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Abstract Panoramic image differences can be used for
view-based homing under natural outdoor conditions,
because they increase smoothly with distance from a ref-
erence location (Zeil et al., J Opt Soc Am A 20(3):450–
469, 2003). The particular shape, slope and depth of such
image difference functions (IDFs) recorded at any one place,
however, depend on a number of factors that so far have
only been qualitatively identified. Here we show how the
shape of difference functions depends on the depth structure
and the contrast of natural scenes, by quantifying the depth-
distribution of different outdoor scenes and by comparing it to
the difference functions calculated with differently processed
panoramic images, which were recorded at the same loca-
tions. We find (1) that IDFs and catchment areas become sys-
tematically wider as the average distance of objects increases,
(2) that simple image processing operations—like subtracting
the local mean, difference-of-Gaussian filtering and local
contrast normalization—make difference functions robust
against changes in illumination and the spurious effects of
shadows, and (3) by comparing depth-dependent transla-
tional and depth-independent rotational difference functions,
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we show that IDFs of contrast-normalized snapshots are pre-
dominantly determined by the depth-structure and possibly
also by occluding contours in a scene. We propose a model
for the shape of IDFs as a tool for quantitative comparisons
between the shapes of these functions in different scenes.

1 Introduction

Many pieces of evidence and theoretical considerations
suggest that places are uniquely defined by the visual appear-
ance of the world as viewed from these places. Experiments
on homing insects show that they return to nest sites and food
sources with the aid of remembered views (Cartwright and
Collett 1983; for reviews see Collett and Zeil 1998; Giurfa
and Capaldi 1999). The properties and limits of view-based
homing have recently received renewed attention in theoreti-
cal studies, backed up by simulations and experimental robot-
ics (for reviews see Franz et al. 1998; Zeil et al. 2003; Vardy
and Möller 2005). The principal limits of view-based homing
have been recognized early on (e.g., Cartwright and Collett
1983; Zeil 1993a,b): for instance, in a featureless landscape,
in which objects are far away, the appearance of a scene does
not change, except over large distances of travel. Also, scenes
in dense vegetation habitats are subject to large changes in
appearance due to changes in the direction of illumination
and the ever-changing position of shadows (e.g., Zeil et al.
2003). The accuracy and robustness of view-based homing
thus depends on the depth structure of scenes and on the
stability of the light environment.

Homing animals like ground-nesting bees and wasps when
acquiring a representation of their nest environment during
their learning flights on departure (see Zeil et al. 1996; Collett
and Zeil 1997a) may, therefore, need ways of accounting for
these conditions. For instance, if nesting in open country,
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they would need to store more reference images or snap-
shots, because the distant scene above the horizon contrib-
utes only very small image differences per distance travelled,
while close textures on the ground change very rapidly with
distance. In addition, regardless of depth structure, homing
insects are likely to need ways of making their representation
immune against changes of illumination and the movements
of shadows (Zeil et al. 2003; Möller 2002).

Here we explore these issues by showing how panoramic
image differences depend on the depth structure of outdoor
scenes, how lateral inhibition and simple local contrast nor-
malization make image differences immune against changes
of illumination and how the shape of difference functions can
be modelled for quantitative comparison.

2 Methods

Image acquisition: We recorded panoramic images with a
colour FireWire CCD-camera (Marlin MF-046C, Allied
Vision Technologies, image size 640 × 480 pixels) view-
ing a convex mirror with constant gain in elevation (see
Chahl and Srinivasan 1997). To achieve minimum obstruc-
tion and a rigid assembly, the mirror was held by four thin
metal blades below the camera (see Fig. 1b). This panoramic
imaging arrangement was attached to a 3D positioning plat-
form (robotic gantry), which was mounted on a trolley and
could be moved into different outdoor locations (Fig. 1a).
The gantry allowed us to move the camera with high pre-
cision (re-positioning accuracy <0.01 mm) within the space
of 1 m3 (see Fig. 1a). The gantry was levelled with a spirit
level before each experiment. The camera settings were kept
constant during recordings, with the automatic gain control
switched off and the built-in gamma correction enabled to
increase the dynamic range. In order to avoid very low image
contrast, high sensor noise, or saturation in very bright image
parts, the lens aperture was changed between recordings if
necessary.

