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ABSTRACT As an important part of non-destructive testing, infrared thermography testing is widely used 
in various fields of industrial development for monitoring the quality of metal parts. Considering the 
problem of low detection rate of surface defects on steel parts, we explored the application of neural 
architecture search (NAS) in infrared thermography area for the first time. On the one hand, we compared 
different time-series temperature features of defect locations in infrared images and validate the 
performance of three different features such as heating, cooling and full process by machine learning 
methods. On the other hand, we searched for multilayer perceptron through NAS technology to classify 
defects with different depths. Experiments have proved that the time-series temperature feature is very 
effective when used in the depth classification of defects, and the accuracy rate can reach 93% under the 
verification of traditional machine learning methods. The NAS technique used in this paper can search 100 
multilayer perceptrons in a minimum of 121s and achieve 100% defect classification accuracy. 

INDEX TERMS Non-destructive testing, infrared thermography, neural architecture search, classification. 

I. INTRODUCTION 
Due to the corrosion resistance and high temperature 
resistance of steel material, it has been maturely used in the 
industrial production life of aircraft, railway tracks and ships. 
However, There may be many problems in the process of 
steel plate processing, casting and rolling. These problems 
will lead to many types of defects on steel plate surface [1], 
the emergence of this phenomenon can cause a great threat to 
industrial production and personal safety. With the increase 
in demand for various steel industrial equipment, the 
resulting safety problems are becoming more and more 
prominent. Defect detection can be the following: magnetic 
particle detection [2], penetration detection [3], eddy current 
detection [4], x-ray [5] and infrared thermography (IRT) [6]. 
However, in addition to infrared thermal imaging technology, 
other methods are also affected by many factors. For 
example, magnetic particle testing can only detect defects on 
the surface and near-surface of ferromagnetic materials, and 
the detectable depth is usually only 1-2 mm; eddy current 
testing is affected by the effect of the lift-off height makes it 

impossible to detect defects such as uneven surface. These 
lead to inaccurate defect depth detection and low efficiency. 
Temperature can be used as an indicator of the health of parts 
and equipment [7]. When cracks appear on the surface of the 
equipment, it can cause an abnormal temperature distribution. 
IRT [8] is the science of acquiring and analyzing infrared 
images by means of non-contact thermal imaging devices. 
IRT detects cracks by analyzing the temperature field 
distribution on the surface of an object. It has the advantages 
of high detection accuracy, rich and complete detection 
information. Pech-May et al. used a lock-in thermography 
setup with focused laser excitation to characterize the width 
of infinite vertical cracks accurately [9]. Chen et al. can 
accurately detect defects in carbon fiber reinforced polymers 
from IRT images [10]. Ahmad et al. proposed an 
independent component analysis (ICA) to process FMTWI 
image sequence which can identify, locate and extract the 
shape of defects [11]. Numan et al. used an artificial neural 
network (NN) coupled with a Pulsed Thermography PT 
setup to detect the depth of defects in composite samples [12]. 
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Wang et al. used two different heating methods of modulated 
lasers to heat aerospace carbon fiber composite materials 
with internal defects. The result shows that after expansion, 
the unevenness of laser energy distribution has a great 
influence on the detection effect [13]. Jiang et al. explored 
the possibility of combining laser ultrasound technology with 
hybrid intelligence methods for rapid defect classification 
and evaluation at different depths [14]. In recent years, more 
and more researchers have trained the collected images 
through machine learning methods to achieve the effect of 
classification or defect location [15-19]. Ali et al. proposed a 
hybrid feature-based support vector machine (SVM) model 
for hotspot detection and classification of PV panels using 
infrared thermography. The proposed method is easily 
implemented to effectively monitor PV panels and perform 
fault diagnosis [15]. Wang et al. used a laser infrared 
thermography system to inspect aerospace CFRP sheets and 
a long-term short-term memory recurrent neural network to 
determine the defect depth [16]. Yang et al. used improved 
Faster Region-based Convolutional Neural Network (Faster 
R-CNN) for the detection of surface cracks in steel [17]. 
Pahlberg et al. investigated the possibility of automatically 
detecting cracks using an ensemble approach random forest 
and enhanced by ultrasound-excited thermography and 
various predictor variables [18]. Luo et al. proposed a hybrid 
spatial and temporal deep learning architecture for automatic 
detection of thermal imaging defects. This method has the 
ability to significantly reduce the inhomogeneous 
illumination and improve the detection rate [19]. The 
machine learning methods above can characterize the depth 
information of defects. But the accuracy and efficiency of 
these methods are not satisfactory. In [12], [15], [18], the 
process of extracting features is too complex and takes a long 
time for experienced researchers in this field; in [16] and [19], 
researchers need to set parameters manually, such as the time 
step of the LSTM and the neural network model is too 
complex, which takes a long training time. Although Faster 
R-CNN was used in [17], it still take a considerable amount 
of training time and the accuracy of defect recognition can 
only reach around 95%. 

