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DEPTH ESTIMATION WITH OCCLUSION HANDLING FROM A SPARSE SET OF LIGHT

FIELD VIEWS

Xiaoran Jiang, Mikaël Le Pendu∗, Christine Guillemot

INRIA, Rennes, France

ABSTRACT

This paper addresses the problem of depth estimation for every

viewpoint of a dense light field, exploiting information from only

a sparse set of views. This problem is particularly relevant for

applications such as light field reconstruction from a subset of

views, for view synthesis and for compression. Unlike most ex-

isting methods for scene depth estimation from light fields, the

proposed algorithm computes disparity (or equivalently depth)

for every viewpoint taking into account occlusions. In addition,

it preserves the continuity of the depth space and does not require

prior knowledge on the depth range. The experiments show that,

both for synthetic and real light fields, our algorithm achieves

competitive performance to state-of-the-art algorithms which ex-

ploit the entire light field and usually generate the depth map for

the center viewpoint only.

Index Terms— depth estimation, light field, stereo match-

ing, optical flow, low rank approximation

1. INTRODUCTION

Light fields, by capturing light rays emitted by a 3D scene along

different orientations, give a very rich description of the scene

enabling a variety of computer vision applications. The recorded

4D light field can also be regarded as an arrays of views giving

information about the parallax and depth of the scene. Exist-

ing methods for depth estimation from light fields can be classi-

fied into several main categories: methods based on sub-aperture

images (SAI), on epipolar plane images (EPI) or on refocused

images. The methods based on SAI compute matches between

the extracted views, assuming that they are well rectified with a

constant baseline [1, 2]. The authors in [1] use robust PCA to

estimate the disparity which will minimize the rank of the matrix

containing all the views warped on the center one. A method is

described in [2] which instead computes a cost volume based on

the similarity between sub-aperture images and the center view

shifted at sub-pixel locations to evaluate the matching cost of dif-

ferent disparity labels. The authors in [3] apply an optical flow

estimator on a sequence of light field views along an angular di-

mension to estimate several disparity maps which are then ag-

gregated to create a single disparity map which is then converted

into a depth map.
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Another type of methods for plenoptic depth estimation uses

EPIs [4, 5]. Indeed, the slope of the line composed of the cor-

responding pixel in an EPI is proportional to the depth of the

pixel [6]. The authors in [4] use structure tensors to estimate

the local slopes which are then regularized using a variational

labeling framework for global consistency, while a spinning par-

allelogram operator is proposed in [5] to estimate the slopes of

these structures. A third category of methods uses images in a

focal stack and use defocus cues, possibly combined with other

measures, to estimate depth [7, 8]. This relies on the assumption

that in-focus points are projected at the same spatial position in

the different views.

However, most of these methods require that the light field

is densely sampled. Furthermore, the methods using cost vol-

umes or those that consider depth estimation as a multi-labelling

problem require discretizing the depth space. In order to keep

the computational cost within a manageable limit, the number of

discretization levels in these methods should be kept low at the

expense of accuracy. Finally, most methods only compute the

depth map of the center view, hence do not give geometry infor-

mation on pixels which are not visible from this viewpoint, yet

this information may be required for problems such as light field

reconstruction, or view synthesis.

In this paper, we propose a novel depth estimation algorithm

exploiting only a sparse subset of light field views. The method

computes a disparity (or equivalently depth) map for any light

field viewpoint, hence is particularly interesting for applications

such as light field reconstruction or view synthesis from a subset

of views and for compression [9]. Unlike [2,5,7,8], the proposed

method does not demand discretization of the disparity space, nor

prior knowledge about the disparity range. According to the met-

rics defined in [10, 11], the experiments show that our approach

achieves competitive performance compared to state-of-the-art

methods that make use of the whole set of light field views.

2. ALGORITHM OVERVIEW

We consider the 4D representation of light fields defined by a

function L(x, y, u, v) of 4 parameters at the intersection of the

light rays with 2 parallel planes. The light field can be seen as

capturing an array of viewpoints (called sub-aperture images and

denoted by Lu,v) of the scene with varying angular coordinates

u ∈ J1 . . UK and v ∈ J1 . . V K. In this paper, we propose to

estimate one consistent and accurate disparity map per position
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Fig. 1: Algorithm pipeline.