Quantifying depth: We measured the depth structure of out-
door scenes with a laser range finder (SICK LMS 200)
mounted sideways on a large turntable driven by a stepper
motor (see Fig. 1c). The range finder was centred above the
rotation axis of the turntable at a height above ground of
about 75 cm and the whole arrangement was levelled using a
spirit level. The range finder was oriented and programmed
in such a way that its measuring beam scanned through a
vertical slice of 180◦ in 1◦ steps in synchrony with the turn-
table rotation of 1◦ step at a time. A complete rotation of
the turntable took about 5 min, producing a range map con-
taining 360 × 181 distance measurements {ri } in the range
from 10 cm to 80 m with a resolution of 1 cm. The turntable
itself covered about 30◦ in the lower part of the range map,

so that the useful depth array ended 60◦ below the horizontal.
To relate this range map to vision, where image shifts due
to observer movement are inversely proportional to distance,
we plot depth as disparity values (pixel shifts or ‘nearness’;
see Eqs. (9), (10) in the Appendix):

di = α/ri , (1)

with α = 180/π × 0.1 m. di is the expected image shift (or
disparity) in pixels when moving the camera 0.1 m orthog-
onal to the direction of an object with distance ri assuming
an image resolution of 1◦/pixel. For completely flat, textured
ground, di is approximately linearly related to elevation εi

below the horizon since di = α| sin εi |/z ≈ α|εi |/z for
|εi | � π/2 (with z being the height of the camera above
ground).

Recording procedure: In preparation of a recording session
we moved the camera to the centre of the gantry’s horizontal
range (gantry coordinates x = y = 50 cm) about 1 m above
ground (gantry coordinate z = 100 cm). The horizontal dis-
tance from the body of the gantry of this reference location
was about 2.25 m throughout this study. We then centred and
levelled the laser range finder directly below the camera at a
height above ground of between 70 and 85 cm, depending on
the slope of the terrain (see Fig. 1a). After recording the dis-
tance map range finder and turntable were removed and the
effective viewpoint of the camera was moved to the height
above ground of the viewpoint of the range finder to record a
reference image. Since we were using a mirror with constant
angular gain there is strictly speaking no single viewpoint of
the panoramic imaging system (e.g., Chahl and Srinivasan
1997). However, all principal rays cross the symmetry axis
of the camera system within 0.7 cm of a point close to the
tip of the mirror. We then recorded images at regular 10 cm
intervals in an 11 × 11 element grid, defining a horizontal
plane of 1 m2. To avoid the effect of vibrations generated by
the movement of the gantry, the images were recorded with
a delay of about 1 s, after moving to the next grid location.

Calculating image difference functions: Differences between
the images {I(x)} recorded at regularly spaced positions in a
11×11 grid and the reference image Ir were calculated using
the sum of squared pixel differences (SSD). Grid spacing was
10 cm. In the following we will use the term (translational)
image difference function (IDF) to describe the dependence
of the image difference on location, i.e.,

IDF(x) =
∑

i

(
Ii (x) − I r

i

)2
. (2)

Image processing: Before further processing, original images
(Fig. 1d) were un-warped to a rectangular size of 360 × 104
pixels (Fig. 1e) and converted to grey level images. To avoid
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Fig. 1 The experimental setup.
a View of the 3D positioning
platform (gantry) together with
the laser scanner on its rotating
table. b Panoramic imaging
device consisting of a Marlin
FireWire camera looking down
onto a reflective surface, which
is held in place by four thin
radial metal plates. c Sick Laser
Scanner mounted sideways on a
stepper-motor driven rotating
table. d Original panoramic
image of an open field site
imaged via the reflective surface.
e Un-warped panoramic image.
The thin vertical strips are the
images of the holding plates

aliasing, images were first un-warped to 1, 800 × 208 pixels
using bilinear interpolation, before being scaled down using
super-sampling. The images cover approximately a range of
elevation between −50◦ and +50◦ (plus a 2◦ border that is
used when filtering the images, see below), except for some
cases where we had to restrict image size to −37◦ and +50◦,
due to scratches on the mirror surface. We decided to un-warp
the images before calculating image differences or before
applying filters because they provide a better approxima-
tion of a spherical image projection than the original camera
image. The resolution of un-warped panoramic images was
1◦/pixel in azimuth and elevation.

We investigated the effects of manipulating the image fre-
quency spectrum and image contrast on difference functions
by applying the following filter to the images (with pixel
values I = (I1, I2, . . . , IN )�) before calculating the SSD:

I ′
i = Ii − 〈I 〉i

1 + σ−1
1/2σi

, (3)

with σi =
√

〈(Ii − 〈I 〉i )2〉i . (4)

〈X〉i = ∑
j gi j X j is the Gaussian weighted mean of X (the

standard deviation of the Gaussian was 1◦) in the neighbour-
hood of the i th pixel; σi is the local standard deviation of the
intensity values over the same Gaussian window and σ−1

1/2 is
a normalization constant.

