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Abstruct- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn artificial neural network (ANN) is commonly 

modeled by a threshold circuit, a network of interconnected 
processing units called linear threshold gates. The depth of a 
circuit represents the number of unit delays or the time for 
parallel computation. The size of a circuit is the number of 
gates and measures the amount of hardware. It was known 
that traditional logic circuits consisting of only unbounded fan- 
in AND, OR, NOT gates would require at least R(log nllog log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n) depth to compute common arithmetic functions such as the 
product or the quotient of two n-bit numbers, if the circuit size 
is polynomially bounded (in n). It is shown that ANN’S can be 
much more powerful than traditional logic circuits, assuming that 
each threshold gate can be built with a cost that is comparable 
to that of AND/OR logic gates. In particular, the main results show 
that powering and division can be computed by polynomial-size 
ANN’S of depth 4, and multiple product can be computed by 
polynomial-size ANN’S of depth 5. Moreover, using the techniques 
developed here, a previous result can be improved by showing 
that the sorting of n n-bit numbers can be carried out in a depth- 
3 polynomial size ANN. Furthermore, it is shown that the sorting 
network is optimal in depth. 

Index Terms-Neural networks, threshold circuits, circuit com- 
plexity, division, arithmetic functions. 

I. INTRODUCTION 

ECENT interest in the application of artificial neural zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR networks [18], [20] has spurred research interest in the 
theoretical study of such networks. In most models of neural 
networks, the basic processing unit is a Boolean gate that 
computes a linear threshold function, or an analog element 
that computes a sigmoidal function. Artificial neural networks 
can be viewed as circuits of these processing units which 
are massively interconnected together. After Hopfield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 181 
introduced his neural network model of associative memory, 
many researchers have tried to analyze the “capacity” or 
“convergence” of the discrete model and many other models 
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of associative memory have been proposed. Not long after, 
Rumelhart [ 171 and his group of researchers proposed a model 
of feedfonvard multilayer networks of analog sigmoidal func- 
tional elements and invented the “back-propagation’’ heuristic 
algorithm for “training” (i.e., adaptively changing) the pa- 
rameters in the network to perform a desired function. Many 
researchers have since then applied and modified the algorithm 
to obtain excellent empirical results. In some applications, 
artificial neural networks seem to outperform the traditional 
methods [4]. 

While neural networks have found wide application in 
many areas, the behavior and the limitation of these networks 
are far from being understood. One common model of a 
neural network is a threshold circuit. Incidentally, the study 
of threshold circuits, motivated by some other complexity 
theoretic issues, has also gained much interest in the area of 
computer science. Threshold circuits are Boolean circuits in 
which each gate computes a linear threshold function, whereas 
in the classical model of unbounded fan-in Boolean circuits 
only AND, OR, NOT gates are allowed. A Boolean circuit is 
usually arranged in layers such that all gates in the same layer 
are computed concurrently and the circuit is computed layer by 
layer in some increasing depth order. We define the depth as 
the number of layers in the circuit. Thus, each layer represents 
a unit delay and the depth represents the overall delay in the 
computation of the circuit. 

A. Related Work 

Theoretical computer scientists have used unbounded fan-in 
Boolean circuits as a model to understand fundamental issues 
of parallel computation. To be more specific, this computation 
model should be referred to as unbounded fan-in parallelism, 
since the number of inputs to each gate in the Boolean circuit is 
not bounded by a constant. The theoretical study of unbounded 
fan-in parallelism may give us insights into devising faster 
algorithms for various computational problems than would 
be possible with bounded fan-in parallelism. In fact, any 
nondegenerate Boolean function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn variables requires at least 
R(1og n) depth to compute in a bounded fan-in circuit. On the 
other hand, in some practical situations (for example, large 
fan-in circuits such as programmable logic arrays (PLA’s) or 
multiple processors simultaneously accessing a shared bus), 
unbounded fan-in parallelism seems to be a natural model. 
For example, a PLA can be considered as a depth-2 AND/OR 

circuit. 
In the Boolean circuit model, the amount of resources is 

usually measured by the number of gates, and is considered 
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to be “reasonable” as long as it is bounded by a polynomial 
(as opposed to exponential) in the number of the inputs. For 
example, a Boolean circuit for computing the sum of two n- 
bit numbers with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(n3) gates is “reasonable,” although circuit 
designers might consider the size of the circuit impractical 
for moderately large n. One of the most important theoretical 
issues in parallel computation is the following: given that 
the number of gates in the Boolean circuit is bounded by a 
polynomial in the size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof inputs, what is the minimum depth 
(Le., number of layers) that is needed to compute certain 
functions? 

A first step toward answering this important question was 
taken by Furst et al. [11] and independently by Ajtai [2]. 
It follows from their results that for many basic functions, 
such as the parity and the majority of n Boolean variables, 
or the multiplication of two n-bit numbers, any constant depth 
(Le., independent of n)  classical Boolean circuit of unbounded 
fan-in AND/OR gates computing these functions must have 
more than a polynomial (in n) number of gates. This lower 
bound on the size was subsequently improved by Yao [30] 
and Histad (131; it was proved that indeed an exponential 
number of AND/OR gates are needed. So functions such as 
parity or majority are computationally “hard” with respect to 
constant depth and polynomial size classical Boolean circuits.’ 
Another way of interpreting these results is that circuits of 
AND/OR gates computing these “hard” functions which use 
a polynomial amount of chip area must have unbounded 
delay (i.e., delay that increases with n). In fact, the lower 
bound results imply that the minimum possible delay for 
multipliers (with polynomial number of AND/OR gates) is 
fl(1og n/log logn). These results also give theoretical justifi- 
cation why it is impossible for circuit designers to implement 
fast parity circuits or multipliers in small chip area using AND, 

OR gates as the basic building blocks. 
One of the “hard” functions previously mentioned is the 

majority function, a special case of a threshold function in 
which the weights or parameters are restricted. A natural 
extension is to study Boolean circuits that contain majority 
gates. This type of Boolean circuit is called a threshold circuit 
and is believed to capture some aspects of the computation 
in our brain [21]. In the rest of the paper, the term “neural 
networks” refers to the threshold circuits model. 

With the addition of majority gates, the resulting Boolean 
circuit model seems much more powerful than the classical 
one. Indeed, it was first shown by Muroga [22] three decades 
ago that any symmetric Boolean function (e.g., parity) can 
be computed by a two-layer neural network with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n  + 1) 
gates. Recently, Chandra et al. [lo] showed that multiplication 
of two n-bit numbers and sorting of n n-bit numbers can 
be computed by neural networks with “constant” depth and 
polynomial size. These “constants” have been significantly 
reduced by Siu and Bruck [28], [29] to 4 in both cases, 
whereas a lower bound of depth 3 was proved by Hajnal 
et al. [12] in the case of multiplication. A depth-4 neural 
network for multiplication was independently discovered in 
[16] with a smaller size O(n2) than the result in [28]. On zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An excellent survey of results on the complexity of Boolean functions can 
be found in [7] and [32]. 

the other hand, the existence of small constant-depth and 
polynomial-size neural networks for division was still left as an 
open problem. In [17], it was shown that any polynomial-size 
threshold circuit with polynomially bounded integer weights 
computing division must have ,depth at least 3. 

