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Abstract: When using a monocular camera for detection or observation, one only obtain two-
dimensional information, which is far from adequate for surgical robot manipulation and workpiece
detection. Therefore, at this scale, obtaining three-dimensional information of the observed object,
especially the depth information estimation of the surface points of each object, has become a key
issue. This paper proposes two methods to solve the problem of depth estimation of defiant images
in microscopic scenes. These are the depth estimation method of the defocused image based on
a Markov random field, and the method based on geometric constraints. According to the real
aperture imaging principle, the geometric constraints on the relative defocus parameters of the point
spread function are derived, which improves the traditional iterative method and improves the
algorithm’s efficiency.

Keywords: defocusing image; depth estimation; Markov random field; microscopic scene; geometric
constraints; point spread function

1. Introduction

The depth information of an image is gradually being applied in intelligent robots,
intelligent medical treatments, unmanned driving, target detection and tracking, face
recognition, 3D video production, and other fields. It has significant social and economic
value [1–4].

There are three kinds of depth estimation algorithms: depth estimation algorithms
based on multi-view images [5–11], depth estimation algorithms based on binocular im-
ages [12,13], and depth estimation algorithms based on monocular images [14–17]. Depth
estimation based on multi-view images to shoot the same scene from multiple angles
through a camera array and calculate the depth information using the redundant informa-
tion between multi-view images. This kind of technology can usually obtain more accurate
depth information. However, because requires a camera array, it is rarely used in most
practical applications. Depth estimation based on a binocular image is a method that imi-
tates the human perception of depth information by binocular parallax [12]. Two cameras
with the same relative position of human eyes are used to image the same scene. The depth
information is mainly calculated by stereo matching technology [18]. The depth estimation
of the monocular image only uses the image of one viewpoint for depth estimation [19].
Compared with the former two, the case of a single viewpoint is closest to the actual
application requirements. It is also the research hotspot in the field of depth estimation.
However, due to the lack of viewpoint information, this method is also the most difficult
of the three kinds of depth estimation algorithms [20,21]. Suppose the depth information
of a scene can be recovered from the single view image. In that case, it will significantly
promote the development of various applications in the computer vision field [22,23].
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In the current surgical robots and industrial detection field, micro-vision is essential
for equipment to obtain the target object’s structural information [24]. Especially in some
micro=scenes that require real-time operation, a real-time vision system can improve
its accuracy [25]. Usually, only two-dimensional information can be obtained using a
monocular camera for detection or observation, which is far from adequate for surgical
robot operation and workpiece detection [26]. Therefore, obtaining the observed object’s
three-dimensional information, especially the depth information estimation of each surface
point, becomes a critical problem. On a larger scale, such as street scene 3D reconstruction,
an indoor structure’s 3D reconstruction uses a depth camera to obtain 3D information.
Registration, fusion, and 3D reconstruction of point clouds with different precision are
carried out through a single image or multiple images [27]. The depth sensor directly
obtains the depth information.

At the cell scale, biochemical research generally uses a fluorescent agent to dye an
object and then uses an electron microscope to carry out laser scanning of the measured
object, obtaining different depth cross-section scanning maps and then fitting the three-
dimensional information. However, the millimeter scale has the characteristics of a micro-
scopic scene, which does not have the physical basis of cross-sectional scanning of cells for
fluorescence staining [28]. Moreover, it does not have the ranging conditions of a depth
sensor. Therefore, the depth information of an object estimated in this paper needs to be
recovered from the perspective of stereo vision. In general, depth information is recovered
from two-dimensional images in stereo vision. Therefore, it is mainly solved by binocular
vision algorithms and the monocular multi-perspective method. The second method is to
extract depth information by calculating the frequency domain characteristics of defocus
images. The third method is to evaluate the defocus degree and then estimate the depth
using the defocusing image information’s defocusing characteristics [29]. However, to
maintain the portability, easy implementation, and fast feedback characteristics of an elec-
tron video microscope micro-scene, one is limited to the three-dimensional reconstruction
of a monocular single-view. Therefore, the third method is suitable for this scene, obtaining
depth information by depth from defocus (DFD) [30].