For σ−1
1/2 = 0, the local mean is subtracted from each

intensity value. This “local background differencing” oper-
ation enhancing local contrast is equivalent to lateral inhibi-
tion and mimics the responses of laminar monopolar cells in
insects (e.g., Srinivasan et al. 1982; van Hateren 1992, 1993).
For σ−1

1/2 > 0, Eq. (3) becomes a variant of “divisive contrast
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normalization” models, which have been proposed to explain
the properties of simple and complex cells in the mammalian
visual cortex (e.g., Fleet et al. 1996; Carandini et al. 1997).
With local contrast defined as ci = σi/〈I 〉, where 〈I 〉 is the
mean intensity value of the image, Eq. (3) equalizes local
contrast. For two image patches, for instance, with low and
high local contrast c1 and c2, the ratio c1/c2 will be closer to
1 after normalization. The higher the value of σ−1

1/2 the stron-
ger is the effect. In the present study, we will be using values
of σ−1

1/2 = 0.5 and σ−1
1/2 = 100 to achieve different degrees

of local contrast normalization.

3 Results

3.1 Image differences and the depth structure
of natural scenes

We first describe the relationship between the depth struc-
ture and the IDFs recorded in natural scenes, using an open
and a forest habitat as examples. The colour-coded disparity
(depth) maps of the two scenes are shown in Fig. 2a, left
and right panels, together with depth histograms at different
elevations in the scenes (Fig. 2b, as indicated by the angular
width in elevation of horizontal slices through the laser scans
in Fig. 2a), which extend from −50◦ below to +37◦ above
the horizon. Figure 2c shows the IDFs for the same elevations
and Fig. 2d x and y transects through the equivalent IDFs.
Comparing the distance histograms for the two scenes (left
and right panels, Fig. 2b) shows that there is a clear division
between above and below horizon distances in the open hab-
itat. Above the horizon large distances are represented about
equally, and below the horizon, the distribution is practically
flat across a wide range of close distances because of perspec-
tive foreshortening. On flat ground, each distance slice from
the horizon downwards, contributes about equally. The histo-
gram of the densely vegetated habitat is different in that above
horizon and below horizon distances contribute much more
equally to the distribution compared to the open habitat. Fur-
thermore, the depth distributions of the whole image and of
different elevations are multi-modal, except for very low ele-
vations, firstly because close objects are not restricted to the
parts of the scene below the horizon, and secondly because
below the horizon, the effects of perspective foreshortening
are “contaminated” by close objects of different sizes that
are seen against the background of the ground plane.

The two-dimensional IDFs (Fig. 2c) and the transects
through their centre in x and y direction (Fig. 2d) for the
two scenes show characteristic differences, both with respect
to scene differences and with respect to elevation. The first
result to note is that the IDF of the whole image (top left
panels in Fig. 2c and d) is shallower in the open scene (left),
compared to the forest scene (right). These differences seem

to be mainly produced by objects above the horizon (top row
panels in Fig. 2c, d), while the IDFs calculated for eleva-
tions below the horizon do not differ significantly between
the two scenes (bottom row in Fig. 2c, d). Those of the for-
est scene, however, are corrupted by shadow contours that
have changed between the recording of the reference image
and the images in the horizontal grid. Note that the image
differences at the reference image location are not zero in
Fig. 2 and the following figures, because the images on the
grid of 11×11 locations were recorded up to 10 min after the
reference image, so that the image at the centre of the grid is
not identical to the reference image.

The differences between the shape and depth of IDFs in
these two scenes are unlikely to be due to differences in local
image contrast. We quantified image contrast by applying
3×3-degree-wide horizontal and vertical Sobel filters1 which
approximate the local image gradient at each pixel by deter-
mining the differences between neighbouring pixels. The his-
tograms of the local slope of intensity changes as estimated
by Sobel filters applied to the reference images recorded in
the two scenes (see Fig. 3a) are practically indistinguishable
between the open and the forest habitat (Fig. 3b). The same
holds true for the different elevation ranges. In both scenes,
the distributions are broadest, meaning that contrast is high-
est, above and at the horizon.

3.2 Image differences and the local contrast
in natural scenes

For a number of reasons, we wanted to explore how IDFs
depend on pre-processing of images. First, we looked for
ways to alleviate the effects of changes in illumination and the
movement of shadows (e.g., Zeil et al. 2003; Möller 2002);
secondly, we wanted to mimic the early stages of insect
visual processing, which are known to involve lateral inhibi-
tion (e.g., Srinivasan et al. 1982; van Hateren 1992, 1993);
and thirdly we looked for ways of modifying the spatial fre-
quency spectrum of images, to investigate how IDFs depend
on second-order natural scene statistics. We chose to com-
pare three pre-processing strategies (see Fig. 4 and Sect. 2):
Lateral inhibition or difference-of-Gaussian (DoG) filtering(
σ−1

1/2 = 0
)
, and two different degrees of local contrast nor-

malization (σ−1
1/2 = 0.5 and 100, see Sect. 2). The degree

to which these filtering operations reduce the dependence of
the Fourier amplitudes on the spatial frequency of the images
(i.e., lead to a whitening of the spatial frequency spectrum)