The design of neural network architectures is a time-
consuming and tedious task. A high-performance network 
structure requires an experienced adjustment parameter 
engineer to design. Usually, the stricter the hyperparameter 
requirements, the better the performance of the neural 
network. To address the above bottlenecks in these literatures, 
Google proposed neural architecture search (NAS) with 
reinforcement learning [20] which can design the neural 
architecture automatically. NAS has achieved exciting results 
in the fields of image recognition [21-23] and neural machine 
translation (NMT) [24]. Search space, search method and 
performance evaluation strategy are the three elements of 
NAS [25]. As far as we know, infrared thermography testing 
with NAS not been studied by scholars. 

We propose a neural architecture search method based on 
reinforcement learning for the deep classification of 
infrared thermal imaging defects. On the one hand, this 
method can greatly reduce the design time of neural 
networks; on the other hand, it can improve the efficiency 
and accuracy of deep classification of defects without 
manually extracting complex features. A recurrent neural 
network (RNN) can generate a variable-length string to 
specify a neural network. We adapted the NASCell 
proposed in [20] as the controller RNN unit to generate a 
string describing the structure of the multilayer perceptron. 
The RNN is then trained by reinforcement learning to 
search for the optimal multilayer perceptron in the search 
space. When training detection data, an accuracy d is 
obtained, and we update the controller RNN by a policy 
gradient so that the highest accuracy d as the reward 
corresponds to the multilayer perceptron structure as the 
highest scoring structure. 

II. WORKFLOWS 
Modern classification of defects with IRT includes three 
steps: defect data acquisition, defect features extraction, and 
classification. Fig. 1 shows the process of modern 
classification. In the first step, we use a pulsed laser to heat 
the area around the defect and collect the temperature change 
at the defect by infrared thermography. In the second step, 
the temperature change of the point of interest (POI) at the 
defect is used as a feature vector to study its heating and 
cooling processes. In the third step, we design different 
multilayer perceptron (MLP) architectures to train the feature 
data by NAS to identify the defects at different depths. Here, 
we compare other machine learning classification methods 
with NAS, such as Extra-trees classifier (ET) [26], Decision 
Trees (DT) [27], Random Forest (RF) [28] and KNN [29]. 
Fig. 2 shows the flowchart of our work. 

 

FIGURE 1.  Defect classification process. 
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FIGURE 2.  The workflows of our work. 

III.  THEROETICAL BASIS 

A. PULSE THERMOGRAPHY 
Pulsed thermography [30] is one of the typical methods of 
infrared thermography. The principle is to project heat in the 
form of pulses on the surface of the test sample by means of 
a laser, so that the temperature of the sample surface 
increases in the form of pulses. The temperature of the 
sample at time t at depth d can be determined by the 
following equation: 
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Where oQ  denotes the input energy density, T denotes the 
sample temperature,   denotes the density, c denotes the 
thermal conductivity, and k denotes the thermal diffusivity. 

