Chronic Obstructive Pul-

monary Disease (COPD), Asthma and lung fibrosis, af-

fect many people and are major causes of death worldwide [1].

Spirometry [2] and whole body plethysmography [3] are tradi-

tional and clinically approved methods for pulmonary function

testing (PFT), but spirometry is more prevalent and broadly

used in clinical environments due to its relative affordability,

portability and accuracy.

Forced vital capacity (FVC) and slow vital capacity (SVC)

are two primary clinical protocols undertaken with a spirometer

that vary in the pattern of breathing into the spirometer. FVC is

comprised of a maximal inhalation followed by a forced max-

imal exhalation, and SVC a maximal inhalation followed by a

slow, controlled, maximal exhalation. Both tests start with a few

cycles of normal breathing, called tidal volume, followed by the

intended lung function test, called main effort. Various clinical

PFT measures are estimated within FVC and SVC protocols

[2], [4]. These measures, i.e., FVC, FEV1, PEF, ..., FEF25−75%

(FVC measures) and VC, IC, TV, ERV (SVC measures), and

their combinations, e.g., FEV1/FVC, are used for the diagnosis

of obstructive and restrictive lung diseases. Airway resistance,

defined as lung pressure divided by airflow, is another measure

which can be used in the diagnosis of other pulmonary dis-

eases, such as Respiratory Syncytial Virus. However, this study

only focuses on the estimation of PFT measures, which can be

directly validated by measures provided by a spirometer.

Despite its reliability and accuracy, spirometry has certain

drawbacks, such as being intrusive and difficult to deal with

for all subjects, particularly for children and the elderly. Since

it requires the patient’s cooperation during the test, cognitively

impaired people may find it troublesome to coordinate with it.

Spirometry is a rather expensive approach given the price of

pneumotach and the required disposable accessories (mouth-

piece and nose clip), and it also requires specialist training. Fur-

ther, a pneumotach must be calibrated before each session to be

able to measure accurately. Thus, remote respiratory sensing has

recently become very popular and numerous approaches have

been proposed for lung function assessment [5], [6], respira-

tion resistance [7], [8], and tidal volume respiratory monitoring

and breathing rate estimation [9]–[15], based on time-of-flight
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[5], [6], [8], [12], [13] and structured light depth sensors [7],

[9]–[11] and RGB video cameras [14], [15]. Some of these are

briefly considered in Section II.

Among all the existing related studies, we are only aware

of Ostadabbas et al. [7], [8] and our previous works [5], [6],

which performed clinical respiratory assessment. Ostadabbas

et al. [7], [8] mainly focused on airway resistance estimation

and estimated two measures, FVC and FEV1, in [7]. In [6],

we introduced a remote lung function assessment approach to

estimate 11 PFT measures using a single depth sensor. The

PFT measures were computed from a calibrated depth-based

volume–time data, obtained by estimating the variation of chest

volume per frame. The calibration process linearly scaled the es-

timated chest volume to the real lung volume using intra-subject

scaling factors learnt in a training phase. In order to compute

the scaling factors and PFT measures, several keypoints were

automatically detected from the volume–time data. The medical

significance of our remote lung function assessment approach

has been reported in [16], [17].

Our previous approaches [5], [6] were based on a single depth

sensor, which made them very sensitive to the subject’s trunk

motion during the PFT test. Although subjects were asked to

be completely still, most of them inevitably moved their trunk,

especially during the deep forced inhalation–exhalation. This

body movement is a natural reaction of the human respiratory

system when required to maximally inhale and exhale. Decou-

pling the trunk motion and the chest-surface respiratory mo-

tion under such circumstances is potentially impossible. Similar

body motion artifacts have been also reported in [7], [8], [10]

where the main solution was to constrain the body movement,

which is neither easy to achieve, nor particularly comfortable

for patients.

In this paper, we propose a whole body depth-based pho-

toplethysmography (dPPG) approach for lung function assess-

ment, in which we use two opposing Kinect V2 sensors to

decouple trunk movements from respiratory motions by con-

structing a dynamic full 3-D model of the subject during PFT

performance. We validate our proposed method by comparing

our PFT measures, computed for 35 healthy subjects (298 se-

quences), to the measures obtained from a spirometer.

The most significant novelties of this work are that it intro-

duces the concept of motion decoupling into the remote, vision-

based respiratory sensing area and demonstrates its efficacy and

achievement in pulmonary function testing. Constraining the

body’s natural reaction to deep forced inhalation–exhalation

can prevent subjects from performing their best breathing effort

and would therefore affect their lung function measures. Un-

like all previous remote approaches which restrict the subject’s

movement during their tests [5]–[17], our proposed method al-

lows subjects to perform PFT as routine spirometry procedures

without restricting the subject’s natural body reactions at the

inhalation–exhalation stages. Our contribution to the state-of-

the-art is therefore to facilitate remote respiratory monitoring

and diagnosis without unduly constraining patients.

We demonstrate the accomplishments of our dPPG ap-

proach by, (a) achieving significant improvements in FVC and

SVC measures compared to the single Kinect approach, (b)

Fig. 1. The proposed system for performing PFT with 2 opposing
Kinects.

improving volume–time data calibration accuracy by computing

more accurate similarity measures and reducing intra-subject

scaling factor learning error, (c) computing more consistent and

stable tidal volume and main effort scaling factors, which in-

creases the depth-based PFT measures reproducibility, and (d)

achieving higher correlation between tidal volume and main

effort scaling factors confirmed by performing a comparative

statistical analysis across 35 subjects.