While it was known that multiplication of two n-bit numbers 
can be computed by an O(1og n) depth classical Boolean 
circuit [31], it had been a challenge to complexity theorists to 
construct polynomial-size O(1og n)-depth circuits that com- 
pute division. The question whether division has the same 
parallel circuit complexity as multiplication in the classical 
Boolean circuit model was finally resolved by Beame et al. [6]. 
Using a well-known result from number theory, they were able 
to construct polynomial-size O( log n)-depth classical Boolean 
circuits that compute division. It was later shown by Reif and 
Tate [26], [27] that their construction can be modified to obtain 
“constant” depth neural networks for division and related 
problems. However, the issue of how small the “constant” can 
be was not examined in [26]. In fact, it was not clear from 
the construction of Beame et al. whether the “constant” can 
be reduced to below 20. Because division is one of the most 
fundamental operations in arithmetic computations, for both 
practical and theoretical reasons, it is interesting to determine 
the smallest possible depth required for division circuits. 

Our main contribution in this paper is to show that small 
constant depth neural networks for division and related prob- 
lems can be constructed. These results have the following 
implication on their practical significance: suppose we can use 
analog devices to build threshold gates with a cost (in terms of 
delay and chip area) that is comparable to that ofMD, OR logic 
gates, then we can compute many basic functions much faster 
than using traditional circuits. Clearly, the particular weighting 
of depth, fan-in, and size that gives a realistic measure of a 
network’s cost and speed depends on the technology used to 
build it. One case where circuit depth would seem to be the 
most important parameter is when the circuit is implemented 
using optical devices. We refer those who are interested in the 
optical implementation of neural networks to [l]. 

Our techniques are adapted from those in [28] and [6]. 
We shall follow the complexity theoretic approach mentioned 
above and focus our study on the depth of neural networks; 
we allow ourselves to neglect issues on the size so long as the 
size is bounded by a polynomial in the number of inputs. 
The question whether the size and the depth can both be 
simultaneously reduced to the smallest possible is left for 
future research. We would also like to mention that the circuits 
constructed in this paper are not uniform. (For those who are 
interested in various notions of uniformity of a circuit family, 
see [32].) 

B. Outline of the Paper 

The rest of this paper is divided into three major sections. 
In Section 11, we shall give a formal definition of threshold 
circuits, our model for neural networks, and introduce related 
concepts. We then present our main results in Section 111. 
This section is further divided into several subsections. Since 
techniques similar to the construction in [28] of depth-4 neural 
networks for multiplication of two n-bit numbers will be 
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used later on, we shall review these results and present the 
underlying ideas first. By generalizing the idea of computing 
symmetric functions, we show how to carry out the expo- 
nentiation and modulo a “small” integer in depth-2 neural 
networks. Then combining these techniques and the results in 
[6] and [16], we show that powering can be computed in depth- 
4 neural networks and multiple product can be computed in 
depth-5 neural networks. Based on this construction, we show 
that division can be computed in a depth-4 neural network. 
Moreover, we show that similar techniques can be applied 
to obtain a depth-3 neural network for sorting, which is an 
improvement of our earlier result in [29]. We also show that 
our sorting network is optimal in depth. Finally, in Section IV, 
we conclude with some open problems and future directions 
for research. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11. PRELIMINARIES 

The purpose of this section is to introduce terminologies and 
the necessary background for understanding the main results 
in this paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Definition I :  A linear thresholdfunction f ( X ) :  (0 , l ) ”  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA---f 

(0, l} is a Boolean function such that 

where 
n 

F ( X )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc w i  ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2i + W O  

i=l 

x = (21,. . . , xn )  E {O, l}“. 

The real value coefficients w, are commonly referred to as the 
weights of the threshold function. A linear threshold gate is a 
Boolean gate that computes a linear threshold function. 

Remarkl: Although the definition of a linear threshold 
function allows the weights to be real numbers, it is known 
[23] that we can replace each of the weights by integers of 
O(n log n) bits, where n is the number of input Boolean 
variables. So, in the rest of the paper, we shall assume without 
loss of generality that all weights are integers. In fact, we 
shall only study a subclass of linear threshold functions in 
which each function f ( X )  = sgn w 7  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  + 7110) is 
characterized by the property that the weights UJ, are integers 
and bounded by a polynomial in n, i.e., Iw,I 5 nc for 
some constant c > 0. Furthermore, it is well known that 
the w,’s can be chosen so that Erzl 711, . T, + WO # 0 for 
all inputs ( x l , . . . , x n )  E (0, l}”. To see this, simply note 
that if F ( X )  takes on integer values for all X ,  then sgn 
{ F ( X ) }  = sgn{2F(X)  + l}, and 2 F ( X )  + 1 # 0 for all 
X .  Hereafter, we assume that all linear threshold gates in our 
threshold circuits have these properties. 

Definition 2: A threshold circuit [14], [25] is a Boolean 
circuit of linear threshold gates. The size of a threshold circuit 
is the number of gates in the circuit. The depth of a gate is the 
maximum number of gates along any directed path from the 
inputs to that gate. The depth of the circuit is the maximum 
depth of all output gates. If we group all gates with the same 

depth together, we can consider the circuit to be arranged in 
layers, where the depth of the circuit is equal to the number of 
layers (excluding the input layer) in the circuit, and gates of the 
same layer are computed concurrently. Thus, the depth of the 
circuit can be interpreted as the time for parallel computation. 

As mentioned in Section I, we shall use threshold circuits as 
a model to study the computation in artificial neural networks. 
So we shall use the terms “threshold circuits” and “neural 
networks” interchangeably. Moreover, all our results will be 
stated with the understanding that the sizes of the networks 
are all polynomially bounded. Note that the above definition 
does not impose any restriction on the fan-in and fan-out of 
each threshold gate in the network, i.e., each gate can have 
arbitrarily many inputs from a previous layer, and can feed 
its output to arbitrarily many gates in subsequent layers. Since 
neural networks are characterized by their massive parallelism, 
the unbounded fan-in parallelism of threshold circuits seems a 
natural assumption. Moreover, threshold circuits with bounded 
fan-in have exactly the same power as traditional Boolean 
circuits with bounded fan-in (see [32]). 

Suppose we want to compute the quotient of two integers. 
Since some quotient in binary representation might require 
infinitely many bits, a Boolean circuit can only compute the 
most significant bits of the quotient. If a number has both 
finite and infinite binary representation (for example 0.1 = 
O.Olll...>, we shall always express the number in its finite 
binary representation. One of our main results in this paper is 
to show that the following division problem can be computed 
in small depth neural networks. 