1 Changes in pixel value due to translation
−→
∆x can be estimated by

∆Ii (
−→
∆x) ≈ ∂φ Ii ∆φi (

−→
∆x) + ∂ε Ii ∆εi (

−→
∆x) for |−→∆x/ri | � 1. ∂φ Ii and

∂ε Ii are local image gradients (in azimuth φ and elevation ε) that can
be approximated by the output of vertical and horizontal Sobel fil-

ters. ∆φi (
−→
∆x) and ∆εi (

−→
∆x) are the corresponding image shifts, see

Eqs. (9),(10) in the Appendix.
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Fig. 2 The depth structure of outdoor scenes. a Colour-coded range
maps for an open (left) and a forest site (right). Colour bar shows coding
of distances in units of disparity (pixels) and of absolute distance (m).
Angular elevation ranges relative to the horizon are shown in 20◦ steps
in the left range map. b Normalized histograms for the two scenes are
shown for the whole scenes (top left histogram) and for each of the 20◦
elevation ranges indicated in the left range map in a. c Image difference
functions, calculated as sum of square pixel differences (SSD), Eq. (2),

for a horizontal plane using the image of the whole scene (top left sur-
face) and image segments corresponding to the different elevation slices
shown in the left and right range maps in a, as indicated above each IDF.
d Transects along the x- (red) and y-direction (blue) through the IDFs
shown in c. Otherwise conventions as in c. Note that subplots in c and
d are plotted at different scales to emphasize the shape of IDFs. Colour
online only

can be seen in Fig. 4a, which shows the mean amplitudes
of the row-wise Fourier transform for unfiltered and filtered
images in one example scene. Clearly, local contrast normal-
ization also equalizes the amplitudes of the Fourier spectra
for different elevations, which means that the contribution
each elevation makes to the overall IDF becomes almost the
same (see below).

These pre-processing strategies have quite dramatic effects
on IDFs (see transects through IDFs of the open scene (light

grey) and the forest scene (black) in Fig. 4c–f): compared
with IDFs determined with the raw images (Fig. 4c),
pre-processing leads to steeper, more symmetrical IDFs with
more pronounced slope and the degrading effects of shad-
ows on the ground increasingly disappear with increasing
degrees of local contrast normalization (Fig. 4e, f). The IDFs
at the two sites become very similar, mainly because the
slope and minimum of the IDF for the open site become
more pronounced (e.g., left column Fig. 4c–f). It remains to
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Fig. 3 Image contrast in two different outdoor scenes. a Horizontal
(left) and vertical Sobel filtered images (right) of the open (top) and the
forest scene (bottom). b Probability density functions of horizontal (left
panels) and vertical Sobel contrast (right panels) for the whole scene

(top left panels) and horizontal slices through the scenes as indicated by
the elevation ranges in square brackets, referring to the numbers given
in the top left image in a. Colour online only

be the case, however, that the IDFs at the forest site are nar-
rower and steeper (black transects), compared with the ones
recorded at the open site (light grey transects, Fig. 4c–f).
These results are robust against varying illumination condi-
tions and against slight modifications of view-points, as can
be seen in Fig. 5 which shows panoramic images, laser scans,
distance distributions (Fig. 5a, b) and transects (Fig. 5c, d)
through the IDFs on two different days (Fig. 5a, b) at about,
but not exactly, the same locations as before. New reference
images were recorded on each day. The shallow and “noisy”
IDFs we recorded for both locations on both days (left panels
in Fig. 5c, d) develop a clear minimum and steep slopes by
pre-processing (Fig. 5c, d, columns two to four).

We note that pre-processing thus makes IDFs robust
against changes in illumination and the influence of shadows.
The IDFs are narrower because low frequencies are reduced
as a result of DoG-filtering, which is a high pass in our imple-
mentation and more generally a bandpass. However, the IDFs
of the open scene (e.g., grey transects in Fig. 5), are still shal-
lower compared to the IDFs of the forest scene (black tran-
sects in Fig. 5). Although the IDFs for the different elevation
slices look quite similar for σ−1

1/2 = 0, 0.5 and 100, except
for some distortions caused by changes in illumination, the
overall IDFs for contrast normalized images are more cusp-
shaped because lower elevation ranges ([−50◦, −30◦] and
[−10◦, −30◦]) contribute more to the overall IDF as a result
of their higher contrast after normalization.

3.3 The shape of IDFs and the depth structure of natural
scenes

Are the shape and depth of the pre-processed IDFs thus solely
determined by the depth structure of different scenes and pos-
sibly by the effects of occlusion? We approached this ques-
tion in two ways: firstly, we calculated the rotational IDFs for
the same scenes by shifting the un-warped images, with and
without pre-processing and we secondly developed a model
of the translational IDFs to determine shape values, which we
then could test for their dependence on the different distance
distributions in outdoor scenes.