B. NEURAL ARCHITECTURE SEARCH (NAS) 
Currently, for the design of most neural network structures, it 
takes a long time for an experienced designer to adjust the 
hyperparameters. To shorten the designer's time, the 
reinforcement learning based neural network framework 
search technique can shorten the neural network design time. 
Reinforcement learning based neural architecture search can 
be shown by Fig. 3. NAS framework includes search space, 
search method and performance evaluation strategy. We can 
search for a well-defined network structure in the search 
space. The search method is defined by search strategy. The 
performance evaluation strategy can evaluate the network 
structure performance. 

 

FIGURE 3. Neural Architecture Search training flowchart. 
 

Recurrent neural networks are a class of recurrent neural 
networks that take sequence data as input, recursion in the 
direction of evolution of the sequence and link all the loop 
units in a chained fashion. Here, we adopt NASCell as the 
unit, which proposed in [20]. Fig. 4 shows the structure of the 
NASCell. And it can be described by the following formulas: 

 0 1 2 1tanh( )t ta W x W h     , (2) 
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where W1 denotes the connection weight matrix from the 
input layer to the node a0, W2 denotes the connection 
weight matrix from the hidden layer to node a0. W3 denotes 
the connection weight matrix from the input layer to node 
a1, and W4 denotes the connection weight matrix from the 
hidden layer to node a1. 
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FIGURE 4. The structure of NASCell which including three inputs (ct-1, ht-

1, xt) and two outputs (ct, ht). 
 

Reinforcement learning is an area of machine learning that 
emphasizes how to act based on the environment in order to 
maximize rewards. Given c  as the parameters of controller 
RNN and 1:M  as the MLP architecture predicted by the 
controller, the optimal MLP architecture can be obtained by 
maximizing the expected reward, 

 
     

1:M ; cc PJ E R  
 (7) 

where  1: ;M cP    is the probability when sampling from 

1:M  and R is the reward. Due to the fact that rewards R is 
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not differentiable, we adopt the gradient strategy approach 
in [31] to update the J: 
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where n is the number of different MLP architectures 
sampled by the controller in each batch, M is the number of 
neurons to be predicted in each fully connected neural 
network layer set by the controller and Rk is the reward of 
k-th predicted architecture. To suppress the high fluctuation 
of the estimate, we adapted the baseline function as in [20] 
to replace Rk in Eq. 8 with “Rk-B”, where B is defined as an 
exponential moving average of the previous architecture 
accuracies. 

IV. EXPERIMENTAL SETUP 
The system for classifying the depth of defects in steel parts 
consists of the following components: a fiber laser that 
generates pulsed laser light, an infrared thermal imaging 
camera, a water cooling unit and brackets to fix the laser 
head and the steel plate. The schematic diagram of the 
system is shown in Fig. 5 and 6 is the experimental setup. 

 
FIGURE 5. Classification system of defect depth. 
 

 
FIGURE 6. Experimental setup. 
 

We used laser source to heat the object and an infrared 
camera to capture infrared thermography. The laser used in 
the experiment can produce a laser beam with a wavelength 
of 915nm, a maximum output power of 500W, a diameter of 
400μm, with a divergence angle of < 0.22, which has a 
higher photoelectric conversion efficiency.  

The frame size of the infrared camera is 640×512 pixels, 
and the frame frequency is 100Hz. In the experiment, the 
distance d between the laser source and the steel plate is 
1.36m, and the angle β between the infrared thermal imaging 
camera and the laser is 13°. The pulse width is 1s. The output 
power of the laser is set to 10% of the maximum power. Fig. 
7 shows a three-dimensional profile of the temperature in one 
frame of the cooling process around the defect. We can 
clearly see the temperature at the defect and at the laser 
center on the steel plate. The distance D between the laser 
center and the defect in the experiment is 2mm. 

 
FIGURE 7. Three-dimensional profile of the temperature in one frame of 
the cooling process around the defect. 