Definition 3: Let X and Y 2 1 be two input n bit integers. 
Let X / Y  = c”, 2,2’ be the quotient of X divided by Y .  
We define DIVk ( X / Y )  to be X / Y  truncated to the nearest 
(n  + k)-bit number, i.e., 

n-1 

DIVk ( X / Y )  = 2,2’. 

a=-k 

In particular, DIVo ( X / Y )  is L X / Y ] ,  the greatest integer 

The above problem is to find the quotient of two integers 
with truncation, which is a commonly adopted definition of 
the division problem. Similarly, the “rounded” quotient can 
also be computed by depth4 polynomial-size neural networks 
using the techniques developed in this paper. 

We shall see that the following function POWERING is 
closely related to the division problem. 

Definition 4: Let X be an input n-bit number. We define 
POWERING to be the n2-bit representation of X”. 

A function similar in nature to POWERING is EXPONEN- 
TIATION. 

Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: Let Y be an input o(1og n)-bit number (i.e., 
Y 5 nk for some constant k), and c 2 0 be a fixed integer. We 
define EXPONENTIATION to be the O(nk)-bit representation 
of cl‘. 

Remark 2: Since we are only concerned with functions that 
can be computed by polynomial size circuits, it is necessary 
that the outputs of the function be representable by polynomial 
number of bits. The assumption in the function EXF’ONEN- 

5 X / Y .  
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TIATION that the exponent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY is polynomially bounded is 
simply to guarantee that c y  can be represented in a polynomial 
number of bits. It turns out that because of this restriction, 
EXPONENTIATION is easier to compute than POWERING. 

We shall need some number theoretic terminologies in 
presenting our main results. (For an introduction to number 
theory, see [24].) 

Definition 6: Let x, y, m be positive integers. We write 
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= y (mod m) if (x - y) is divisible by m, and x mod m 
to denote the unique integer z such that 0 5 z < m and x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE z 
(mod zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm). 

We shall make use of the following results in number theory. 

Fermat’s Theorem: Let p be a prime number. Then for any 
positive integer a not divisible by p ,  up-’ E 1 mod p. 

Chinese Remainder Theorem: Let pa for z = 1, . . . , n be 
relatively prime numbers, and P, = nrZl p,. Let 0 5 Z < 
P,, q, = P,/p,, 4, be an integer x such that 1 = q,x mod pa, 
and m, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2 . 4, (Note that 4, exists since q, and pa are 
relatively prime.) Further, let r, = Z (modp,). Then 

Example: Let Z = 14, pl = 3, p2 = 5. Then Pn = 15, 
q1 = 5, 92 = 3, 41 = 2, 4 = 2, ml = 10, m2 = 6, r1 = 2, 
r p  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. So Z = ( r lm l  + ~ z m 2 )  mod P, = 44 mod 15 = 
14. 

The Chinese Remainder Theorem enables us to represent 
a number in a “mixed radix” system (as opposed to the 
traditional “fixed radix” system), where the r; is the “coef- 
ficient” with respect to the “radix” m,. This representation is 
useful because sometimes it is much easier to compute the 
coefficients T; ’S  than Z itself. 

Notation: In this paper, we will be mainly interested in 
asymptotic results. So it will be convenient to use some 
standard shorthand notations. For nonnegative functions f and 
g, when we write f (n)  = O(g(n)) or g(n) = Q ( f  (n)), we 
shall mean that f (n) 5 c . g(n) for some constant c > 0, as 
n -+ 03. 

Since we shall be interested only in neural networks of 
polynomial size, for convenience, we shall say that f ( X )  
can be computed in depth-d neural networks instead of saying 
that f ( X )  can be computed in depth-d polynomial-size neural 
networks. 

111. MAIN RESULTS 

A. Multiplication in Depth-4 

One key idea in constructing small depth neural networks 
for division and related problems is that we can compute 
the sum of many (exponentially large) numbers in a depth- 
3 network. This result leads to the construction of a depth-4 
neural network for multiplication in [28] and [16]. Since this 
idea is crucial in understanding our main results, we first 
review the techniques here. 

The “Block Save” Technique: The underlying idea of com- 
puting the sum of many large numbers is to reduce this 
multiple sum to the sum of only two numbers. This technique, 
which we call the “block save” technique, is a generalization 
of the traditional “carry save” technique. The main difficulty 
in computing the sum of many numbers is to compute “carry” 
bits in parallel. The traditional “carry save” technique reduces 
the sum of three numbers to the sum of two numbers in one 
step, where one of the resulting two numbers only consists 
of the carry bits. Let the original three numbers be X = 

(all numbers are in binary representation). The ith bit of each 
number can be added to give x, + y, + z, = 2 ~ + 1  + Wa, 

where the c,+1 is the carry bit generated by the sum of the 
ith bits x,, y,, and z,. Thus, X + Y + Z = C + W ,  where 
C = cncn-l + .  . CO with CO = 0 and W = wn-1wn-2 + .  .WO. 

Note that c,+1 = x,y, V yzz, V z,x, and 20, = x, @ y, @ z,, 
hence, the c,+1’s and w,’s can all be computed in parallel in 
one step. For example, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x,-1xn-2. * * 50, Y = yn-1yn-2 * * *yo, 2 = zn-1zn-2 3 .  * 20 

x = 1001, Y = 0111, z = 1101, 

then W = 0011 and C = 11010. 

The “block save” technique generalizes this idea and re- 
duces the sum of n O(n)-bit numbers to the sum of two 
O(n)-bit numbers in one step. We now give a sketch of this 
“block save” idea for the case when each of the n numbers 
has exactly n bits. (For details of the proof, see [28].) 

Denote each of the n-bit numbers by xi =x~,-~x;,-~ . .xi,, , 
for i = 1, e .  . n. For simplicity, assume log n and N = 
n/  log n to be an integer. Partition each binary number xi 
into N consecutive blocks ?io, ?il,. . , ?.iN-l of (log n)-bits 
each so that 

N-1 

where 0 5 5iJ < 21°g n .  Hence, the total sum (after rearrang- 
ing the indices of summation) becomes 

Observe that for each j = 0, . . . , N - 1, the block sum 
n n 

i=l i=l 

and thus s“j can be represented in 2 log n bits. Therefore, each 
block sum .?j can be expressed as 

where 0 5 Ej+ l  < 21°g 
s”j with EO = 0, and f i j j  < 21°g n .  Thus, 

is the (log n)-bit carry of the sum 

N - l /  n \ N-1 
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Since both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi.j+l and lzj are < 2’Og n,  the binary 
representation of E,”;’ C”j+12(j+’) log is simply the con- 
catenation of the bits i . ~ ? ~ - i  . . . i .~ .  Similarly, concatenating 
the bits G N - ~  . . “LZo gives the binary representation of 
cjZ0 wj23 log n. Hence, we have shown the reduction from 
the sum of n n-bit numbers to the sum of two O(n)-bit 
numbers. Furthermore, we can compute all 4’s and Zuj’s in 
parallel to obtain the resulting two numbers. 