The electron video microscope microscopic scene in this study is limited to the 3D
reconstruction of monocular and single viewing angles in order to maintain the characteris-
tics of portability, easy realization, and fast feedback of observation. It is the third type of
method that is suitable for this scenario, where depth information is obtained through DFD.
Therefore, in this study, two methods are used to estimate the depth of defocused images
in microscopic scenes. The method based on geometric constraints uses the real aperture
imaging principle to derive the optimization model through the point spread function.
Furthermore, through the imaging plane’s blur parameter inequality and the focus plane
under different conditions, constraint conditions are derived. Finally, the optimization
model is obtained based on geometric constraints. The depth estimation method of the
defocused image is only aimed at the relative parallax estimation of two images in order
to make it a relatively accurate depth information estimation that applies to multiple im-
ages. Moreover, the value of the improved parameter and its evaluation index is obtained
through experimental analysis. The depth estimation method of a defocused image based
on a Markov random field is studied, and a simulation is carried out.

2. Materials and Methods
2.1. Depth Estimation Method Based on Markov Random Field
2.1.1. Markov Random Field Theory

In most image processing problems, the value of the desired pixel usually does not
depend on pixels outside its immediate neighborhood, so the image signal can be regarded
as a Markov random field [31,32].

Specifically, for the image X we collected, the pixel point is set as s. The random
variable xs is the implementation of Xs, Ns is the neighborhood of s, and the pixel point is
set as S = {s = (i, j) : 1 ≤ i ≤ Q1, 1 ≤ j ≤ Q2}. If image X satisfies:
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P(Xs = xs) > 0

P(Xs = xs|Xr = xr, r ∈ S, r 6= s) = P(Xs = xs|Xr = xr, r ∈ NS) (1)

In this case, x is the Markov random field of Ns.

2.1.2. Markov Random Field Defocusing Feature Model

We established the maximum posterior probability depth estimation model of a
Markov random field (MRF) [33]. As shown in Figure 1, it is assumed that the MRF
can express the defocused image and its blur parameters. Then, the blur parameters and
the focused image are smoothed to improve the depth estimation quality. Thus, given
two defocused images, the depth estimation and focus image restoration constitute the
maximum a posteriori probability estimation problem.

gk(i, j) = ∑m ∑n f (m, n)hk(i, j; m, n) + wk(i, j), k = 1, 2 (2)
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Figure 1. Markov random field maximum posterior probability depth estimation model.

g1(·) and g2(·) represents two defocused images, the original focus image f (·) is
unknown, and the ambiguity functions h1(·) and h2(·) are gaussian model ambiguity
functions composed of blur parameters [34].

k = 1, 2, σm,n2 = ασm,n1 + β and α, β are given parameters.
The parameter S is regarded as the random field of blur parameter σm,n1 , while F

represents sliding windows (number: L) of a random field, corresponding to N × N
focused image. Suppose S could have P possible levels and F could have M possible levels.
S and F are continuous in the image scene, and their intensity can usually be quantified to
256 gray levels.

Quantization of blur parameters is necessary to reduce the configuration of the mini-
mal posterior probability model. The mean and variance σ2

w of Gaussian white noise field
W1 and W2 are set as zero. Similarly, assume that S and F are statistically independent of
each other and are independent of W1 and W2. Let G1 and G2 represent the random field
of the observed image.

Then, in Equation (2), gk can be expressed as in Equation (3):

gk = Hk f + wk, k = 1, 2 (3)

where the vectors gk, f , and wk represent the matrices of gk(i, j), f (i, j), and wk(i, j), respec-
tively. The blur parameter matrix Hk is composed of linear variable ambiguity functions
hk(i, j; m, n). In Formula (3), the Gaussian blur window is set to have a limited space range
(±3σ pixels).

The model also includes a linear field to maintain discontinuity in the blurring process
and the image focus of the scene. The horizontal and vertical fields corresponding to the
fuzzy process are respectively denoted by l′si,j and v′si,j, while the linear fields corresponding

to the intensity process are denoted by l′ fi,j, v′ fi,j. Since both S and F are Markov random
fields, that is MRF [33], there are Equations (4) and (5):

P[S = s, L′s = l′s, V′s = v′s] =
1

Zs e−Us(s,l′s ,v′s) (4)

P[F = f , L′ f = l′ f , V′ f = v′ f ] =
1

Z f e−U f ( f ,l′ f ,v′ f ) (5)
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where Zs,Z f ,Us(s, l′s, v′s), and U f ( f , l′ f , v′ f ) are:

Zs = ∑
all(s,l′s ,v′s)

e−Us(s,l′s ,v′s)

Z f = ∑
all( f ,l′ f ,v′ f )

e−U f ( f ,l′ f ,v′ f )

Us(s, l′s, v′s) = ∑
c∈Cs

Vs
c (s, l′s, v′s)

U f ( f , l′ f , v′ f ) = ∑
c∈C f

V f
c ( f , l′ f , v′ f )

Vs
c (s, l′s, v′s) and V f

c ( f , l′ f , v′ f ) are the possible set functions related to S and F, while
Cs and C f respectively represent the sequence set corresponding to S and F.