The rationale for investigating the properties of rotational
IDFs in this context was the following: image differences for
panoramic image rotations are independent of the distance of
objects in the scene and, because there is no motion parallax,
there are no effects of occlusion (e.g., Zeil et al. 2003). The
image differences caused by image rotation depend exclu-
sively on the second-order statistics (the spatial frequency
spectrum) of the image. They are equivalent to the cross-
correlation function calculated by shifting image patches
across their image neighbourhood (e.g., Baddeley 1997). We
hoped that investigating the effects of pre-processing on rota-
tional difference functions would allow us to disentangle the
contributions of second-order statistics and the contributions
of depth and occlusion to the properties of translational differ-
ence functions.
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Fig. 4 The effect of image pre-processing on IDFs. a Horizontal
Fourier amplitude spectrum for different horizontal image slices (as
indicated in the top diagram) for differently processed images (origi-
nal, difference-of-Gaussian filtered, weakly and strongly contrast nor-
malized). To obtain the curves we used the following processing steps:
images were scaled to length 1, i.e., Ii → Ii /

( ∑
i I 2

i

)1/2; amplitudes
of one-dimensional (row-wise) discrete Fourier-coefficients were cal-
culated; amplitudes were averaged for each of the five horizontal slices;
the curves were smoothed with a Gaussian filter with standard devia-

tion 2.5 cycles/360◦. We used the row-wise Fourier transform in order
to make comparison between different elevation ranges easier. Note the
increasing equalization of the Fourier amplitudes with increasing con-
trast normalization. b The original and three differently filtered images
for the open scene. c–f Transects along the x- (continuous lines) and
the y-direction (dashed lines) through the IDFs determined with unpro-
cessed and processed images for the forest (black) and the open scene
(grey) for the whole image (left panels) and five horizontal 20◦-wide
slices as indicated by numbers in square brackets in c

The results are surprisingly clear: the typical cusp-shaped
rotational IDFs, calculated with raw images, collapse into
very narrow, steep and deep shapes that have a very small
catchment area, regardless of elevation (Fig. 6). This property
of rotational IDFs is independent of scene composition and
variation in illumination (compare different rows in Fig. 6).
The reason for this stark effect is quite obvious: Lateral
inhibition removes most low spatial frequencies from the
image and contrast normalization reduces the differences
in the contributions the different elevation slices make to
the overall function (parameter A, see Fig. 7b and Eq. (5)
below). The rotational IDF of an image with low spatial fre-
quencies would be very broad and shallow. The IDF of an
image with high spatial frequencies only—as we produced

it by lateral inhibition and local contrast normalization—
would be very steep and narrow. However, the most inter-
esting observation in the present context is that—as we have
seen—translational IDFs are not reduced to steep and nar-
row functions by local contrast normalization. Their shape,
thus, must reflect other image properties than second-order
statistics, because it is independent of the spatial frequency
content of the images. The image properties that determine
the shape of translational IDFs after local contrast normal-
ization thus must depend on motion parallax, which in turn
depends on only two remaining factors: the depth distribu-
tion of natural scenes and the effects of occlusion. We have
not found a good way of quantifying the latter, but can do so
with the former.
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Fig. 5 Comparison of IDFs for two sites across time. a Panoramic
images (top), range maps (bottom left), and range probability den-
sity functions (bottom right) for an open (left) and a forest site (right)
recorded on 18 May 2005. b Similar, but not identical sites recorded
on 20 May 2005. c Transects through IDFs for open (grey) and for-

est scenes (black) recorded on 18 May 2005 (see a), determined with
unprocessed images (left panel) and differently processed images (left
to right) as indicated. d Same as c for images recorded on 20 May 2005.
New reference images were recorded on each day

To model IDFs, we used the function

IDF(x|A, C, S)

= A

(
1 − 1

1 + (x − xr)�S (x − xr)

)
+ C, (5)

where A is the maximum depth of the IDF and C is the SSD
value at the reference position xr . The symmetric matrix S,
describes the spread of the IDF, see Fig. 7b. Since we compare
images recorded at positions in the x-y plane, S is a 2 × 2
matrix. Eq. (5) can be approximated by the quadratic func-
tion (x−xr)� AS (x−xr)+C for

∣∣(x−xr)�S (x−xr)
∣∣ � 1,

and approaches the constant value A + C for
∣∣(x − xr)�S

(x−xr)
∣∣ 	 1. A justification for and derivation of the model

function is given in the Appendix where the translational IDF

is calculated from the rotational IDF for contrast normalized
images.

To describe the average width of the IDF by a single value,
we introduce the parameter w defined by

w2 = det(S)−1/2 = w1w2 . (6)

w1 and w2 describe the width of the IDF in the directions of
the principal axes of S.