It remains to show how to compute the (2 log n)-bit 
representation of each block sum s“j = Cj+12 log + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwj.  In 
fact, we shall see that each block sum can be computed with 
two layers of threshold gates. This result is implied by the 
following lemma (see also Theorem 1 in [5] for a more general’ 
technique). 

Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI :  Let X = (xn- l ,  xn-2,. .. , X O )  E (0 ,  l }n ,  and 
f :  (0 ,  l}” -+ (0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI} be a Boolean function of X which 
depends only on a polynomially bounded weighted sum of 
the input variables. Then f ( X )  can be represented as a sum 
of polynomially many linear threshold functions in X .  Hence, 
f ( X )  can be computed in a depth-2 neural network. 

N-1  ’ 

proof: BY assumption, we can write S ( X )  = j ( ~ y z i  
wix;) where wi are integers bounded by a polynomial in 

n. Let N = 1wil. There exists a set of s disjoint 
subintervals in [ -N ,  -NI, say, [ k l ,  i l l ,  [k2-, i 2 ] ,  . . . , [ k S ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis] 
(k j ’s ,  i j ’ s  are integers, and possibly k j  = k j )  such that 

for some j .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn- 1 

f(x) = 1 i f f x w i x i  E [kj, ij], 
i = O  

Let 

f o r j  = l , . . . , s  . 

We claim 
S 

Note the following. 
If for all j ,  

then 

y k , + y k ,  =1, f o r a l l j = l , . . . , s  . 
Thus, 

j=1 

On the other hand, if 

then 

Thus, 

i=l 

Now, s is at most N = I w ; ~ ,  which is bounded by a 
polynomial in n. Hence, there can be at most polynomially 
many yk,’s and y k ,  ’s. 

To compute f ( X )  with a depth-2 threshold circuit, the first 
layer of our circuit consists of threshold gates which compute 
the values yk,  and yk,. In the second layer, the output gate 
takes as inputs y k j ,  y k 3  and outputs sgn ( 2 [ ~ ~ = 1 ( Y k ,  +&,) - 
S ]  - 1) .  0 

Recall that in our “block save” technique, a crucial step 
is to compute the (2 log n)-bit representation of each “block 
sum” s”j = i.j+12*”9 + G j  (a sum of n (log n)-bit num- 
bers). Since each number of. the summands is of the form 
E:!:-’ 2‘xk < n, the total sum is still a polynomially 
bounded weighted sum of the n log n variables x;, ’s, where 
1 5 i 5 n and j log n 5 I < ( j  + 1) log n. Thus, each bit of 
Ej+1 and Gtj is a function of a polynomially bounded weighted 
sum of n log n variables. By the above lemma, each block 
sum s”j can be computed in a depth-2 neural network. 

Remark 3: Lemma 1 generalizes a well-known technique 
of computing a symmetric Boolean function with a depth-2 
neural network [22]. In fact, Lemma 1 states that the function 
can be expressed exactly as a linear combination of the outputs 
from the first layer, which only takes on value 0 or 1. Thus, the 
“threshold power” in the second layer is not fully exploited. 
We make use of this observation later in reducing the depth 
of our division circuit. 

The following lemma, using the encoding trick in [16], 
generalizes the result of Lemma 1 to any Boolean function 
that has a constant number of the functions in Lemma 1 as 
inputs. 

Lemma 2: For a fixed integer d 2 1, let g ( X )  = 
h ( f l ( X ) ,  . . . , f d ( X ) ) ,  where h is an arbitrary function, and 
the functions f .  satisfy the assumptions stated in Lemma 1. 
Then g ( X )  can be represented as a sum of polynomially many 
linear threshold functions in X .  

Proof: By assumption, we can write each f ; ( X )  = 
fi(x,”=;’ wijx j )  where w;j are integers bounded by a poly- 