Next, Section II briefly reviews the state-of-the-art vision-

based respiratory sensing methods, relevant works in reducing

motion artifacts in PPG signals, and also multiple Kinect cali-

bration and registration methods. Then, Section III describes the

proposed dPPG methodology in which for each frame, the two

point clouds from two opposing Kinects (see Fig. 1) are syn-

chronised and registered, and the subject’s 3-D trunk model is

constructed. A pair of volume–time data sets, automatically es-

timated from the chest and posterior regions, are then combined

to retrieve the final depth-based volume–time data. Several key-

points are then automatically extracted from this volume–time

data which are used to compute tidal volume and main effort

calibration scaling factors and PFT measures. Since these scal-

ing factors are subject-specific, we train our proposed system

for each subject, which enables our method to compute PFT

measures using only depth-based volume–time data afterwards.

Experimental results are reported in Section IV. In addition to

evaluating the depth-based PFT measures against a spirometer,

we statistically analyse intra-subject scaling factors and assess

their stability and generalizability for all subjects. The paper is

concluded in Section V.

II. RELATED WORKS

Vision-based respiratory sensing – Ostadabbas et al. [7] es-

timated airway resistance and computed FVC and FEV1 mea-

sures for five healthy subjects using a Kinect. Subjects were

asked to blow through various straws to induce varied airway

resistance while their lung volume was measured over time. For

the PFT measures evaluation, an average 0.88 correlation with

the spirometer was reported for FEV1. They expanded this study

in [8] and used a time-of-flight depth sensor along with a pulse

oximeter to determine the severity of airway obstruction as mild,

moderate or severe. They reported 76.2% and 80% accuracy in
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Fig. 2. (a)–(c) 3-D reconstructed model of a subject performing PFT from different points of view. (d) 3-D reconstructed model of trunk for this
subject.

detecting airway obstruction of 14 healthy subjects (with sim-

ulated airway obstruction) and 14 patients, respectively. Both

studies [7], [8] restricted the trunk movement by asking their

subjects to press their back against a wall during the test.

Rihana et al. [12] estimated the respiratory signal using dis-

tance information of a manually selected ROI on the subject’s

chest. They evaluated their method on 10 healthy subjects and re-

ported maximums of 85% and 50% correlations against a respi-

ratory belt in normal and high-frequency breathing, respectively.

Using a depth sensor, Transue et al. [13] reconstructed the chest-

wall surface per frame to estimate tidal volume breathing. For

each subject, they calibrated the estimated chest volume using a

Bayesian network, trained on spirometer and Kinect data. They

reported 92.2% − 94.19% accuracy in tidal volume estimation

for 4 healthy subjects. Similarly, Aoki et al. [9] and Yu et al.

[10], computed the subject’s chest volume variations in depth se-

quences to estimate the airflow signal, and respectively reported

0.98 and 0.96 correlation against their groundtruth. Seppanen

et al. [11] estimated airflow signal using multi-input–single-

output models fed by the data acquired using a depth sensor.

Their best correlation against a spirometer was R2 = 0.93.

Reyes et al. [15] acquired chest breathing motions using a

smartphone camera, and estimated tidal volume breathing on

a PC using average pixel intensity in R,G, and B channels. A

correlation of 0.95 was reported for the estimated tidal volume

against a spirometer for 15 healthy subjects.

Motion artifacts reduction in PPG signals – PPG signals,

obtained from wearable devices such as pulse oximeters and

wrist-bands [18], [19], or by remote approaches [20], [21],

are used to extract heartbeat rate, arterial oxygen saturation

(SpO2) and breathing rate. PPG signals can also be corrupted

by a subject’s movement during the test. Although motion ar-

tifacts reduction in regular PPG signals has been widely in-

vestigated [22], [23], these signals are quite different in their

nature and behaviour compared to the spirometry volume–time

data.

The most relevant work to this study, in terms of motion arti-

facts reduction in respiratory signals is [24], in which Shao et al.

exploited an HD video camera to estimate breathing frequency

using two tiny ROIs (40× 40 pixel), manually selected from the

top of the shoulders. In order to reduce motion artifacts, these

two ROIs were tracked using shoulders’ gradient information.

The ROI size was chosen as a trade-off between tracking and

breathing rate estimation accuracy. Although this approach can

track up–down shoulder movements and reduce motion artifacts

in tidal volume breathing signals, it is not able to track forward–

backward trunk motions during deep and forced inhalation–

exhalation. Further, spirometry volume–time data cannot be es-

timated using such small ROIs.

Multiple Kinect calibration and registration – To the best

of our knowledge, there are only a few works on calibrating

multiple Microsoft Kinect V2 RGB-D sensors, e.g., [25], [26],

possibly due to specific hardware and software needs, e.g., an

individual PC for each sensor would be required.

To calibrate multiple Kinect V2 sensors to capture a space

of about 1.5m×1.8m×1.5m, Beck and Froehlich [25] tracked

a moving chessboard with a motion capture system to fill a

lookup table with 2000 reference samples over 20–30 minutes.