2.1.3. Algorithm Implementation

To simplify the model representation method in the previous section, the blur param-
eter ∆ of the observed defocused image is regarded as a Markov random field, which is
recorded as h. The probability P(X) is shown in Equation (6):

P(X) =
1
z

e−∑c∈C Vc(x) (6)

where the Gibbs distribution is used to describe P(X), and y1, y2, P(Y1 = y1, Y2 = y2) is
a constant.

The blur image y is regarded as the convolution of the clear image f and the point
spread function h, as in Equation (7):

yk(i, j) = hk(i, j) ∗ f (i, j) k = 1, 2 (7)

The point diffusion function hk(i, j) is a Gaussian function with blur parameters ∆,
which reflects the radius of the dispersion circle.

Assume the MRF of the image of yi follows Equation (8):

yi = f (xi) + wi (8)

Here, f (xi) can be expressed as µx, obtaining Equation (9):

P(Y1 = y1, Y2 = y2|X) = e−∑s
1

2δ2 (y1−µ1)
2−∑s

1
2δ2 (y1−µ1)

2
(9)

Then, we can convert Equation (9) into (10):

P(X|Y1 = y1, Y2 = y2) =
1
z

e[∑c∈C Vc(x)−∑s
1

2δ2 (y1−µ1)
2−∑s

1
2δ2 (y1−µ1)

2] (10)

The posterior probability P(X|Y1, Y2) of the original image will be transformed into
the following optimization problem, as in Equation (11):

min

[
∑
c∈C

Vc(x)−∑
s

1
2δ2 (y1 − µ1)

2 −∑
s

1
2δ2 (y2 − µ2)

2

]
(11)

2.2. Modeling Depth Estimation Method Based on Geometric Constraints

According to the analysis in the previous section, we classified the problem as a DFD
problem. The blur parameter difference model and its spatial constraint are deduced
according to the difference between the focus plane and imaging position. This model can
establish the relationship between depth information and blur information, and iteratively
estimate the complete spatial information of the target object [35].
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2.2.1. Geometric Derivation of the Depth Estimation Model

The geometric principle of real aperture imaging is shown in Figure 2. There are three
position relations between the focal plane and the imaging plane: the image is on the focal
plane v0 = v; the image is in front of the focal plane v0 < v; and the image is behind the
focal plane v0 > v [30].
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The parameter F stands for focal length, D stands for object distance, and v0 stands
for image distance when v0 = v, 1

D + 1
v = 1

F .
When v0 < v, 1

F < 1
D + 1

v0 , set r0 as the radius of the lens; the radius of the dispersion
circle is shown in Equation (12):

r = r0 v0
(

1
v0 +

1
D
− 1

F

)
(12)

when v0< v, 1
F > 1

D + 1
v0 . The radius of the dispersion circle is shown in Equation (13):

r = r0 v0
(

1
F
− 1

v0 −
1
D

)
(13)

From Equations (12) and (13), the radius of the dispersion circle, namely the blur
degree evaluation parameter, can be expressed as in Equation (14):

r = r0 v0
∣∣∣∣ 1

F
− 1

v0 −
1
D

∣∣∣∣ (14)

Since the radius of the dispersion circle has a certain relationship with the camera, in
consideration of this point, let rρ = σ. The blur parameter σ is as in Equation (15):

σ = ρr0 v0
∣∣∣∣ 1

F
− 1

v0 −
1
D

∣∣∣∣ (15)

The parameter σ is also a diffusion parameter that measures the point spread function
(PSF) of the dispersion circle. Take the Gaussian diffusion function as an example. It can be
expressed as in Equation (16):

hσ
u(y, x) =

1
2πσ2 e−

‖y−x‖2

2σ2 (16)

where the relevant parameters of the camera are set as u and the function is denoted by
hu