nomial in n. Let N be the maximum of Iwijl over all 
i = 1, . . . , d. Now observe that for each i = 1,. . . , d, the sum 
~~~~ wijxj can be determined from the value x f L t ( N  + 
l)i(Eyzi w;jx j ) .  But this sum is also polynomially bounded 
for all X. Thus, g ( X )  is a function which depends only on 
a polynomially bounded weighted sum of the input variables. 
Our claim follows from Lemma 1. 0 

We shall make use of the following specific form of the 
above lemma. As usual, the symbol A denotes the logic AND 

function. 



SIU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADEPTH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEFF'ICIENT NEURAL NETWORKS FOR DIVISION AND RELATED PROBLEMS 95 1 

Corollary I :  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( X )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f i ( X )  A f 2 ( X ) ,  where f l ( X )  
and f i ( X )  are functions computed by depth-k neural networks 
with inputs X .  Then g ( X )  can be represented as a sum of 
outputs from polynomially many depth-k neural networks with 
inputs X .  

Proof: Simply observe that each f , ( X )  depends on a 
polynomially bounded weighted sum of the outputs from 
depth-(k - 1) neural networks. Then from Lemma 2, we can 
write g ( X )  as a sum of polynomially many linear threshold 
functions of the outputs form depth-(k - 1) neural networks.0 

Harmonic Analysis Technique: Using the carry-look-ahead 
method, it is well known that the sum of two O(n)-bit numbers 
can be computed in a depth-3 circuit of polynomially many 
unbounded fan-in AND/OR gates. The depth can be reduced 
to 2 if threshold gates are used. Using results from harmonic 
analysis of Boolean functions [8], [9], it was first proved in 
[29] that there exists a polynomial-size depth-2 neural network 
for computing the sum of two O(n)-bit numbers. Such a 
depth-2 neural network was later explicitly constructed in 
[3]. In fact, a more general result is proved in [29]; each 
bit of the sum belongs to the class of Boolean functions 
that have polynomially bounded spectral norms (see [26] for 
definition), and every function in this class can even be closely 
approximated by a linear combination of polynomially many 
linear threshold functions. Since we shall make use of this 
result only for the sum of two O(n)-bit numbers, we state the 
result for this particular case as the following lemma. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

21,2' and X2 = Crz: ~ 2 ~ 2 % .  

Let their sum be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS = Cy=, ~ , 2 ~  = X1 + X2. For each bit s, 
and any k. > 0, there exist linear threshold functions t,, ( X )  
such that 

Lemma 3: Let X I  = 

I 

where m, wz3 's, and N are integers bounded by a polynomial 
in n, X = (Q,+~ , ~ 2 , - ~ ,  - .  , XI,, , ~ 2 ~ ) .  

From the above lemma, each bit s, can be expressed as 
s , ( X )  = sgn (( l /N) Cy=l wZJtz3 (X)-0.5) and thus the sum 
of two O(n)-bit numbers can be computed in a depth-2 neural 
network. We would like to point out that in [3], an explicit 
construction of the tZ3 's  in the above lemma was shown. 

Now, it is clear how to compute the sum of n O(n)-bit 
numbers in a depth-3 neural network. First use the "block 
save" technique to reduce this multiple sum to the sum of two 
O(n)-bit numbers. By Lemma 1, each bit of the resulting two 
numbers is a linear combination of polynomially many linear 
threshold functions computed in the first layer. Then take this 
linear combination as inputs to the depth-2 neural network for 
computing the sum of the resulting two numbers. Thus only 
three layers are needed. 

To compute the product of two n-bit numbers, z = 
2 , - 1 2 , - 2 ~ ~ " ~ ,  y = yn-1yn-2-. .yo,  the first layer of our 
circuit outputs the n 2n-bit numbers z, = z,,~-, z,,,-, * . . zzo 
for i = O , . - . , n  - 1, where 

z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - o . . .  - d ( z n - 1  A y,)(zn-2 A 9%) . . . (20 A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY,) 0 . .  ' 0 .  
w 

n--2 z 

Another three layers compute the sum of all zi's as shown 
before. Thus the product of 2 n-bit numbers can'be computed 
in 4 layers. 

B. Exponentiation and Modulo a "Small" Number 

The Chinese Remainder Theorem can be interpreted as the 
fact that a positive integer 2 < P, = nr=l p, is uniquely 
determined by r, = 2 (mod p,), the values of 2 modulo the 
primes p,'s. When we apply this result to obtain a small depth 
neural network for division, the primes p ,  are "small" (i.e., 
polynomially bounded) and known in advance. We now show 
that an input n-bit integer modulo a "small" number can be 
computed in a small depth circuit. 

Theorem 1: Let X = ( ~ " - 1 ,  ~ " - 2 ,  ... ,ZO) E (0, 1)" 
denote an input n-bit integer, and let m be a fixed positive 
integer bounded by a polynomial in n. Then X mod m can 
be computed in a depth-2 neural network. 

(mod 
m), then a + b ii . b (mod 
m). Therefore, Er': x,2' mod m = [Er:: ~ ~ ( 2 %  mod 
m)] mod m. Now (2% mod m) < m and m is polynomially 
bounded in n, thus each bit in the output depends only on 
a polynomially bounded weighted sum of the input bits. It 
follows from Lemma 1 that X mod m can be computed in a 

Before we show how division and related problems can be 
computed in small depth neural networks, we first show how 
to compute powering and exponentiation modulo a small (i.e., 
polynomially bounded) prime number. 

Theorem 2: Let X = ( ~ " - 1 ,  ~ " - 2 , .  . . ,EO)  E (0, 1)" be 
an input n-bit integer, p be a prime number bounded by a 
polynomial in n, and c be a positive integer not divisible by p.  
Then each bit of X" mod p and cx modp can be represented 
by a sum of polynomially many linear threshold functions in 
X .  Hence, X" mod p and cx mod p can both be computed 
in depth-2 neural networks. 

Proof: Observe that z" mod p = (Er;: ~ ~ 2 ~ ) "  mod 
p = [Er:: ~ ~ ( 2 %  mod p)]" mod p.  Similarly, since p is 
a prime, and c is not divisible by p ,  by Fermat's Theorem, 
(cp-' 1 mod p) and (cx mod p) = (cx mod (P-') mod 
p). Thus, each bit of X" mod p depends only on 
[Er;{ ~ ~ ( 2 %  mod p)], and cx mod p depends only on 
[Etzo ~ ~ ( 2 %  mod (p - l))], both being a polynomially 
bounded weighted sum of the input bits. It follows from 
Lemma 1 that each bit of X" mod p and cx mod p can be 
represented as a sum of polynomially many linear threshold 
functions in X ,  and hence can be computed in a depth-2 neural 
network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Remark4: First notice that if c is divisible by p, then 
trivially cx E 0 mod p .  Also, it is important to note that in 
the above theorem, the numbers p and c are known in advance. 
The only input variables are the X = ( ~ " - 1 ,  2 , -2 , * * *  ,zo). 
We made crucial use of this fact in the proof of Theorem 2. 
Further, notice that cx mod p can be represented in O(1og 

Proof: Observe that if a e ii (mod m), b E 

ii + b (mod m) and a . b 

depth-2 neural network. 0 
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n) bits, whereas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcx requires exponentially many bits (since 
X is exponentially large). We restrict ourselves in the EXPO- 
NENTIATION function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc y  to input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY that is polynomially 
bounded in n. 

Theorem3: EXPONENTIATION can be computed in a 
depth-2 neural network. 

Proof: Let Y be an input positive number 5 nk,  and c 
be a fixed positive integer. Since each bit of the O(nk)-bit 
representation of cy  only depends on Y which is polynomial 