This lookup table was then interpolated and used in the re-

construction stage. Kowalski et al. [26] presented a 3-D data

acquisition and registration system, which calibrates up to four

Kinect V2 sensors in a two-step procedure, involving a rough

estimation step using their self-designed markers, and a refine-

ment step, using an adapted iterative closest point (ICP) algo-

rithm which requires sufficient overlap between the sensors.

Their work demands a cumbersome calibration stage, which re-

quires manual labelling of marker locations. They did not report

quantitative results on their spatial and temporal registration

accuracy.

III. PROPOSED METHODOLOGY

A. Reconstructing the 3-D Trunk Model

In order to compute depth-based PFT measures correctly, es-

pecially the timed measures such as FEV1, it is necessary for

the depth-based volume–time data to have a constant and high

sampling rate. Since it is impossible to trigger multiple Kinects

simultaneously, an exact frame level synchronisation between

them cannot be achieved. Thus, the more Kinects that are used,

the greater the temporal synchronization error would be. Our
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Fig. 3. Comparing FVC (a) and SVC (b) volume–time curves of dual Kinect Vdk (t), front Kinect Vsk (t), and back Kinect Vpo(t) to spirometer Vs (t).

dual-Kinect 3-D data acquisition and registration system [27]

reconstructs an almost complete 3-D model of a subject, per-

forming the routine PFT in a sitting position, at full frame rate

(30fps). Deploying only two Kinect sensors, (a) minimises the

temporal and spatial alignment error, (b) reduces the system

setup and calibration effort, (c) keeps system costs low, and

(d) minimises the overall operation space. With this topology,

there would be no overlapped views of the scene and the thora-

coabdominal regions occluded by the arms are not considered

pertinent to volume estimation accuracy. Fig. 2(a)–(c) shows

the 3-D reconstructed model of a subject’s upper-body from

different viewpoints performing PFT.

Temporal synchronisation – Intra-Kinect synchronisation, to

temporally align corresponding RGB, depth and skeleton data

from each Kinect running on a different PC, is implemented by

synchronising the system time of the two locally networked PCs

using Network Time Protocol (NTP).

Registration – As there is no overlap between the point clouds

of two facing Kinects, ICP-based calibration approaches to align

the point clouds cannot be employed. Thus, we apply an auto-

matic, fast and accurate optical calibration method, in which

three double-sided chessboards are placed at different depths

from the Kinects (to improve the spatial registration accuracy)

to estimate the rigid transformation parameters, i.e., translation

and rotation matrices. These parameters are then used in the

reconstruction stage to register the two Kinects’ point clouds

to a joint coordinate system at frame-level. Note, as long as

the position of the depth sensors remains fixed, these calibra-

tion parameters remain valid. The registration accuracy of the

proposed method was quantitatively assessed by measuring geo-

metrical specification of three boxes of known size. The average

error range across 3 boxes at 3 different placements was 0.21−

0.84 cm. The synchronisation and registration methodology, and

registration accuracy, is comprehensively reported in [27] and

the source code is publicly available.1

1https://github.com/BristolVisualPFT/

Fig. 2(d) presents the final 3-D reconstructed model of the

subject’s trunk after removing head and limbs using a 3-D mask,

automatically computed from body skeletal data.

B. Volume–Time Data Retrieval

After registering the models of the chest and posterior walls

to a joint real-world coordinate system for each frame of the

sequence, a pair of volume–time curves, i.e., Vch(t) and Vpo(t),

are computed using an averaging-based method. As an en bloc

object, the subject’s trunk movements are reflected on both the

chest and the posterior walls, whereas the breathing motions

mainly appear on the chest wall, with the posterior wall con-

siderably less affected. Taking this into consideration, the trunk

movements can be cancelled out by subtracting the motions of

the chest and the posterior walls per frame, due to their similarity

in direction and magnitude. However, this subtraction intensi-

fies the breathing motions because expansion and contraction of

the lungs move the chest and the posterior walls in nearly oppo-

site directions. Thus, the final depth-based volume–time curve,

i.e., Vdk(t), is computed as Vdk(t) = [Vpo(t) − Vch(t)]. To com-

pare our proposed method with the single Kinect approach, the

single Kinect volume–time curve is defined as Vsk(t) = Vch(t).

Note that, Vpo(t) does not present any meaningful or useful

information on its own.

We improve the data filtering method in three ways com-

pared to [6]. First, we chose not to apply a Bilateral smoothing

filter, as we noticed it eliminates subtle respiratory motions and

affects the final PFT measures, especially the flow-based mea-

sures, i.e., PEF and FEF25%, FEF50%, FEF75% and FEF25−75%.

Second, we realised that applying a moving-averaging filter [6]

over-smooths the main effort part of the volume–time curve and

increases the error in flow-based PFT measures. Thus, in this

work we use a 4th order Butterworth low-pass filter to smooth

Vdk(t) and Vsk(t), similar to [8]. Third, we perform a twofold

volume–time curve filtering with two different cut-off frequen-

cies. In the first stage, in order to (a) identify the keypoints

accurately, (b) align Kinect and spirometer volume–time curves
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Fig. 4. Comparison of volume–time curves of dual Kinect Vdk (t) and single Kinect Vsk (t) to the spirometer Vs (t)– Red labelled keypoints have been
incorrectly computed in Vsk (t). Vsk (t) in (b) has been incorrectly calibrated due to incorrect computation of keypoints caused by the trunk motion.

temporally, and (c) segment the volume–time curve into tidal

volume and main effort, we chose the cut-off frequency as 1 Hz,

given the wide range of respiratory rates for adults and elderly

at 12−36 breaths/minute (0.2−0.6 Hz) [28]. However, to avoid

volume–time curve over-smoothing, especially at the main effort

part where the curve slope is critical and needs to be preserved,

we increase the cut-off frequency to 3 Hz and filter the orig-

inal volume-time curve for computing just the PFT measures.