(u, v), given only a sparse subset of light field views. This dis-

parity map can then be easily converted into a depth map.

The algorithm proceeds as follows (cf. Fig. 1). The four

corner views L1,1, LU,1, L1,V and LU,V are taken as input, since

these views contain the geometry of the whole scene, accounting

for disocclusions. Multiple rough disparity estimates for these

input views are first computed using an optical flow estimator.

These candidates are then aggregated by using an energy mini-

mization and the resulting map per input view is further enhanced

by using a novel superpixel-based bilateral filtering. These re-

fined disparity maps are warped to novel viewpoints and a global

inpainting using low rank approximation is performed to fill the

holes. Finally, at each novel viewpoint, warped candidates are

merged with respect to their disparity uncertainty via a winner-

take-all process.

3. DISPARITY ON REFERENCE VIEWS

3.1. Optical flow-based initialization

Let R = {r} denote the set of input viewpoints, with r =

(ur, vr). Horizontal and vertical disparity maps are computed

between each input view Lr and each of the other views Lr′ ,

with r
′ ∈ Rr r, using an optical flow estimator,

dr→r′ =

(

dX
r→r′

dY
r→r′

)

= OpticalF low(Lr, Lr′). (1)

dX
r→r′

and dY
r→r′

are respectively the horizontal and vertical dis-

parity from the view Lr to Lr′ . In the experiments, we used

Epicflow [12], however, any state-of-the-art optical flow estima-

tor can be used.

Assuming that the light field views are well rectified, a scene

point moves only horizontally from position (1, 1) to (U, 1), and

only vertically from position (1, 1) to (1, V ): dX(1,1)→(1,V ) = 0

and dY(1,1)→(U,1) = 0. For simplicity and without loss of general-

ity, we also suppose the 4D light field is a square grid of regularly

spaced views, i.e. U = V and the horizontal and vertical baseline

between views is uniform. Therefore, a set of 4 estimates that

reveal the same disparity information is obtained at view L1,1:

C1,1 = {dX(1,1)→(U,1), d
Y
(1,1)→(1,V ), d

X
(1,1)→(U,V ), d

Y
(1,1)→(U,V )}.

These maps are normalized by dividing them by (U − 1) (where

U is the number of views in each dimension) such that they

represent disparity between adjacent views, assuming a constant

baseline. The sets of estimated maps CU,1, C1,V , CU,V for the

other input views are computed in a similar manner. In the se-

quel, we let dir denote the ith estimated disparity map in the set

Cr.

3.2. Energy minimization

As optical flow estimators only work on pairs of images, which

do not fully exploit angular diversity of all input views, each pair

gives a rough disparity estimate. To have a more reliable estimate

D̃r, r ∈ R, at each pixel p, one disparity value is selected among

all candidates dir(p) by minimizing the energy E

D̃r(p) = argmin
di
r(p)

E(dir,p), (2)

where E(dir,p) denotes the energy value at pixel p computed

using dir. These energy values for all pixels form a so-called

energy map E(dir) expressed as

E(dir) = Ec(d
i
r) + λ1Eg(d

i
r) + λ2Es(d

i
r), (3)

The energy term Ec is a color consistency term computed

between Lr and the projected views as

Ec(d
i
r) =

∑

r′∈Rrr

(

M
r
′,i

r ⊙ E1(Lr, L
r
′,i

r )
)

⊘
∑

r′∈Rrr

M
r
′,i

r ,

(4)

where E1(I, I
′) is defined as the pixel-wise sum of square errors

for the three color components: E1(I, I
′) =

∑

C∈{R,G,B}(IC −

I ′C)2. The symbols ⊘ and ⊙ denote respectively pixel-wise di-

vision and Hadamard product. L
r
′,i

r stands for the warped im-

age from position r
′ to r by using the ith disparity candidate dir.

Here, backward warping is applied, and horizontal and vertical

disparities between r and r
′ are obtained by multiplying the nor-

malized disparity dir by the angular position offset r′ − r. M
r
′,i

r

is the corresponding binary mask discarding the disoccluded pix-

els from the energy summation. If one pixel p falls into holes of

all the warped images using one candidate disparity map dir, (i.e.
∑

r′∈Rrr
M

r
′,i

r (p) = 0) the candidate is discarded for that pixel

by setting Ec(d
i
r,p) to infinity.