σ(y, x).
Firstly, the two defocused images were studied and the generated defocused images

Ĩ1 and Ĩ2; their expressions were as follows:
Here, we study the situation of two defocused images. Images I1 and I2 are collected

and the generated defocused images Ĩ1 and Ĩ2 are expressed as in Equations (17) and (18):

Ĩ1(y) =
∫

Ω
hu1

σ1 (y, x) f (x)dx (17)
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Ĩ2(y) =
∫

Ω
hu2

σ2 (y, x) f (x)dx (18)

where u1 and u2 represent the parameters of the camera while shooting the image I1 and I2;
σ1 and σ2 represent the diffusion parameters of the ambiguity function.

Use the difference function to simulate the difference in the degree of blur of the two
images at different positions, as shown in Equation (19):

f̃ , σ̃ = argmin Φ( f , σ) (19)

The approximation method adopts the least square method, as shown in Equation (20):

Φ( f , σ) =
∫

Ω
‖I(y) Ĩu

σ (y)‖dy =
∫

Ω
‖I(y)−

∫
Ω

hu2
σ2 (y, x) f (x)dx‖2

2dy (20)

Least squares filtering requires the variance and mean of noise, and these parameters
can be calculated from a given degraded image, which is an important advantage of
constrained least squares filtering.

Set two PSF functions as hσ1(x, y) = 1
2πσ2

1
e
− x2+y2

2δ2
1 and hσ2(x, y) = 1

2πσ2
2

e
− x2+y2

2δ2
2 ; then,

we obtain Equation (21):

hσ3(x, y) = hσ1(x, y)× hσ2(x, y) =
1

2π
(
σ2

1 + σ2
2
) e
− x2+y2

2(∆2
1+∆2

2) (21)

The parameters σ1, σ2, and σ3 of the PSF functions hσ1(x, y), hσ2(x, y), hσ3(x, y) satisfy
σ2

1 < σ2
3 . Among them, hσ1(x, y) and hσ2(x, y) are convolved to obtain hσ3(x, y), and

σ2 =
√

σ2
3 − σ2

1 is the parameter of hσ2(x, y).
According to the different heights of the object being observed, the blur degree of each

area of the two images can be expressed as Σ =
{

y : σ2
1 > σ2

2
}

and Σc =
{

y : σ2
1 < σ2

2
}

.
In y ∈ Σ =

{
y : σ2

1 > σ2
2
}

, the collected scatter image I1’s blur process can be simulated
as in Equation (22):

a

I1(y) =
∫

hσ1(y, x) f (x)dx ∼=
∫

h∆σ(y, y)I2(y)dy (22)

where ∆σ =
√

σ2
1 − σ2

2 .

In y ∈ Σ =
{

y : σ2
1 < σ2

2
}

, the collected scatter image I2’s blur process can be simulated
as in Equation (23):

a

I2(y) =
∫

hσ2(y, x) f (x)dx ∼=
∫

h∆σ(y, y)I1(y)dy (23)

where ∆σ = −
√

σ2
2 − σ2

1 .
Construct the functional extremum function as shown in Equation (24):

∆
a
σ = argmin

∆σ

Φ(∆σ) (24)

Similarly, the least square method is also used to simulate, as shown in Equation (25):

Φ(∆σ) =
∫

Σ ‖
a

I1(y)− I1(y)‖2
2dy +

∫
Σc ‖

a

I2(y) + I2(y)‖2
2dy

=
∫

H(∆(y))‖
a

I1(y)− I1(y)‖2
2dy +

∫
(1− H(∆(y)))‖

a

I2(y) + I2(y)‖2
2dy

(25)
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Establish the relationship between ∆σ and D:σ2
1 = ρ2r0

0v2
1

(
1
F −

1
v1
− 1

D

)2

σ2
2 = ρ2r0

0v2
2

(
1
F −

1
v2
− 1

D

)2 (26)

After the operation, we can obtain Equation (27):

1
(v1 − v2)(v1 + v2)

∆σ|∆σ|
ρ2r2

0
=

(
1
F
− 1

D

)2
− 2

v1 + v2

(
1
F
− 1

D

)
(27)

By solving Equation (27), we obtain Equation (28):