Fig. 3 presents the retrieved volume–time curve Vdk(t) and its

corresponding Vsk(t), and their comparison to the volume–time

curve Vs(t) obtained from the spirometer, for FVC and SVC

tests, respectively. As seen, the trunk motion artifacts have been

significantly reduced in the retrieved volume–time curve Vdk(t),

obtained by the proposed method.

C. Volume-Time Data Analysis

Since depth-based volume–time data presents the subject’s

trunk volume variations, which is a proxy for the exchanged

amount of air within the lungs instead of the real amount of

exchanged air, it must be calibrated in order to compute PFT

measures correctly. This calibration is performed by linearly

scaling the y-axis of the depth-based volume–time data us-

ing a scaling factor. Since scaling factors are subject-specific

(intra-subject), they are learnt during a training phase for each

subject by performing a linear regression analysis between

Kinect and spirometer volume–time training data. The main

step towards this is to compute keypoints in the volume–time

data.

Keypoints computation – Multiple keypoints are automati-

cally identified from the Kinect and spirometer volume–time

data by performing an elaborate extrema analysis, as detailed

in [6], using the same values for parameters and thresholds. We

categorise these keypoints based on their application through

the rest of the paper, as follows:

1) Identifying tidal volume using {C,D} and main effort us-

ing {E,A,B}.

2) Computing main effort scaling factors using {A,B}.
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TABLE I
PFT MEASURES OF FVC AND SVC TESTS, THEIR DESCRIPTION AND COMPUTATION METHOD

3) Computing tidal volume and main effort similarity mea-

sures using {Fi ,Gi }
4
i=1 and {A,B}.

4) Computing PFT measures using {E,A,B}, {Fi ,Gi }
4
i=1,

‘time zero’ t0 and ‘Peak Flow’ tP F .

Fig. 4 illustrates the computed keypoints for FVC and SVC

curves Vs(t), Vdk(t) and Vsk(t). As shown in Fig. 4(a) and (b),

all keypoints are computed correctly for the dual Kinect curve

Vdk(t) and match their corresponding ones in the spirometer

curve Vs(t). However, for the single Kinect curve Vsk(t), several

keypoints, i.e., {B, C,D, E} and {Fi ,Gi }
4
i=1, (labelled red in

Fig. 4(a) and (b)), are computed incorrectly due to the effects

of the subject’s body movement on Vsk(t). For example, Vsk(t)

is not calibrated correctly in Fig. 4(b) because keypoint B is

computed incorrectly, whilst Vdk(t) is calibrated quite precisely

for the same sequence.

Linear regression analysis – Linear regression is performed

separately for tidal volume and main effort Kinect and spirom-

eter volume–time curves, and provides individual tidal volume

and main effort scaling factors. In order to perform the linear re-

gression, corresponding data samples of the Kinect and spirom-

eter volume–time curves must be identified. Thus, spirometer

volume–time data is sampled at the Kinect sampling rate of

30 Hz, and the Kinect and spirometer tidal volume are separated

using {C,D} keypoints. Tidal volume data are then detrended

(see the trend in Vsk(t) in Fig. 4(a) and (b)) by applying empir-

ical mode decomposition (EMD) [29]. This increases the sim-

ilarity between the Kinect and spirometer tidal volume curves

and attains better temporal alignment. Finally, the delay is com-

puted using a windowed cross correlation between these curves

and used to temporally align the whole Kinect and spirometer

volume–time data. This process is carried out for Vdk(t) and

Vsk(t) separately.

The tidal volume and main effort scaling factors are computed

by establishing linear regression for tidal volume as

V̂ tv
s = ξ tv

dk · V̂ tv
dk + ψ tv

dk, V̂ tv
dk = V̂dk(t)

∣∣∣
tD

tC

, (1)

and for main effort individually as
〈
V̂s(tA), V̂s(tB)

〉
= ξme

dk ·
〈
V̂dk(tA), V̂dk(tB)

〉
+ ψme

dk , (2)

where V̂dk(t) and V̂s(t) are detrended and zero mean normalised

volume–time data of Kinect and spirometer. Since volume–time

data are normalised to zero mean of their tidal volume, then

ψ tv
dk ≈ 0. Thus, the tidal volume and main effort scaling fac-

tors are defined as 〈ξ tv
dk〉 and 〈ξme

dk , ψme
dk 〉, respectively. Similarly,

the tidal volume and main effort scaling factors, i.e., 〈ξ tv
sk 〉 and

〈ξme
sk , ψme

sk 〉, are computed from the single Kinect volume–time

data Vsk(t) for comparative analysis.