 
In the experiment, the steel plate containing defects is 

shown in Fig. 8, we can see that different defects are 
distributed in different locations of the steel plate, seven of 
them are selected for inspection, the depths are 0.25mm, 
0.625mm, 1.125mm, 1.5mm, 2mm, 2.25mm and 2.5mm 
respectively. The shapes of the defects are the same. We 
repeat the measurement 20 times for each type of defect. In 
this paper, we record the temperature change process within 
two seconds after laser pulse generation. The selected feature 
is the change of the highest temperature point on the defect, 
in other words, the point of interest is implemented in the 
infrared thermogram as the recording object, and we use the 
temporal change of temperature at just one point on the 
defect as the feature value. We can find the location of the 
feature points in Fig. 8. To compare the classification effect 
of defects in different process temperature variations, We 
divided the defect temperature variation into three processes 
with the temperature variation of 1s heating process, the 
temperature variation of 1s cooling process and the 
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temperature variation of 2s full process as the characteristic 
values, respectively.. 

 

 
FIGURE 8. Defect distribution diagram of steel plate. The depths at 
defects a to g are classified as 0.25mm, 0.625mm, 1.125mm, 1.5mm, 
2mm, 2.25mm and 2.5mm. 
 

V. RESULTS 

A. EXPERIMENTAL VALIDATION OF MACHINE 
LEARNING METHODS 
Fig. 9 depicts the infrared image of the sample from laser 
generation to the end at an interval of 200ms. The first 
second is the laser heating time and the last second is the 
cooling time of the sample. From Fig. 9, we can see that after 
the thermal excitation is generated, the temperature at the 
defect rises slowly relative to the surrounding temperature, 
implying that the temperature at the defect is lower than the 
surrounding temperature. When the heating process is over, 
the temperature at the defect starts to rise slowly and is 
higher than the surrounding temperature. It is caused by the 
non-uniformity of thermal diffusion. This phenomenon can 
be clearly seen in the thermal image from 1400ms to 2000ms. 

 
FIGURE 9. Thermal image change at defects. 

 
 

In the classification task, feature selection is an important 
process, and robust features can greatly improve the 
classification accuracy. Fig. 10 records the temperature 
variation process of the characteristic points of the seven 
defects. From the figure, we can see that the change trend of 
each characteristic point includes the heating process and the 
cooling process. The extreme temperature and the final 
characteristic temperature of different characteristic points 
are different, which is caused by the inconsistent heat 
diffusion at different defect depths. We can also see from the 
figure that the starting temperature points are not all the same, 
and the deviation of about 1°C is caused by the unstable 
room temperature in the experiment. 

In order to verify the reliability of the selected features, we 
first use the four conventional machine learning methods 
mentioned in Section II (ET, DT, RF, and KNN) for 

validation. In order to train and evaluate other machine 
learning methods, the feature data is divided into training set 
and test data. We use the temperature change processes 
described in the previous chapter for each of the three states 
as input. In order to avoid over-learning and under-learning, 
we use 10-flods cross-validation (CV) of sample data to 
evaluate all methods, select 90% of the data for training, 10% 
of the data for validation, repeat 10 times, and get 10 non-
overlapping validation data set. Finally, the average of the 
accuracy of the 10 experiments is the final experimental 
result. Subsequent experiments are carried out in this format. 
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FIGURE 10. Temperature variation of seven defective feature points. a to 
g correspond to defects a to g, respectively. 
 

 
FIGURE 11. Comparison of the classification of the four machine learning 
methods when using different temperature variation data as input. 
 

Fig. 11 shows the classification results of the four machine 
learning methods when using different temperature variation 
data as input. From the figure, it can be seen that the 
classification result with ET method as classifier is the best 
with an accuracy of 93% whether the heating process, 
cooling process data or full process data is used as input. 
Next, relatively high accuracy can also be obtained by using 
the RF method. Moreover, when the above two methods are 
evaluated using 10-folds CV, the errors per experiment are 
small, in contrast, KNN and DT have greater dispersion of 
the 10-experiment results and does not have good stability. It 
is clear from the above results that the data variation of the 
full process can classify the defect depth more accurately, 
and the highest recognition accuracy of these machine 
learning methods used can reach 93%. 