bounded, it follows from Lemma 1 that c y  can be computed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 in a depth-2 neural network. 

C. Powering in Depth-4 

Recall that multiplication of two n-bit numbers can be 
computed in a depth-4 neural network. We showed this result 
by reducing multiplication to the sum of n O(n)-bit numbers. 
It is not clear if the function POWERING can be similarly 
reduced to a multiple sum of polynomially many O(nk) -  
bit numbers. Intuitively, this function seems much “harder” 
in terms of circuit complexity than multiplication. Using the 
techniques we developed in previous sections and the Chinese 
Remainder Theorem, we now show that, as in the case of 
multiplication, POWERING only requires at most 4 layers of 
threshold gates to compute. 

Theorem4: POWERING can be computed in a depth-4 
neural network. 

Note that for any fixed c, this result also implies that we can 
compute Xnc in a depth-4 neural network (with polynomial 
size). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. Before we prove the above theorem, we need to introduce 

some more techniques to reduce the depth of the network. 
Suppose f (X) = sgn {zzl w z t a ( X ) } .  If each t a ( X )  can be 
computed in a depth-k neural network, then clearly f ( X )  can 
be computed in a depth-(k + 1) neural network. The following 
lemma states that we can reduce the depth by one if each t ,  ( X )  
can be closely approximated by a linear combination of outputs 
from polynomially many depth-(k - 1) neural networks. 

Lemma 4: Suppose f (X) = s g n { x z l  wata(X)}, where 
Iw,I 5 nc. wata(X) # 0 for all inputs X ,  and 

If, for each i, 

where ma’s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI&, ’s, and N are integers bounded by a polyno- 
mial in n, and each &, can be computed in a depth-(k - 1) 
neural network, then f ( X )  can be computed in a depth-k 
neural network. 

Proof: Let r z ( X )  = (l/N)CT:l wa,l,,(X). By as- 
sumption, ta(X) = r , ( X )  + ca(X) where Iea(X)l < n-‘. 
Then 

f m  

where E = z K 1 w i ~ i .  
Note that 

i m. I m 

Since, by assumption, ELl wit i (X)  is a nonzero integer for 
all X, therefore, 

By assumption, each &, (X) can be computed in a depth-(k-1) 
neural network. Hence, f (X)  = sgn{zz l  W a ( z , ” l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcajiz, 
( X ) ) }  can be computed in a depth-k neural network. 0 

Remark5: Lemma 3 of Section 111-A states that each bit 
of the sum of two a-bit numbers can be closely approximated 
by a linear combination of outputs from polynomially many 
linear threshold gates. It follows from our reduction technique 
that each bit of the sum of nO(n)-bit numbers can be 
closely approximated by a linear combination of outputs from 
polynomially many depth-2 neural networks. 

We need a slight generalization of Lemma 4 in our proof 
of Theorem 4. The following lemma states that if tl and t2 
can be closely approximated by a polynomially bounded sum 
of outputs from depth-k neural networks, so can their product 

Lemma 5: Suppose for i = 1. 2, and for every c > 0, there 
exist integers ma, wa, and N that are bounded by a polynomial 
in n such that for all inputs X 

ti A ti. 

I j=1 I 
where each ti, can be computed in a depth-k neural network. 
Then, there exist integers f i , Gj, and N that are bounded by 
a polynomial in n such that 

I I 

where each t“j can be computed in a depth-k neural network. 

Proof: Let c > 0 be given. For i = 1, 2, let t i ( X )  = 
(l/N)CT:l wa,ti3(X) + E;(X), where IQ(X)I = o(n-? 
by assumption. Since each ti(X) is either 0 or 1, thus 
I(l/N) cj”l wi, ti, ( X ) l  5 1 + O(nPC). Moreover, 

tl(X) A t 2 ( X )  = tl(X)t2(X) 

j=1 z=1 

+ O(n-C). 
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Now, by Corollary 1, each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtl, (X)t, ,  ( X )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= tl, ( X )  A t z ,  ( X )  
can be represented as a sum of outputs from polynomially 
many depth-k neural networks. The conclusion follows by 
substituting this sum into the previous expression for tl (X) A 

Remark 6: Clearly, we can apply Lemma 5 repeatedly so 
that the result can be generalized to the product of a constant 
mmber of t i (X ) ' s .  In other words, the product of a constant 
number of t , (X) 's  can also be closely approximated by a 
polynomially bounded sum of outputs from depth-k neural 
networks. 

Recall that each threshold gate in our circuit is only allowed 
to have polynomially bounded integer weights. The follow- 
ing lemma states that a linear threshold gate with arbitrary 
(even real-value) weights can be closely approximated by a 
linear combination of outputs from polynomially many depth-2 
neural networks. The proof can be found in [29]. 

Lemma 6: Let f ( X )  be a linear threshold function (of 
n variables) whose weights can be arbitrary real numbers. 
Then for any k > 0, there exists a linear combination of 
functions t, ( X )  computable in depth-2 neural networks (with 
polynomially bounded integer weights) 

tZ(X) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

1 

n 
F ( X )  = -&t j (X) 

j=1 

such that 

where 8 ,  w,'s, and N are integers bounded by a polynomial 
in n. 

With the above lemmas, we are ready to prove Theorem 4. 

Proof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Theorem 4: Let X denote an input n-bit integer. 
We want to compute the n2-bit representation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = X".  
Our main tool will be the Chinese Remainder Theorem. This 
number theoretic result was used in [6] to construct O(1og n)- 
depth and polynomial size AND/OR circuits for division. It 
allows us to first compute 2 modulo small prime numbers 
in parallel and then combine the results using small depth 
neural networks. 

Let p, denote the ith prime number, and let ~ ( k )  denote the 
number of primes 5 k .  Let 

4 n 2 )  

Pn = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a=1 

be the product of all primes 5 n2. Let 

4% = Pn/p,, 4% = qyl mod P,,  and m, = q a  * 4%; 

4, exists since p, is a prime. Observe that by the Prime Number 
Theorem, P, is greater than 2n2 for sufficiently large n. 
Moreover, (2 mod P,) = 2 since 2 < 2"' < P,. We shall 
compute (2 mod P,) with a small depth threshold circuit via 
the Chinese Remainder Theorem as follows: 

1) for i = 1 ,  . . , n2, compute in parallel the values r, = 2 
mod p,; 

2) 2 = r, * ma; 

3) 2 = (2 mod P,) = (2 mod Pn). 
It is important to note that the m, are known in advance, and 

thus step 2 above is in fact multiple addition. Also note that 
r, 5 n2 and ma 5 P,, therefore, 2 5 C:z') n2P, 5 n4.Pn. 
Hence, 2 = (2 mod P,) = 2 - 5 P, for some k ,  where 
0 5 k 5 n4. For each k E {0,. . . ,n4}, let 

EQk(2 )  = S @ l { 2 - k * p n }  
+ sgn { ( k  + I )P,  - 2 - 1) - 1 

1, i f Z = ( Z  mod P , ) = Z - k . P , ,  =I 0, otherwise. 

Let Z3k be the j th  bit of 2 - k . p,. Then the j th  bit of 2 is 

v (EQk(2) A %k). 

Now let us calculate the number of layers needed to compute 
each j th bit of 2. We can compute the values r, in Step 1 as 
a sum of the outputs from polynomially many linear threshold 
gates in the first layer by Theorem 2. By expressing ( - k  + P,) 
in 2's complement representation, (2 - k . Pn) is simply 
a multiple sum (with input variables r,'s). It follows from 
Remark 5 that each zJk can be closely approximated as a sum 
of outputs from polynomially many depth-2 neural networks 
whose inputs are the variables r,. Similarly, Lemma 6 implies 
that the functions EQk(2)  can also be closely approximated 