The function in Eq. (5) provides a good fit to most of
the IDFs we recorded, as documented for two examples in
Fig. 7a, which shows for whole images (top row) and
individual horizontal slices (row 2–6) the transects through
the IDFs of the open and forest site recorded on 31 March
2005 (dashed lines and dots) and the least square fit of our
model (solid lines). Fits were usually somewhat worse when-
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Fig. 6 The effects of image
pre-processing (left to right) on
rotational difference functions
(IDFs) for different scenes
recorded on different days (top
to bottom, as indicated in left
panels). Each panel shows five
IDFs from bottom to top, which
were determined using
increasingly larger vertical parts
of the image, starting below the
horizon: the first IDF (bottom)
shows the rotational IDF for the
lowest 20◦ slice, the next one the
lowest 40◦ slice, the third one
60◦, aso, in such a way that the
top IDF was calculated using the
whole panoramic image. Note
the dramatic change of shape of
IDFs with different amounts of
contrast normalization (left to
right), which is very similar for
the different scenes recorded on
different days

ever the corresponding disparity distributions were broad,
because the model function depends on the assumption that
disparity distributions are narrow. Although in principle, IDFs
for broad depth distributions can be modelled by a sum of
two or more model functions, single model fits adequately
serve our main present purpose of correlating IDF shape
parameters with the depth structure of the scenes in which
they were recorded. After fitting the model to the IDFs cal-
culated for five horizontal slices through un-warped pano-
ramic images, as shown in Figs. 2 and 5, we determined their
average width w using Eq. (6) and plotted these values over
〈1/r〉−1 = α/〈d〉, where 〈d〉 is the mean of the respective
disparity distribution. The results are shown in Fig. 7c for the
contrast normalized IDFs in the forest and the open scenes
recorded on two different days (see Fig. 5). Clearly, the width
of DoG-filtered and local contrast-normalized IDFs depends
systematically on the depth structure of natural scenes. The
values for w in Fig. 7c are also in good agreement with the
calculations for contrast normalized images presented in the
Appendix that predict w ∝ 〈1/r〉−1.

4 Discussion

We confirmed that image differences in outdoor scenes
develop smoothly with distance from a reference location
(Zeil et al. 2003). We show here for the first time that image
differences outdoors become immune against changes in

illumination and shadow contours by local contrast normali-
zation and that their shape after normalization depends almost
entirely on the depth structure of scenes. Image difference
functions generated by translation become systematically
broader as the mean distance of objects increases. In contrast,
image differences generated by changes in orientation [rota-
tional image difference functions (rIDF)] become very narrow
after local contrast normalization, regardless of the depth
structure of scenes, and are, therefore, solely determined
by the spatial frequency composition of natural scenes. We
developed a model of IDFs, which can now be used to com-
pare them quantitatively in different environments.

Our results reveal an interesting property of the natural
world, namely that locations in it are uniquely defined by the
views taken at these locations and that this property depends
on the distribution of objects in natural scenes. Our results
further confirm the earlier observation (Zeil et al. 2003) that
the orientation of a view is also uniquely determined by that
view itself, without the need for additional compass informa-
tion. We conclude that any agent sensitive to image differ-
ences, be it an insect or a robot, would be able to pinpoint
locations in the natural world with the aid of remembered
views (Cartwright and Collett 1983, 1987; Franz et al. 1998;
Franz and Mallot 2000; Zeil et al. 2003; Vardy and Möller
2005).

However, insect behaviour tells a different story and
whether insects actually do store panoramic images is
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Fig. 7 Fitting the IDF model function to measured image differences.
a Shown are x and y-transects through IDFs recorded on 31 March
2005 at an open (left) and a forest site (right) for contrast normalized
images

(
σ−1

1/2 = 100
)
. IDF transects in x- and y-direction are shown as

dotted lines as indicated in the top inset. Continuous curves show model
fits to these transects. In the top row the thick continuous curves show
the sum of the model fits for the five individual slices plotted below,
the elevation range of which is given in square brackets. Thin lines are
model fits for the whole image IDF. b Shown is the 1D illustration of the

2D model function IDF(x|A, C, S) defined in Eq. (5) with parameters
A: depth; C : offset; 2w: width at half maximum. See text for details.
c The width of IDFs depends on the depth structure of natural scenes.
The half-width w of the fitted model IDF is plotted over the distance
〈1/r〉−1 = α/〈d〉 in open and forest sites. Fits for the elevation range
[−10◦,+10◦] ( fourth row in a) were excluded, as was the fit for the
[+10◦,+30◦] range of the forest site (third row, right), because a sin-
gle model function fails to adequately fit broad depth distributions (see
text). Colour online only

unknown. First of all, homing insects on departure from a
place of significance, like a nest or a food source, do not sim-
ply take a snapshot, but instead employ an elaborate sequence
of learning behaviour, before departing the location (e.g., Zeil
1993a,b; Lehrer 1993; Zeil et al. 1996; Collett and Zeil 1997a;
Nicholson et al. 1999). The need for these learning flights,
or turn-back-and-look behaviours, in both flying and walking
insects has been interpreted in different ways. One possibility
is that the insects cannot predict how large the catchment area
of any given snapshot is, and therefore need to move and com-
pare following acquisition, in order to decide when to take the
next one (e.g., Gaussier et al. 2000). Sequences of snapshots
recorded at different locations may also need to be linked in a