1
F
− 1

D
=

1
v1 + v2

± 1
v1 + v2

√
1 +

∆σ|∆σ|
ρ2r2

0
· v1 + v2

v1 − v2
(28)

Finally, the mapping between ∆σ and D is established, as shown in Equation (29):

D(y) =

(
1
F
− 1

v1 + v2
− 1

v1 + v2

√
1 +

∆σ(y)|∆σ(y)|
ρ2r2

0
· v1 − v2

v1 − v2

)−1

(29)

According to the positional relationship between the focal plane and the imaging
plane of the image taken by the camera, four position situations can be obtained:

(1) When F < v < v1, we can obtain Equations (30) and (31):

F <
1
F
− 1

D
< v1 (30)

F <
1

v1 + v2
+

1
v1 + v2

√
1 +

∆σ|∆σ|
ρ2r2

0
· v1 + v2

v1 − v2
< v1 (31)

The inequality relationship of ∆σ|∆σ| is shown in Equation (32):

ρ2r2
0

v1 − v2

v1 + v2

[(
v1 + v2

F

)2
− 2(v1 − v2)

F

]
< ∆σ|∆σ| < ρ2r2

0
v1 − v2

v1 + v2

(
v2

2
v2

1
− 1

)
(32)

(2) When v2 < v < 2F. The inequality relationship of ∆σ|∆σ| is shown in Equation (33):

ρ2r2
0

v1 − v2

v1 + v2

(
v2

2
v2

1
− 1

)
< ∆σ|∆σ| < ρ2r2

0
v1 − v2

v1 + v2

[(
v1 + v2

2F

)2
− (v1 + v2)

F

]
(33)

(3) When v1 < v < v1+v2
2 . The inequality relationship of ∆σ|∆σ| is shown in Equation (34):

ρ2r2
0

v1 − v2

v1 + v2

(
v2

2
v2

1
− 1

)
< ∆σ|∆σ| < 0 (34)

(4) When v1+v2
2 < v < v2. The inequality relationship of ∆σ|∆σ| is shown in Equation (35):

0 < ∆σ|∆σ| < ρ2r2
0

v1 − v2

v1 + v2

(
v2

2
v2

1
− 1

)
(35)

As can be seen from the above, ∆σ is taken negatively in (1) and (3); y ∈ Σc ={
y : σ2

1 < σ2
2
}

and then execute y ∈ Σ =
{

y : σ2
1 > σ2

2
}

.
As can be seen from Figure 2, all observed defocused images satisfy F < v < 2F. Then,

the inequality relationship of ∆σ|∆σ| is shown in Equation (36):
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ρ2r2
0

v1−v2
v1+v2

[(
v1+v2

F

)
− 2(v1+v2)

F

]
< ∆σ|∆σ|

< ρ2r2
0

v1−v2
v1+v2

[(
v1+v2

2F

)2
− (v1+v2)

F

] (36)

From Equations (12) and (28), we obtain the objective function and the constraints of
the optimization problem, respectively.

The depth estimation model is as in Equation (37):

min
∆σ

∫
H(∆σ(y))‖

a

I1(y)− I1(y)‖2
2dy +

∫
(1− H(∆σ(y)))‖

a

I2(y)− I2(y)‖2
2dy

s.t. ρ2r2
0

v1−v2
v1+v2

[(
v1+v2

F

)
− 2(v1+v2)

F

]
< ∆σ|∆σ|

< ρ2r2
0

v1−v2
v1+v2

[(
v1+v2

2F

)2
− (v1+v2)

F

] (37)

2.2.2. An Improved Depth Estimation Algorithm for Defocused Images

Since the objective function of Equation (36) is monotonic, the exhaustive method is
used to check the minimum value in the process of depth estimation. The basic steps of the
multi-scale minimum exhaustion method are as follows:

(1) According to the four types of imaging geometric relationships described in the
previous section (Equations (30)–(35)), for the two acquired defocused images that
determine the camera parameters, determine the ∆σ preliminary interval [α, β];

(2) The interval [α, β] for determining camera parameters is discretized according to N
points, as shown in Equation (38):

α = ∆σ0 < ∆σ1 < . . . < ∆σn = β (38)

(3) For the ∆σ∗ = argmin(Φ(∆σk))
k∈{0,1,...,n}

in Equation (25), obtain the ∆σ∗ make Φ(∆σk), and

obtain the smallest value;

(4) For the two points on the left and right of ∆σ∗, let α = ∆σ∗−1 and β = ∆σ∗+1,
respectively; according to the set threshold ε, judge |α− β| ≥ ε. If its value is true,
then cycle (2)–(4) steps; if it is false, take it as the minimum value of Equation (25).