In order to study the effect of normalization on the 
accuracy of machine learning classification, we performed a 
normalization operation on the input samples using KNN to 
classify with 10-flod CV. TABLE 1 shows the normalized 
and un-normalized experimental results. We can see that 
when the temperature change of the heating process is 
selected as the feature after normalizing the sample data, the 
accuracy is lower, and there is no effect on the classification 
accuracy after normalizing the other two features. Therefore, 
in subsequent experiments, we did not normalize the data in 
this work. 
 
Table 1. 10-flod CV accuracy for un-normalized and normalized features. 

 
Un-normalized Normalized 

Full process 0.85 0.85 
Heating process 0.825 0.8 
Cooling process 0.875 0.875 

B. EXPERIMENTAL VALIDATION OF NAS 
Due to the relatively small sample data we did not define the 
search space as a complex network structure, but chose the 
multilayer perceptron as a child model and used the 
controller RNN to search the number of neurons of multiple 
multilayer perceptron. We set the number of neurons to be 
searched as 8, 16, 32 and 64, and search for the best 
combination to achieve the best classification accuracy. In 
addition, we used MLPs with 4 to 14 layers for additional 
experiments (Hyperparameters were determined by NAS). 
TABLE 2 lists the parameter space for NAS. 
 
TABLE 2. Neural architecture search parameters. 

Parameters Value 

Number of layers of the state space 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14 

Batch size of the child models 64 

High exploration for the first 200 steps 0.8 

Regularization strength 0.001 

Number of cells in RNN controller 32 

Dimension of the embedding for each state 20 

Maximum number of epochs to train 100 

Fig. 12 shows the accuracy values of the MLP on the 
validator. We used heating, cooling and full process as inputs 
to the MLP, respectively. From the figure, we can see that the 
accuracy of classification increases and then decreases with 
the increase of the network layers, regardless of which 
process is used as the input to the network. Compared with 
the other two processes, the cooling process is less effective 
as an input for classification, but it can still achieve a 
classification accuracy of 92.9%. When using heating and 
full processes as input features, the accuracy can reach 100%. 
However, the classification effect with the full process as the 
input is the most stable and its performance is higher than the 
other two features. When using the heating process, the 
cooling process and the full process as input features, it took 
121s, 127s and 151s to search for every 100 combinations of 
neurons, respectively. 
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FIGURE 12. Optimal performance models at different depth. 
 

We list the optimal network structures with different 
features in TABLE 3. Although the model with depths of 5, 6, 
7, 8, 9, 10 and 11 can achieve 100% classification accuracy 
when using the full process as the input feature, we finally 
selected 5 layers as the final network in order to reduce the 
complexity of the model and computation time. Similarly, 7 
layer was selected as the final network structure when the 
other two features were used as inputs. 
 
TABLE 3. The parameters of perceptron optimized by NAS for different 
features. 

(a). Full process. 

Layer (type) Output Shape Parameters 
dense_1 (None, 8) 416 
dense_2 (None, 32) 288 
dense_3 (None, 32) 1056 
dense_4 (None, 32) 1056 
dense_5 (None, 7) 231 

(b). Heating process. 

Layer (type) Output Shape Parameters 

dense_1 (None, 64) 1664 

dense_2 (None, 16) 1040 

dense_3 (None, 64) 1088 

dense_4 (None, 64) 4160 

dense_5 (None, 64) 4160 

dense_6 (None, 64) 4160 

dense_7 (None, 7) 455 

(c). Cooling process. 

Layer (type) Output Shape Parameters 

dense_1 (None, 64) 1664 

dense_2 (None, 32) 2080 

dense_3 (None, 16) 528 

dense_4 (None, 16) 272 

dense_5 (None, 16) 272 

dense_6 (None, 16) 272 

dense_7 (None, 7) 119 

VI. DISCUSSION 
Although traditional classification methods, such as KNN, 
decision trees, etc., have been applied to text classification 
[32] and bank marketing classification [33]. However, in 
order to obtain higher classification accuracy, data 
preprocessing and classifier parameter adjustment are 
indispensable. For example, the RF method needs to find the 
largest number of decision trees to have a higher 
classification effect. When using traditional classification 
methods, data pre-processing, such as normalization and 
standardization, often helps to improve performance. 
However, probability models such as DT, ET, and RF used 
in this article do not need to normalize the data, and this 
article also applies the normalized samples to the KNN 
method, but the effect is not good. The experiments in this 
article prove that the normalization of the data is not helpful 
to the defect classification of the thermal image. 