systematic fashion, requiring clearly structured and system-
atic movements between the recording locations (e.g., Collett
and Lehrer 1993). The surprisingly invariant dynamics of piv-
oting and rotational movements of flying insects, like wasps
and bees, during learning flights may also indicate that this
behaviour could serve an image processing function, namely
depth filtering by creating a particular pivoting motion par-
allax field, emphasizing objects close to the goal (Cartwright
and Collett 1987; Zeil 1993b; Collett 1995; Collett and Zeil
1997b; Voss and Zeil 1998). Support for this last conjec-
ture comes from experiments showing that both wasps and
bees acquire information on the absolute distance of land-
marks relative to the goal during these flights (Zeil 1993b;

123



Biol Cybern (2007) 96:519–531 529

Brünnert et al. 1994; Lehrer and Collett 1994). Lastly, these
elaborate behaviours during acquisition of a visual repre-
sentation may reflect a need for “quality assurance”: the
insects may have to continuously check—again by mov-
ing and comparing—whether the representation they have
acquired is robust and informative enough for a successful
return. Because these learning flights are an example of active
acquisition of visual information, they are hard to experi-
mentally interfere with under the natural conditions in which
they occur (but see Nicholson et al. 1999). We have recently
begun to reconstruct the views experienced by wasps depart-
ing from and returning to their nests in the ground, in order
to identify whether and how much both view acquisition and
homing are driven by systematic view-based components.

The second reason why insects do not seem to only rely on
panoramic image matching is that when searching for a goal,
they are clearly guided by individual, visually salient objects
(e.g., Collett and Zeil 1997b, 1998). Yet if these objects are
removed (e.g., Zeil 1993b; Graham et al. 2003), the insects
are still able to home into the general area in which the goal
lies, or follow a route that was previously guided and influ-
enced by the dominant landmark. These observations dem-
onstrate that the insects do not only memorize individual
salient features, but also the wider visual context in which
they are seen. A number of other observations support this
conjecture: bees that have been trained to fly through a nar-
row textured tunnel to find a food source some distance into
the tunnel, do not fly beyond a novel overhead object (land-
mark) that is introduced during tests (Vladusich et al. 2005);
the visual environment of waterstriders has to be reduced
to a single overhead point of light, before their ability to
maintain their position on a flowing water surface is com-
promised (Junger 1991); the homing ability of stingless bees
is affected when the apparent position of distant landmarks
beyond the nest and to the side of their normal flight path is
changed (Zeil and Wittmann 1993). Although experiments
such as these do suggest that at least insects do memorize the
panoramic view of their environment, direct evidence is still
lacking.

Potentially the most serious constraint on using memo-
rized images for homing in the natural world is the tempo-
ral variability of views due to the movement of the sun, the
movements of clouds, the movements of wind-driven vege-
tation and the resulting movements of shadows (Zeil et al.
2003; Zanker and Zeil 2005). Möller (2002) recently sug-
gested a colour opponent representation as one possible way
in which visual representations can be made immune against
changes in illumination, by emphasising the contrast between
terrestrial objects and the sky. We add here another possibil-
ity, namely lateral inhibition or local contrast normalization,
which have the additional advantage of not discarding infor-
mation below the horizon. All these operations involve early
visual processing routines that biological vision systems are

known to or are likely to employ (e.g., Srinivasan et al. 1982;
van Hateren 1992, 1993; Osorio and Vorobyev 2005), thus
indicating that the information on location we have docu-
mented here, is also available to biological agents moving
through the natural world.
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Appendix

Image shifts from translations: Objects seen at an image
position defined by (φi , εi ) (azimuth, elevation) will shift
their position by ∆φi = φ′

i −φi and ∆εi = ε′
i −εi depending

on object distance r and translation ∆x = (∆x,∆y,∆y)�.
Ignoring occlusion, ∆φi ,∆εi can therefore be calculated
from the coordinate transformation

x′
i := X

(
r ′

i , φ
′
i , ε

′
i

) = X (ri , φi , εi ) − ∆x, (7)

X(r, φ, ε) := r (cos φ cos ε, sin φ cos ε, sin ε)�, (8)

using φ′
i= arctan2

(
y′

i , x ′
i

)
and ε′

i= arctan

(
z′

i

(
x ′2

i +y′2
i

)− 1
2

)
.