(5) The depth information is estimated according to Equation (37).

3. Results

The experimental environment of this research is introduced as follows:

1. One PC with: CPU: i7-9700K, GPU: RTX2060S, RAM: 16G, ROM: 516GSSD;
2. One ByslorPylon industrial camera, model: acA640-120 uc;
3. A monocular microscope with a magnification of 0.5 × (0.7~4.5), a lens radius of

35 mm, and an F number of 4.

All experiments in this article were completed under the Windows 10 operating system,
using Bysler’s PylonViewer to collect images under the microscope, and to simulate through
Matlab2016a. A small part of the preprocessing steps used Microsoft Visual Studio 2013
and OpenCV.

The purpose of this study is to determine a relatively accurate 3D model of the target
object by using depth estimation of multiple defocused images shot by an electronic video
microscope [36]. Therefore, an estimation model is designed to estimate depth information
using the multi-frame defocus image model in this experiment. The steps are as follows:

(1) The sequence of collected images are numbered as I1, I2, I3, . . . , IN . Set a value K so that
the collected image sequence, according to (I1, IK), (I2, IK+1), . . . . . . , (IK, IN−K), respec-
tively. Estimate depth information according to the algorithm in the previous section;

(2) For the estimated results D1, D2, . . . . . . , DN−K, the depth value of each pixel in
n-k matrices is used as the histogram. Then, the greatest depth value (or the most
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concentrated value) is selected as the point’s depth. Thus, the new fusion depth
information is finally obtained.

We first use a microscope and a Basler industrial camera acA640 to take two sets of
defocused images, PCB and Alp, as shown in Figure 3.
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3.1. The Effects of Geometric Constraint-Based Method and MRF Method

We calculated the depth maps of PCB and Alp defocused images using the geometric
constraint-based algorithm and MRF depth estimation algorithm, respectively. The results
are shown in Figure 4.
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In the two sets of depth maps, you can see that the effect of the geometric constraint
method is similar to the result of the MRF method. However, its running time is quite
different. This because the algorithm based on geometric constraints has a lower algorithm
complexity. Therefore, its running time is much shorter than that of the MRF algorithm.

3.2. Gradient Characteristics Simulation

We photographed the paper data group with gradient characteristics, as shown in
Figure 5. The height of both pictures decreases from left to right. Because of the different
focal lengths, the clear areas of the two images are different. Figure 5a is near focal length
and Figure 5b is far focal length.
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Using geometric constraints and MRF methods to estimate the gradient scene, the
results are shown in Figure 6.
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Figure 6. Estimation of the depth map of the gradient scene: (a) geometric constraint method; (b) MRF
method.

We made a quantitative comparison of the results, divided the gradient image into
22 columns, and obtained each column’s average true depth and estimated depth, as shown
in Figure 7a,b.
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Figure 7. Gradient scene depth estimation quantitative comparison: (a) geometric constraint method;
(b) MRF method.

3.3. Accuracy and Efficiency Analysis

It can be seen from the figure that the geometric constraint method has more significant
advantages than the MRF method in terms of smoothness and accuracy.

In order to analyze the accuracy and efficiency of the two methods synthetically with
quantitative indexes, the square root of mean square error, the root mean square (RMS), is
used to quantify the accuracy, as in Equation (39):

RMS =

√√√√ 1
N(Ω) ∑

(i,j)∈Ω

[
a

d(i, j)− d(i, j)] (39)

Table 1 shows the running time (s) and RMS of the two methods with the paper data.

Table 1. The running times and the square roots of the mean square error of the two methods were
compared and analyzed at the paper data source.

Geometric Constraints MRF

RMS Running Time RMS Running Time

3.3318 53.93 5.0129 197.4923

Experiments proved that the accuracy of the depth estimation method based on
geometric constraints is slightly higher than the MRF method. Furthermore, its running
time is significantly better than that of the MRF method.
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3.4. Selection of K Value in the Geometrically Constrained Improved Depth Estimation Algorithm

For depth estimation methods based on geometric constraints, experiments are sup-
plemented to illustrate the comparison of the depth estimation effects of the algorithms
when K is a different value. The registered paper data group is used, as shown in Figure 8.
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The experimental results are shown in Table 2 and Figure 9.