as a sum of outputs from polynomially many depth-2 neural 
networks whose inputs are the variables r,. Thus, E & k  (2) and 
zJk can be closely approximated as a sum of the outputs from 
polynomially many depth-3 neural networks whose inputs are 
the variables X .  Now Lemma 5 implies that (EQk(2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zjk) 

can also be closely approximated as a sum of the outputs from 
polynomially many depth-3 neural networks. Then, it follows 
from Lemma 4 that the output VOlkln4(EQk(Z) A z j k )  can 

0 

0 5 k s n 4  

1 

be computed in a depth-4 neural network. 

D. Multiple Product in Depth-5 

, n, we want to com- 
pute the n2-bit representation of (MULTIPLE PRODUCT). 
We are going to show that this function requires at most 5 
layers of threshold gates to compute. 

Theorem 5: MULTIPLE PRODUCT can be computed in a 
depth-5 neural network. 

Proof: We use the same notation as in the proof of 
Theorem 4. Let 2 = n,"=, z j .  Again, the proof is similar 
to the proof of Theorem 4, except that it is not obvious how 
to compute each r, = 2 mod p i .  In the case of POWERING, 
each r, = ( c y  mod p a )  or (X" mod p i )  can be expressed 
as a sum of polynomially many linear threshold functions. 
To prove Theorem 5, it suffices to show that in the case of 
MULTIPLE PRODUCT, each r, = nyZl z j  mod pi can be 
expressed as a sum of the outputs from polynomially many 
depth-2 neural networks. It then follows that we can compute 
MULTIPLE PRODUCT with a depth-5 neural network. 

Let ZPt be the set of all integers modulo p i .  Since each 
p i  is a prime number, ZPS is a finite field. Let g, be a 

Given n n-bit numbers z,, i = 1,. 
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I -  

generator of & % ,  i.e., every integer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgzi (mod zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp i )  for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e"i E (0,. . . ,p i  - l}. Note that ~i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n,"=, zj mod pi) = 
ny=l(z j  mod p i )  mod p i .  The idea is to compute e i , j ,  the 
exponent of ( z j  mod p i )  with respect to the generator gi, i.e., 
( z j  mod pi)=(gF', j mod pi). Then, 

T;  = n z j  mod p i  = n g l i > '  
j=1  j=1 

n n 

modpi = g!'"'''' mod pi. 

Now, observe that each bit of ei, j is a function of (z j  mod 
pi) ,  which is a polynomially bounded weighted sum of the 
bits in z j .  By Lemma 1, e i , j  can be represented as a sum 
of polynomially many linear threshold functions in the input 
bits of z j .  Since each ei ,  j < p i ,  E,"=, ei, j < npi which 
is polynomially bounded. Moreover, each ~i only depends on cy=, ei ,  j .  Again, Lemma 1 implies that T ;  can be represented 
as a sum of polynomially many linear threshold functions in 
the input bits of e i , j .  It follows that ~i can be expressed as 
a sum of the outputs from polynomially many depth-2 neural 
networks, with inputs z j .  U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. Division in Depth 4 

The last main result in this paper is to show that division can 
be computed in a small depth neural network. In particular, we 
shall see that DIVk (x/y) can be computed in a depth-4 neural 
network. First we need a lemma that is a slight generalization 
of the result of Theorem 2. 

Lemma 7: Let N ,  pi, mi, ai, bi ,  ci, K be fixed integers, 
where N and pi are positive integers bounded by a polynomial 
in n, and ai, b;, and ci are integers with a polynomially 
bounded number of bits. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and y be the input integers 
with a polynomially bounded number of bits. Let 2 = 
cyEl ajx(bj  + cjy)j .  Let ~i = 2 (mod pi), where T;  is 
polynomially bounded. Then, each bit Zl of 

1, each bit of zi, j can be represented as a sum of polynomially 
many linear threshold functions with input bits z and y. 

Now, 2 = cf,(c,"=, zi, j )  . mi - K ,  which is simply 
a multiple sum, since mi's are known in advance. From 
Remark 5 of Section 111-C, each bit of this sum can be 
closely approximated by a linear combination of outputs 
from polynomially many depth-2 neural networks with inputs 
z i , j .  Since each bit of z ; , j  can be represented as a sum of 
polynomial many linear threshold functions with input bits x 

0 

Theorem 6: Let x and y > 0 be two n-bit integers. Then 
DIVk (x/y) can be computed in a depth-4 neural network. 

Proof: Note that DIVk (x/y) = 2-k  DIVo (2'x/y), so 
it suffices to prove our claim for the case k = 0. The resulting 
neural networks for the general case when k is polynomial 
in n have the same depth and the size will increase by a 
polynomial factor. 

The underlying idea is to compute an over-approximation 
6 to x/y such that x/y 5 6 5 x/y + 2-(n+1). We claim that 
L6J = Lx/y]. Clearly, the claim is true if x/y is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan integer. 
Suppose x/y is not an integer. Then, 

and y, the lemma follows. 

2 = Lx/YJY + T ,  

X/Y - lZ/Y] = T/Y 2 2-", 

where 0 < T < y < 2". Thus, 

and 

In other words, 

Lx/y] + 2-" L x/y  5 Lz/yj + 1 - 2-". 

Since 0 6 - x/y 2(2nf1) by assumption, we must have 

Lx/YJ < 6 < LZ/YJ + 1. 
N 

Z = C r i . m i - K  

can be closely approximated by a linear combination of outputs 

a linear combination of functions t j  computable in depth-3 
neural networks (with polynomially bounded integer weights) 
such that 

Hence, 161 = Lx/yJ. 
i=l 

Since x/y is to the product Of and y-l' it is 

2-(2n+1). Then, using Lemma 7, we can compute q = x.  e-' 
with error < 1/2 with a small depth neural network. 

To construct an over-approximation of y-', let j 2 1 be the 
integer such that 2j-l 5 y < 21. Note that 11 - y2-l( 5 1/2, 

and we can express y-l as a series expansion 

from depth-3 neural networks, i.e., for any > 0, there exists enough to get an over-approximation 5-l Of 1J-l with 5 

00 

y-1 = 2- j .  (1 - (1 - y2-j))-1 = 2 - j C ( 1 -  y2-j)i. 

5-1 = 2 - j C ( 1  - y2-j)i, 

i=O 

If we put 

where s, wj's, and M are integers bounded by a polynomial 
in n. 

Proof: We first show that each term z ; , j  = a jz (b j  + 2n 

cjy) j  mod pi can be represented as a sum of polynomially 

zi , j  = { a j ( z  mod p ; ) [ (b j+c j y )  mod pi]j} mod pi .  Let x 

weights are polynomially bounded). Let My = Cl lwll + 1. 
Then, each bit of z i , j  can be expressed as a function of 
(My cl wzxl) + (cl Glyl), which is still a polynomially 

many linear threshold functions with inputs x and y. Note that 

cl wzxz (mod pi) and ( b j  + cjy) Cl Gzyl (mod p i )  (the 

i = O  

then 
00 

0 < - (y-l - 5-1) < - 2-j 2-i 5 2-(n+l). 

i=(2n+1) 
Since < 2n, we have 

bounded weighted sum of the input bits of x and y. By Lemma 0 5 (xy-1 - m-1) < 2-("+1). 
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Suppose for the moment that we can find the integer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 2 1 
such that 2j-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 y < 2 j .  Now, we can rewrite 

- 2 n t l  
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

xy x(2j - y)i. 
i=O 

Using Lemma 7, we can proceed as in the proof of Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 to construct a small depth neural network for x5-l. 

Zj(zn:z)Z,, a shifting of the bits in Zj. Let N be a sufficiently 
lar e in&ger such that the product of the first N primes 
&, pi = PN > Zj for all j = 1 , " . , n .  It is easy to see 
that all pi 's are polynomially bounded (in n). Let 

qi = P ~ / p i ,  @i = 4;' mod p i ,  and mi = q; . j ; .  
Again, we compute Zj via the Chinese Remainder Theorem 