D. PFT Measures Computation

Within a spirometry test, several clinical PFT measures are

provided by the spirometer software. Besides these numerical

measures, pulmonologists often use volume–time (for FVC and

SVC tests) and flow–volume (for FVC only) spirograms [6] as

a qualitative presentation of lung function. Here, we compute

seven primary FVC measures and all of four SVC measures,

from depth-based volume–time and flow–time data, using the

required keypoints. Table I presents all PFT measures, their de-

scription and computation method. The groundtruth measures

were obtained directly from the spirometer software, for evalu-

ation and comparison.

E. Learning Intra-Subject Scaling Factors

The aim of this study is to assess human lung function re-

motely and independently, without support from any clinical

device, e.g., a spirometer. The coefficients of the linear regres-

sion, i.e., the scaling factors, between trunk volume and lungs

air flow, are subject-specific and depend on physical body spec-

ifications, e.g., weight, height, BMI, gender and race. Thus, we

train our system to learn the scaling factors per subject (intra-

subject), which enables it to perform a PFT test independent of

a spirometer at later trials.2

In the training phase, intra-subject scaling factors are learnt

using Kinect and spirometer training trials, and computed as{
〈ξ tv

dk〉
ℓ
}ntv

ℓ=1
&

{
〈ξme

dk , ψme
dk 〉ℓ

}nme

ℓ=1
for

{〈
Vdk(t), Vs(t)

〉ℓ}nT

ℓ=1
as ex-

plained in Section III-C, where ntv and nme are number of tidal

volume and main effort training trials, and nT = ntv + nme.

In the testing phase, first, the depth-based volume–time data

of a test trial, i.e., V test
dk (t), is retrieved using the proposed

method, explained in Section III-A. Then, tidal volume and

2A trial refers to each performance of the FVC/SVC test by each subject.
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TABLE II, III
STATISTICAL COMPARISON OF MEAN AND STANDARD DEVIATION OF L2 ERROR (µdk & µsk AND σdk & σsk), RATIO OF MEAN OF L2 ERROR TO THE MEAN VALUE

OF THAT MEASURE (�dk & �sk), AND CORRELATION COEFFICIENTS (λdk & λsk) BETWEEN THE DEPTH-BASED (THE DUAL AND SINGLE KINECT APPROACHES)
AND THE SPIROMETER MEASURES. ALTHOUGH THE EVALUATION RESULTS OF THE DUAL KINECT METHOD SHOW IMPROVEMENT ACROSS ALL MEASURES, THE

BOLD NUMBERS POINT TO THE MEASURES WHERE THEIR ERROR (µdk & σdk & �dk) HAS REMARKABLY DROPPED BY HALF AND THEIR CORRELATION

COEFFICIENTS (λdk) HAVE SIMILARLY IMPROVED.

main effort similarity measures

Ftv =
1

4

4∑

i=1

[
Vdk(tF i ) − Vdk(tGi )

]
, (3)

Fme =

[
Vdk(tB) − Vdk(tA)

]
, (4)

are computed as F test
tv & F test

me and
{

Fℓ
tv

}ntv

ℓ=1
&

{
Fℓ

me

}nme

ℓ=1
for

V test
dk (t) and

{〈
Vdk(t)

〉ℓ}nT

ℓ=1
, respectively. These allow for opti-

misation of tidal volume and main effort training trials by match-

ing training similarity measures with the similarity measures of

V test
dk (t):

jtv = arg min
j∈[1..ntv ]

{∣∣F test
tv − F

j
tv

∣∣
}
, (5)

jme = arg min
j∈[1..nme]

{∣∣F test
me − F j

me

∣∣
}
. (6)

The associated scaling factors of jtv and jme trials, declared as

〈ξ tv
dk〉

jtv and 〈ξme
dk , ψme

dk 〉jme are then used to calibrate V test
dk (t) as

V cal
dk (t) =

[
V test

dk (t) · 〈ξ tv
dk〉

jtv

]t=tD

t=tC

+ (7)

[
V test

dk (t) · 〈ξme
dk 〉jme + 〈ψme

dk 〉jme

]t=max(tA,tB)

t=tD

.

In order to compare our method to the single Kinect ap-

proach, a similar process is carried out to obtain 〈ξ tv
sk 〉j

′
tv and

〈ξme
sk , ψme

sk 〉j
′
me and calibrate V test

sk (t), where j ′
tv and j ′

me are the

optimised tidal volume and main effort selected trials.

We evaluated the intra-subject training and testing process

using leave-one-out cross-validation, which is the most suitable

validation method for our approach, due to the limited number

of trials for each subject. Thus, for each subject, one trial is

repeatedly considered as the test and the model is trained with

the rest of the trials.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. System Configuration and Dataset Specification

We acquired the depth data using two facing Kinect V2 sen-

sors, with the subject sitting in between, as shown in Fig. 1.

Each of the Kinects was placed at the distance of ∼1.5 m away

from the subject to minimise the noise [6], [27] and at a height

of 0.6 m. Each subject was asked to wear a reasonably tight

T-shirt and sit up straight on a backless chair. Participants were

neither restricted nor advised to be stationary during the PFTs,

and the tests were performed as routine spirometry.

Thirty five subjects (8 females and 27 males) of various ages

(30.3 ± 5.3) and BMIs (23.9 ± 3.1) participated in this study.

Ethical approval was obtained from the University of Bris-

tol Research Ethics Committee (Reference 56124), and each

participant signed a written consent form. According to the

spirometry experiment protocols [2], each subject must perform

several FVC and SVC tests (at least three times) to achieve con-

sistent PFT measures. Thus, most of the subjects had to perform

extra tests to ensure consistency.