The non-linear mapping (φi , εi ) → (
φ′

i , ε
′
i

)
can be sim-

plified for |∆x|/ri � 1 and |εi | � π
2 . The image shifts are

then given by

∆φi ≈ ∆x sin φi − ∆y cos φi

ri cos εi
, (9)

∆εi ≈ (∆x cos φi + ∆y cos φi ) sin εi

ri
− ∆z cos ε

ri
. (10)

Modelling translational IDFs for contrast normalized
images: Motivated by the almost constant shape of the rIDF
of different images and horizontal slices for contrast nor-
malized images

(
with σ−1

1/2 = 100
)

we will estimate the
translational IDF. A model for IDFs for a perspective cam-
era moving parallel to objects at a constant distance, for
instance a textured wall, has recently been proposed by Szen-
her (2005). Although the rIDF (between an image and its
rotated version) for a local patch usually differs slightly from
the overall rIDF, we make the following assumption: The
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local rIDF depends only on the rotation angle ∆α. More spe-
cifically we model the local rIDF by the function (a flipped
Gaussian)

rIDF(∆α) = A

(
1 − e

− ∆α2

2η2

)
+ C. (11)

We found reasonable fits for η = 0.65◦ when using the
overall rIDF between the un-warped reference image and
an un-warped image recorded later at the same position. Fits
to different horizontal and vertical slices usually gave values
for η in the range [0.55◦, 0.75◦].

Since translations
−→
∆x cause image shifts ∆φi ,∆εi defined

in Eqs. (7)–(10), the translational IDF can be calculated
according to

IDF(
−→
∆x) = 1

N

∑

i

rIDF
(
∆αi (

−→
∆x)

)
, (12)

where the rotation angle for un-warped images is given by
∆α2

i ≈ ∆φ2
i + ∆ε2

i . The sum is over all pixels that are used
for calculating the image difference, e.g., all pixels within a
slice.

If we consider a translation in x-direction we have

IDF(∆x)

= A

(
1 − 1

N

∑

i

e
− ∆φ2

i (∆x)+∆ε2
i (∆x)

2η2

)
+ C. (13)

This model of a translational IDF for contrast normalized
images depends solely on the depth structure of the scene
{ri } (and the translation ∆x), i.e., the IDF can be estimated
by calculating for each ∆x the mapping (φi , εi ) → (

φ′
i , ε

′
i

)

for the given {ri }. Using the linearizations (9), (10), Eq. (13)
can be approximated for |∆x |/ri � 1 by

IDF(∆x)

= A

⎛

⎝1 − 1

N

∑

i

e
− ∆x2

2η2r2
i

(
sin2φi
cos2εi

+cos2φi sin2εi

)⎞

⎠ + C. (14)

If we assume almost constant distances in a horizontal
slice, i.e., 1/ri ≈ 1/R := 〈1/r j 〉 j , εi ≈ ε for all i , we can
integrate over azimuth φ and find

IDF(∆x)

≈ A

⎛

⎝1 − e−b(∆x) 1

π

1∫

−1

e−a(∆x) ξ2 dξ√
1 − ξ2

⎞

⎠ + C (15)

= A
(

1 − e−b(∆x)e−a(∆x)/2 I0(a(∆x)/2)
)

+ C , (16)

where we have used the substitutions a(∆x) := ∆x2

2η2 R2

×( 1
cos2εi

− sin2εi
)
, b(∆x) := ∆x2

2η2 R2 sin2εi , and ξ := sin φ.

I0 is a modified Bessel function of the first kind. For |ε| � π
2 ,

Fig. 8 Comparison of three functions for modelling translational IDFs.

Thick line: y = 1 − exp
( − ∆x2

4η2 R2

)I0
(

∆x2

4η2 R2

)
; dashed line: y =

1 − exp
( − ∆x2

4η2 R2

)
; thin line: y = −(

1 + ∆x2

4η2 R2

)−1; all plotted for η

= 0.65◦ = 0.011 rad

Eq. (16) can be approximated by

IDF(∆x)

≈ A

(
1 − e

− ∆x2

4η2 R2

(
1+2ε2

)
I0

(
∆x2

4η2 R2

))
+ C , (17)

which is also useful if one wishes to integrate over eleva-
tion ε.

Figure 8 shows y = 1 − exp
( − ∆x2

4η2 R2

)I0
(

∆x2

4η2 R2

)
(thick

line) for η = 0.65◦ = 0.011 rad. It approaches the asymp-
tote y = 1 much more slowly than y = 1 − exp

( − ∆x2

4η2 R2

)

(dashed line)—an effect of ∆x ∝ sin φ and the integration
over φ. Also shown is 1 − (

1 + ∆x2

4η2 R2

)−1 (thin line), which
is our IDF model function from Eq. (5). This function is
preferable for parameter fitting because exp

(− ξ2
)I0

(
ξ2

)
is

numerically difficult to handle for |ξ | 	 1. For
∣∣ ξ

2ηR

∣∣ � 1,

all three functions can be approximated by ∆x2

4η2 R2 . Thus, the
width parameter w in Eq. (6) can be estimated by

w2 ≈ 4η2 R2

1 + 2ε2 = 4η2〈1/r〉−2

1 + 2ε2 . (18)
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