as follows. 

1) For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1, . . , N ,  compute in parallel the values r i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 

2) Zj = c , N = ~  r;,j m;; 
3) Zj = (Zj mod PN) = (Zj mod PN).  

Note that Zj 5- n"PN for some Q! > 0. Hence, Zj = 
(Zj mod PN)  = Zj - kP, for some k ,  where 0 5 k 5 n". 
For each k E {O,...,n"}, let 

k t  zj = Czn+' 2j(2n+1- i )2(2j  - y);. Then, xS-1 = 
a=O 

1 

Zj mod p;; 

EQk( zj) = sgn { Zj - k p ~ }  

+ sgn { ( k  + 1)PN - Zj - 1) - 1 

1, if Zj = (Zj mod P N )  = Zj - ~ P N ,  = {  0, otherwise. 

k t  
(Zj mod PN)  = Zj - ~ * P N ,  then 

Zj, k 12' = *(Zj - k p ~ ) .  If EQk* (zj) = 1, i.e., 

n- 1 

z=o 
This, the ith bit of DIVo (x/y) can be computed as 

v (EQk(Z3) A z ~ ,  k ,  
l<k<na 

This expression is based on the assumption that we can find 
the unique integer j 2 1 such that 2J- l  5 y < 23 .  We can 
compute such integer j in parallel without increasing the depth 
of the circuit. To see this, for each j E { 1, . . . , n}, let 

I, = sgn {y - 23- l )  + sgn (23 - y - I} - 1 

1, 

Then, the ith bit of DIVo (x/y) is 

if23-l 5 y < 23, = {  0, otherwise. 

v v (1, A E Q B ( Z J ) A % ~ , ~ ) .  

Note that (by Lemma 7) each of the z3, k ,  ,, EQk(Z,) ,  and I3 
can be closely approximated by a linear combination of outputs 
from polynomially many depth-3 neural networks, with inputs 
x and y. Then, Remark 6 following Lemma 5 implies that each 
(I ,  A E Q ~ ( Z , )  Az,, k ,  ,) can also be closely approximated by a 
linear combination of outputs from polynomially many depth- 
3 neural networks. Hence, it follows from Lemma 4 that the 
final result can be computed in a depth-4 neural network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

l < j < n  O<k<na 

F. Sorting in Depth-3 

It was shown in [29] that the SORTING of n n-bit numbers 
can be computed in a depth-4 neural network. By using 
Corollary 1, we can improve the depth of the sorting net- 
work presented in [29]. Furthermore, we also prove that any 
polynomial-size neural network for SORTING must have a 
depth of at least 3. Thus, our neural network for SORTING 
is optimal in depth. 

In SORTING, we assume that the input is a list of n n-bit 
binary numbers and the output will be the same list sorted in 
nondecreasing order. A number which appears m times in the 
input list will be duplicated m times in the output list. 

Theorem 7: The SORTING of n n-bit numbers can be 
computed in a depth-3 neural network. 

the input binary numbers. Define 
Proof: Letz, = z 2 , z 2 ~ - l . . . ~ a 1 , f o r i =  l , . . . ,n ,denote  

1, if z, > zJ or (z ,  = z3 and i 2 j), c 0, otherwise. Ca3 rz 

If we let pa = E,"=, cZ3, then p ,  is the position of z, in the 
sorted list. Let L,(p,) = sgn {p ,  - mi; then L,(p,) = 1 if 
p ,  2 m and 0 otherwise. Similarly, let Z,(p,) = sgn {m-pZ};  
then l,(p,) = 1 if p ,  5 m and 0 otherwise, Thus, the kth bit 
of the mth number in the sorted list is 

v (Lm(pz) A kn(pz) A z z k ) ,  
1<a<n 

where V and A, respectively, denote the OR and AND functions. 
In [29], it was shown that each c,, can be closely ap- 

proximated by a sum of polynomially many linear threshold 
functions. Hence, by Lemma 4, each L,(p,) and Zm(p,) can be 
computed in a depth-2 neural network. Now apply Corollary 
1 twice; it follows that each &(pa) A lm(p,) A Z,k can be 
represented as a sum of outputs from polynomially many 
depth-2 neural networks. We need one more threshold gate 
to compute the output V gate. Thus, altogether, only 3 layers 
are needed. U 

In [14], it was shown that any polynomial size neural 
network computing the function Inner Product Modulo 2, i.e., 
I P ( z l , . . . , x n ,  yl,...,yn) := xly l  $...$x,y, must have 
depth at least 3. We shall provide a similar lower bound result 
for SORTING by reducing it to Inner Product Modulo 2. 

Theorem 8: Any polynomial size neural network for SORT- 
ING must have depth at least 3. 

Proof: We show that if we can sort 2n + 1 integers 
of length (log n + 3)-bits, then the Inner Product Modulo 
2 function IP(x1, . , x, y1, . . , yn) can be computed by 
setting some of the inputs of SORTING to variables xi, y;, 
or constants. Let b( i )  be the log n-bit binary representation of 
the integer i ,  for i = 0, ... ,n - 1. We choose the following 
input to sorting (each line represents one integer): 

x1y11 . . . 1 
x2y21. f * 1 
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110 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb( 0) 
110b(l) 

IlOb(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1) 
1 1 Ob (n ) . 

... 

Note that each of the above 2n + 1 integers has the same 
number of bits in its binary representation. We claim that 
the least significant bit of the (n  + l )st  integer in the out- 
put list (in ascending order) always yields the value of the 
I P ( z l , .  . . , z,, y1,. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe , y,) function. 

To justify our claim, consider the position in the output list 
represented by the integer 110b(k). Clearly, 110b(j)> 110b(k) 
if j > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, and z i y i l . s .1  > llOb(k), if and only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(xi, yi) = 
(1, 1). Hence, if x;yi = 1 for exactly r many i’s, then there are 
exactly n-k+r many integers which are greater than llOb(k). 
Moreover, IP(x1 ,  . . ’ , x,, y1, . . . , y,) is 1 if r is odd and 0 
otherwise, and is the same as the least significant bit of b(r). 

Choosing k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT reveals that the integer which appears at 
position n + 1 in the sorting list is the integer llOb(r). The 
least significant bit of this integer is identical with the output of 
IP(z1 ,  . . . , z n ,  y1, . . . , yn). Hence, a network for SORTING 
can be used for computing the Inner Product Modulo 2 
function. By the lower bound result in [14], we conclude that 
any polynomial size neural network for SORTING has depth 
at least 3. 0 

IV. CONCLUSION 

In this paper, we have shown the construction of small 
depth neural networks for division and relation problems. In 
particular, we prove that powering and division are computable 
in polynomial-size depth-4 neural networks, multiple product 
is computable in polynomial-size depth-5 neural networks, 
and sorting is computable in a polynomial-size depth-3 neural 
network. We would like to point out a recent improvement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[30] of the results in this paper. It was shown in [30] 
that in computing multiple sum, each bit can be closely 
approximated by the outputs of polynomially many linear 
threshold functions. It follows from this result that the depth of 
our networks for division, powering, and multiple product can 
all be reduced by 1. Moreover, multiplication can be computed 
in depth-3 polynomial-size neural networks. The networks for 
multiplication and division constructed in [30] are optimal in 
depth. The results in [30] also employ techniques from [12], 
[13]. Details can be found in [30]. 

We have focused our study on the depth of neural networks, 
while the only restriction on the size is that it be bounded by 
a polynomial in the number of inputs. As a result, the upper 
bound on the size of our network is possibly far from being 
optimal. A natural continuation of our work is to try to reduce 
the size of our network without increasing the depth. It will 
also be interesting to prove lower bound results on the depth 
of neural networks even if the size is restricted. 
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