Table 2. Comparative analysis of depth estimation based on geometric constraints.

Value of K 1 2 3 4 5 6

RMS 3.3318 3.3533 3.3597 3.7966 3.9827 3.7321
Running time 53.93 50.77 45.39 43.29 40.08 37.92

Value of K 7 8 9 10 11 12
RMS 3.4251 3.2219 3.0121 2.9739 2.8847 2.7396

Running time 33.19 27.91 22.49 17.11 15.29 11.53
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Because the larger the K value, the smaller the number of experimental groups, the
K value does not have much effect on the overall running time. The difference in this
value is mainly due to the number of experimental groups with increasingly smaller K
values. As far as the estimated effect is concerned, when K takes small and large values, the
RMS value is not high. However, when K = 5, the RMS index is the highest, the difference
of the acquired depth information is the most obvious, and the utilization of the blur
information in the defocused image sequence is better. Therefore, experiments show that
depth estimation works best when this value is taken.

4. Discussion

This study fits the operating efficiency and effect of the geometric constraint method
with simulation data to obtain more reliable data. It is verified that the geometric constraint
method has higher runtime efficiency.

During the experiment, it was found that the depth estimation of the PCB image
sequence has a significant error, and the depth of the reflective metal surface and the
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surrounding area does not match the actual depth. This is because the reflection creates
errors in the detection of the feature points. Therefore, the conclusion is drawn that this
type of DFD method has certain requirements for the object’s surface characteristics and
lighting conditions to obtain depth information.

In the two sets of depth maps, the effect of the geometric constraint method is similar
to that of the MRF method. However, the running time of algorithms based on geometric
constraints is quite different. Due to the algorithm’s low complexity, the running time
of the algorithm based on geometric constraints is much shorter than that of the MRF
algorithm. The experimental results show that the geometric constraint method has greater
advantages in smoothness and accuracy than the MRF method. The specific reason may
be that in millimeter-scale scenes, there are fewer picture features. Using Markov random
fields to describe the relationship between the depth of a pixel or region and the depth
of its neighboring pixels or regions does not work well, resulting in reduced accuracy
and smoothness.

For the selection of the K value, according to the experimental results, the larger the
K value, the smaller the experimental group and the shorter the running time. This is a
simple linear relationship. For example, when the K value is 3, there are only nine sets of
depth information, and when the K value is 12, there is only one set.

Therefore, our choice of K value depends to a large extent on the accuracy requirements.
When K is small, such as K = 1, the ambiguity difference of the radius of the estimated
dispersion circle is too small, and accuracy cannot be guaranteed. The larger the K, the
greater the accuracy. The K value is the middle number between the first 30% to 40% of the
number of out-of-focus image sequences, and the effect is better.

There are various methods to improve the computational efficiency and depth estima-
tion effect. However, the operation time is still far from real-time operation speed at the
ms level. One may try to use CUDA programming to speed up the operation. Through
the optimization of the underlying operation method and the hardware GPUization of the
operation, the algorithm can be further optimized, leading to corresponding improvements
to its real-time performance. In the follow-up research, the main goal will be to improve
computing efficiency and reduce the response time.

5. Conclusions

This article involves two methods to solve the problem of depth estimation of de-
focused images in microscopic scenes. Among them, the method based on geometric
constraints uses the principle of real aperture imaging to derive the optimization model
of the point spread function. Then, the constraint conditions are deduced through the
inequality of the blur parameters under the different relationships between the imaging
plane and the focus plane, and the final geometry-based constrained optimization model.

Secondly, for this type of defocused image depth estimation method, a relative dispar-
ity estimation of two images is used to improve a relatively accurate depth information
estimation suitable for multiple images. Finally, the value of the improved parameter and
its evaluation index was obtained through experimental analysis.

In this study, a depth estimation method using defocused images based on Markov
random field was studied and simulated. Through the comparison between the Markov
method and the geometric constraint method, it was found that the geometric constraint
method has obvious advantages in operation efficiency. The method used in the article has
a significant improvement in smoothness and accuracy compared to the Markov method;
the RMS is reduced from 5.01 to 3.33 and the running time is also reduced to about a quarter
of the Markov method’s running time.
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