A total of 306 PFT sessions were held, of which only

8 sessions’ data (8 sequences) were dropped. The data for five

sessions were omitted due to the spirometer (two sessions) and

Kinect (three sessions) failure, and one session’s data was re-

moved as a subject occluded the chest by hands during the test.

There were only two sequences which the proposed method

failed to compute their keypoints due to complex body mo-

tion patterns. Otherwise, volume–time data of all the other 298

sequences were successfully retrieved and analysed, and their

PFT measures were computed and considered in the experimen-

tal analysis.

B. PFT Measures Evaluation

Tables II and III present the results of PFT measures for all

35 subjects, computed for 155 FVC and 143 SVC sequences re-

spectively, from Vdk(t) & Vsk(t). These Tables report, (i) mean

and standard deviation of L2 error (µdk & µsk and σdk & σsk)

for each measure, (i i) ratio of mean of L2 error to the mean

value of that measure (�dk & �sk), and (i i i) correlation coeffi-

cients (λdk & λsk) between the depth-based and the spirometer

measures.

As can be seen in Table II, (µdk, σdk,�dk) have decreased for

the dual Kinect approach across all measures, compared to their

single Kinect [5], [6] counterparts (µsk, σsk,�sk). In particular,

these errors have dropped by half for FEF50%, FEF75% and
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TABLE IV
RESULTS OF BLAND-ALTMAN ANALYSIS OF THE DUAL AND SINGLE FVC AND SVC MEASURES

Note: Ldk & Udk and Lsk & Usk indicate the lower & upper limits of agreement for the dual and the single Kinect PFT measures, respectively. Mdk and Msk state the

percentage of trials where the difference between the dual Kinect and the single Kinect measures with the spirometer measure lies in Ldk−Udk .

FEF25−75% measures. This remarkable error reduction is due to

the measures being computed using the top curvature of the main

effort of volume–time data, which was successfully recovered

in Vdk(t) by decoupling trunk movements from the respiratory

motion (compare in Fig. 3 against Vsk(t)).

For the other measures reported in Table II, (µdk, σdk,�dk)

have not decreased significantly compared to their single Kinect

[5], [6] counterparts. For FVC, this is because the measure is

computed using the same keypoints A and B, which are also

used in the main effort calibration. FEV1, PEF and FEF25%

measures are computed from the steepest part of the main ef-

fort, between keypoints t0 and tF E F25%. Thus, we believe the

trunk forward movement at the start of forceful exhalation in-

creases the main effort curve slope and accidentally contributes

in achieving better FEV1, PEF and FEF25% measures.

These results confirm the superiority of the proposed method

to the single Kinect approach [5], [6], with λdk also showing

better correlation of PFT measures than λsk . However, λdk does

not express strong correlation between the dual-Kinect-based

FVC measures and the spirometer, except for the FVC and

FEV1. This is expected as we exploited all of acquired data

and did not remove the trials that impose high error. In partic-

ular, these trials appear as outliers and influence the correlation

coefficients. To further clarify this issue, we have performed

a Bland-Altman analysis of PFT measures (Section IV-C) and

present more qualitative and quantitative comparison between

depth-based and spirometer PFT measures.

Ostadabbas et al. [7] reported a 0.88 average correlation with

a spirometer for FEV1 (and no other measure). However, this

cannot be directly compared to the FEV1 correlation coeffi-

cient computed here which is on a different dataset, acquired by

different protocols, under different criteria.

Table III reports the evaluation results for SVC measures, in

which (µdk, σdk,�dk) have also dropped by half for IC and ERV

measures, compared to (µsk, σsk,�sk). Moreover, λdk shows

much better correlation for these two measures, compared to

λsk . The improved results are due to the trunk motion correc-

tions, which have removed the offset between the tidal volume

and the main effort. The VC measure was computed using the

keypoints A and B, which were also exploited for calibrating

SVC volume–time data, thus the proposed method achieved

only a slight improvement in this measure. TV was also slightly

improved as subjects’ movements in the rest condition is in-

significant.

PFT measures’ correlation coefficient and error, reported

in [5], [6], are relatively better than the results reported here

because [5], [6] were evaluated on a dataset in which the sub-

ject’s trunk motion were strictly restrained during the test. Ta-

bles II and III report the results of applying the same single

Kinect method in [5], [6] on the current dataset in which sub-

jects performed PFT as a routine spirometry test and their body’s

normal reaction to deep and forced inhalation-exhalation was

not restricted. Comparing the evaluation results obtained from

the dual Kinect approach to the single Kinect method on this

dataset (see Tables II and III), confirms that eliminating trunk

motion, achieved by the dual Kinect approach, highly improves

the PFT measures’ correlation and reduces the error, even when

both approaches use the same volume–time data analysis and

intra-subject scaling factor learning methods.

C. Bland-Altman Analysis of PFT Measures

Table IV reports Bland-Altamn [30] range of agreement

between the dual Kinect and the spirometer measures, i.e.,

Ldk−Udk , and also between the single Kinect and the spirom-

eter measures, i.e., Lsk−Usk , where Ldk & Udk and Lsk & Usk

indicate the lower & upper limits of agreement for the dual and

the single Kinect measures, respectively. Results confirms that

the dual Kinect measures better agree with the spirometer across

all the measures, particularly for FEF50%, FEF75%, FEF25−75%,

IC and ERV.