The classification performance of the NAS method used in 
this paper is much higher than that of the traditional machine 
learning method. And the research in this article only takes 
the temperature at the point of interest in the thermal image 
as features, and the sample size is not large. If the sample 
size is large enough, we believe that the performance of the 
method proposed in this article will be much higher than the 
traditional method. For the small dataset and the small search 
space in this work, NAS can identify the suitable number of 
neurons in a short time. For example, for the three input 
features heating process, cooling process and full process, the 
NAS training takes 121s, 127s and 151s, respectively. We 
did not calculate the time used to build the neural network 
manually because it takes a long time to adjust the 
parameters manually. 

VIII. CONCLUSION 
In this article, we first extract the temperature change of the 
point of interest in the thermal image as the feature, and 
divide the temperature change into three stages, including 
heating, cooling and full process. First, the traditional 
machine learning methods, such as RF, ET, are used to verify 
the effectiveness of full process as feature. In addition, we 
introduced the application of the NAS method in the field of 
defect depth classification. The multi-layer perceptron 
searched by the NAS method has the best effect in depth 
classification, and the classification performance can reach 
100%. The search speed of our method is exciting relative to 
the manual construction of neural networks. 

APPENDIX 
See TABLE 4 and 5. 
 
TABLE 4. Notes on mathematical symbols and glossary. 
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Symbols Notes 

Q0 Input energy density 

T Sample temperature 

ρ Density 
c Thermal conductivity 

k Thermal diffusivity 

tanh Hyperbolic tangent function 

ReLU Rectified Linear Unit 

sigmoid Sigmoid function 

α1：M Architecture predicted by the controller RNN 

Rk The reward of k-th predicted architecture. 

B The exponential moving average of the 
previous architecture accuracies 

⊙ Element-wise multiplication 

SVM Support Vector Machine 

LSTM Long Short-Term Memory 

R-CNN Region-based Convolutional Neural Network 

ET Extra Trees 

DT Decision Trees  

RF Random Forest 

KNN K -Nearest Neighbors 

NMT Neural Machine Translation 

POI Point of Interest 

CV Cross-Validation 

RNN Recurrent Neural Network 

MLP Multi-Layer Perceptron 

 
TABLE. Parameters used for conventional machine learning methods. 
(a) Decision Tree Classifier (DT) 

Parameters  

The function to measure the quality of a split. Accuracy 

The minimum weighted fraction of the sum 
total of weights (of all the input samples) 
required to be at a leaf node. 

Samples have equal 
weight 

Threshold for early stopping in tree growth. 1e-7 

 

(b) Extra-Trees Classifier (ET) 

Parameters  

The number of trees in the forest. 10 

The function to measure the quality of a split. Accuracy 

The minimum weighted fraction of the sum 
total of weights (of all the input samples) 
required to be at a leaf node. 

Samples have equal 
weight 

Threshold for early stopping in tree growth. 1e-7 

 

(c) K-Nearest Neighbors (KNN) 

Parameters  

Number of neighbors to user for meth: 
‘kneighbors’ queries. 

5 

Weight function used in prediction. All points in each 
neighborhood re 
weighted equally. 

Leaf size passed to Ball-Tree or KD-Tree. 30 

Power parameter for the Minkowski metric. 
The distance metric to use for the tree. 
The number of parallel jobs to run for neighbors 
search. 

Euclidean distance 
Minkowski 
1 

 

(d) Random Forest (RF) 

Parameters  

The number of trees in the forest. 10 

The function to measure the quality of a split. Accuracy 

The minimum weighted fraction of the sum 
total of weights (of all the input samples) 
required to be at a leaf node. 

Samples have equal 
weight 

Threshold for early stopping in tree growth. 1e-7 
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