Further, in order to better compare the error between the dual

and single Kinect PFT measures, Mdk was computed as the per-

centage of trials where the difference between the dual Kinect

measure and the spirometer measure lies in Ldk−Udk . Simi-

larly, Msk specifies the percentage of trials in the same range of

agreement between the single Kinect measure and the spirome-

ter measure (see Table IV). Although Mdk is greater than Msk

across all PFT measures, the difference between Mdk and Msk

is more distinguishable for FEF50%, FEF75%, FEF25−75%, IC and

ERV. Fig. 5 shows Bland-Altman plots of FEF75%, FEF25−75%

and ERV measures for the dual and single Kinect approaches.

D. Performance Evaluation of Similarity Measures

We evaluated the performance of the tidal volume and main

effort similarity measures (3) and (4), in terms of their ability

to choose the intra-subject scaling factors 〈ξ tv
dk〉

jtv & 〈ξme
dk 〉jme ,

which are supposed to calibrate the test volume–time data

with the minimum error, among the training scaling factors{
〈ξ tv

dk〉
ℓ
}ntv

ℓ=1
&

{
〈ξme

dk 〉ℓ
}nme

ℓ=1
. Thus, we used normalised L2 er-

ror SMEtv
dk & SME

me
dk , computed as the ratio of L2 error between

〈ξ tv
dk〉

jtv & 〈ξme
dk 〉jme and 〈ξ tv

dk〉
c & 〈ξme

dk 〉c, to 〈ξ tv
dk〉

c & 〈ξme
dk 〉c.
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Fig. 5. Bland-Altman plots for FEF75% (a), FEF25−75% (b) and ERV (c), measures. Many of the single Kinect PFT measures lie outside of the lower
limits of agreement, i.e., Ldk , and the upper limit of agreement, i.e., Udk , computed for the dual Kinect PFT measures.

Fig. 6. Performance evaluation of similarity measures by distributing
143 tidal volume trials (a), and 298 main effort trials (b) over SMEtv

dk & SME
tv
sk

and SME
me
dk & SME

me
sk at various intervals for the dual (blue) and single

(orange) Kinect approaches.

〈ξ tv
dk〉

c & 〈ξme
dk 〉c are the numerically closest scaling factors to the

spirometer scaling factors of the test trial, i.e., 〈ξ tv
dk〉

o & 〈ξme
dk 〉o.

Note that, 〈ξ tv
dk〉

o & 〈ξme
dk 〉o are computed using the spirometer

volume–time data of the test trial and are only used for eval-

uation and comparison. Similarly, SMEtv
sk and SME

me
sk are also

computed for the single Kinect approach [5], [6]. Fig. 6(a) and

(b) show the distribution of tidal volume and main effort trials

over the computed error SMEtv
dk & SME

tv
sk and SME

me
dk & SME

me
sk

for the dual (blue) and the single (orange) Kinect approaches,

respectively, in the range 0−30% at 5% intervals and then for

more than 30%. As can be seen, ∼75% of tidal volume trials

and ∼81% of main effort trials in the dual Kinect approach have

<10% error. This reduces to ∼51% and ∼76% in the single

Kinect approach. Also, many fewer trials with >30% error oc-

cur in the dual Kinect approach, i.e., ∼5%, as opposed to ∼26%

in the single Kinect approach.

E. Error Analysis of Intra-Subject Scaling Factors

We obtain the spirometer scaling factors 〈ξ tv
dk〉

o & 〈ξme
dk 〉o to

assist us in evaluating our intra-subject scaling factors by com-

puting the normalised L2 error, i.e., SCEtv
dk and SCE

me
dk , between

〈ξ tv
dk〉

jtv & 〈ξme
dk 〉jme and 〈ξ tv

dk〉
o & 〈ξme

dk 〉o. We also compare against

the single Kinect approach [5], [6] by computing SCE
tv
sk and

Fig. 7. Error analysis of intra-subject scaling factors by distributing 143
tidal volume trials (a), and 298 main effort trials (b) over SCEtv

dk & SCE
tv
sk

and SCE
me
dk & SCE

me
sk at various intervals for the dual (blue) and single

(orange) Kinect approaches.

SCE
me
sk . Fig. 7(a) and (b) present the distribution of tidal vol-

ume and main effort trials over the intra-subject scaling factor

errors SCEtv
dk & SCE

tv
sk and SCE

me
dk & SCE

me
sk for the dual Kinect

(blue) and the single Kinect (orange) approaches, respectively.

For example, in Fig. 7(a), ∼50% of tidal volume trials have

<10% error in the dual Kinect approach against ∼28% in the

single Kinect approach. Also, only ∼10% of the tidal volume

trials have >30% error for the dual Kinect against ∼34% in the

single Kinect. In the main effort trials, the dual Kinect approach

similarly performs better (see Fig. 7(b)).

F. Statistical Analysis of Within-Subject Scaling Factors

Table V reports the mean and standard deviation of within-

subject tidal volume and main effort scaling factors, for the dual

and single Kinect [5], [6] approaches for all 35 participants,

denoted as Mtv
dk, M

me
dk & 	tv

dk, 	
me
dk and M

tv
sk, M

me
sk & 	tv

sk , 	
me
sk , re-

spectively. Minimum to maximum range of scaling factors and

their distribution between the 1st and 3rd quartiles along with

the outliers are presented in Fig. 8.

The comparison between the scaling factors standard devi-

ation, i.e., 	tv
dk & 	me

dk versus 	tv
sk & 	me

sk in Table V, shows

that dual Kinect within-subject scaling factors are more consis-

tent than the single Kinect method [5], [6], especially for the

tidal volume scaling factors. This can be better realised by com-
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Fig. 8. Boxplot of statistics of within-subject tidal volume (top) and main effort (bottom) scaling factors of 35 subjects’ trials, in which interquartile
range, median, max, min and outliers of tidal volume and main effort scaling factors are illustrated for the dual (blue) and single (orange) Kinect
approaches. The interquartile range of the single Kinect tidal volume scaling factors are wider across all subjects except for a few, e.g., subjects 15
and 35 (pink highlighted). In particular, 	tv

sk is 8.4 and 2.3 times higher than 	tv
dk for the green highlighted subjects 11 and 16. Similarly, for the main

effort scaling factors, 	me
sk is 6.9 and 28 times higher than 	me

dk for the green highlighted subjects 8 and 25.

paring min to max range of the scaling factors, and also their

interquartile ranges in Fig. 8, for the dual Kinect (blue boxes)

and the single Kinect (orange boxes) approaches. Among these,

only subject 35 has a considerably greater 	tv
dk (red) than 	tv

sk ,

whereas 	tv
sk , 	

me
sk are higher for numerous subjects (bold red).

For example, 	tv
sk is 8.4 and 2.3 times higher than 	tv

dk for sub-

jects 11 and 16, and 	me
sk is 6.9 and 28 times higher than 	me

dk for

subjects 8 and 25 (highlighted in green in Fig. 8). The greater

the scaling factors’ standard deviation is, the higher the depth-

based PFT measures’ error would be. For example, the average

error of TV and FVC measures decreases from 0.23 and 0.84 in

the single Kinect approach to 0.07 and 0.19 in the dual Kinect

approach for subjects 16 and 25, respectively.

Finally, Table VI shows the mean (µM′) and standard deviation

(σM′) of the absolute difference between ‘the average of within-

subject tidal volume scaling factors’ and ‘the average of within-

subject main effort scaling factors,’ i.e., M′ = |Mtv
x − M

me
x |, where

x = dk for the dual Kinect approach and x = sk for the single

Kinect method. It also shows the normalised mean of M
′ as

TABLE VI
STATISTICS OF M

′ = |Mtv
x − M

me
x | AND 	′ = |	tv

x − 	me
x |, x=sk or dk

ACROSS 35 SUBJECTS IN DUAL AND SINGLE KINECT METHODS

µM′ σM′ �M′ µ�′ σ�′ ��′

Dual Kinect 1.02 1.10 0.19 0.37 0.44 0.57

Single Kinect 1.72 1.98 0.81 1.03 1.28 0.85

�M′ = µM′/αM′ , in which the normalisation factor αM′ is defined

as the average of {Mtv
x , Mme

x } across all subjects. Table VI also

presents similar statistics for 	′ = |	tv
x − 	me

x | (µ	′ , σ	′ ,�	′ ).

As seen, mean, standard deviation and the normalised mean of

M
′ & 	′, are notably smaller in the dual Kinect method, where

it shows better agreement between tidal volume and main effort

scaling factors. For example, Mtv
dk and M

me
dk are almost equal for

subjects 8, 24 and 25 (in blue in Table V), whereas Mtv
sk and M

me
sk

show a considerable disagreement for these subjects (in orange

in Table V).
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V. CONCLUSION AND FUTURE WORK

We introduced depth-based whole body photoplethysmogra-

phy to increase remote PFT accuracy by decoupling subject’s

trunk movements from the respiratory motions using two oppos-

ing Kinects. First, two Kinects were calibrated and synchronised

to construct a dynamic 3-D model of the subject performing

PFT. Using a 3-D mask, thoracoabdominal volume is automati-

cally segmented and used to retrieve a depth-based volume–time

data. This volume–time data was then calibrated using the intra-

subject scaling factors, learnt in a training phase, and 11 clinical

PFT measures were computed. We validated the dPPG PFT

measures by comparing them to the measures obtained from a

spirometer. The evaluation results show very good improvement

compared to the single Kinect approach [5], [6].

The proposed dPPG method does not perform in real-time as

the body data acquisition, trunk reconstruction and PFT com-

putation stages operate separately. While the data acquisition

and the PFT computation stages perform in nearly real-time,

the trunk reconstruction for each PFT performance is accom-

plished in less than a minute. However, we feel confident to

project that by applying GPU-based 3-D reconstruction tech-

niques, and incorporating these stages using further develop-

ment, dPPG would operate in real-time.

The proposed method for decoupling body movements from

respiratory motions results in tidal volume and main effort scal-

ing factors that are more consistent and better agree with each

other (than our earlier method in [5], [6]). However, they are

not identical enough to be a unique intra-subject scaling factor

that could be used to calibrate the whole volume–time data.

We note that in different subjects, thoracoabdominal wall re-

gions contribute differently in the tidal volume breathing, and

the main effort inhalation–exhalation. In our future work, we

shall investigate a multi-patch linear regression model to solve

this issue.
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