The second term Eg is a gradient consistency term computed

between the reference view and the warped views:

Eg(d
i
r) =

∑

r′∈Rrr

(

M
r
′,i

r ⊙ E2(Lr, L
r
′,i

r )
)

⊘
∑

r′∈Rrr

M
r
′,i

r ,

(5)

where E2 denotes the pixel-wise square error on the gradi-

ents: E2(I, I
′) = (∇xI −∇xI

′)2 + (∇yI −∇yI
′)2. Finally,

the smoothness term Es

Es(d
i
r) =

∑

r′∈Rrr

√

E2(dir, Lr)⊙
(

|∇xdir|2 + |∇ydir|2
)

(6)

helps preserving edges. In fact, if an edge (large gradient) in

the disparity map is misaligned with the corresponding one in

the color image, the term E2(d
i
r, Lr) should be high. Otherwise,

when the two edges are aligned, Es does not penalize the energy

in spite of the large gradient of the disparity. In practice, to bring

the disparity map and the color image to the same scale, their

values are both normalized between 0 and 1.



A confidence measure of the selected disparity values can be

deduced based on the minimum energy:

F̃r = exp

(

−
mini E(dir)

2σ2
e

)

(7)

where σe controls the “width” of the distribution.

3.3. Superpixel-based edge-preserving filtering

The previous energy-based voting approach is fast and efficient

to select the most likely disparity value among all candidates.

Nevertheless, the resulting map may benefit from further en-

hancement due to the fact that: 1/- none of the candidate values

may be correct; 2/- the disocclusion masks used in the energy

computation (Eq. 4-5) may be erroneously estimated due to dis-

parity inaccuracy.

To enhance the disparity estimate for each input view, we

propose a novel superpixel-based edge-preserving filtering. We

first identify the pixels with the lowest 5% confidence measure as

the set of pixels Ωr for which the disparity is potentially wrong.

A filtering of these unreliable disparities is performed by com-

puting a weighted average of reliable nearby values:

∀p ∈ Ωr, D̆r(p) =
1

Zp

∑

q∈Np∩Ωr

wp,qD̃r(q), (8)

where Zp is a normalization factor

Zp =
∑

q∈Np∩Ωr

wp,q. (9)

As for the bilateral filter, the weights wp,q are defined as a func-

tion of a spatial Gσs and photometric Gσc kernel as:

wp,q = Gσs(‖p− q‖).Gσc(‖L(p)− L(q)‖)

= exp(−
‖p− q‖

2σ2
s

−
‖L(p)− L(q)‖

2σ2
c

).
(10)

However, unlike classical image-guided bilateral filtering for

which the pixel neighborhood Np is usually a square window

centered in p, in the proposed filter, the neighborhood is defined

by superpixels assuming that pixels inside a superpixel are likely

to have close depth. In our experiments, SLIC [13] implemen-

tation is used. To best adapt the size of the neighborhood to

(a) (b) (c) (d)

Fig. 2: An example of superpixel-based edge-preserving filtering.

(a) Superpixel over-segmentation; (b) Uncertainty (1− F̃ ) measured

on the unfiltered map; (c) Error on the unfiltered disparity map with

respect to the ground truth; (d) Error after filtering with respect to

the ground truth.

the reliability of disparity values, a fine over-segmentation in

superpixels is first performed and if a superpixel si contains

less than 50% of reliable disparity values, then it is merged to

the most similar neighbor superpixel ss ∈ Nsi , Nsi being the

neighborhood of si. The most similar superpixel is chosen by

the following minimization

ss = argmin
sj∈Nsi

∥

∥µ(si)− µ(sj)
∥

∥+
∥

∥var(si)− var(sj)
∥

∥ , (11)

where the mean color µ and the variance var are both calculated

in the CIELAB color space. An example showing the effective-

ness of our superpixel-based filtering is given in Fig. 2.

4. DISPARITY PROPAGATION

The refined disparity map D̆r (r ∈ R) thus obtained for each

input view Lr is projected (forward warping) to the novel po-

sition s ∈ J1 . . UK × J1 . . V K by using the disparity infor-

mation itself. Thus, at each position s, there are four pairs of

warped maps and corresponding inpainting masks (D̆r
s , M̆

r
s ).

We thus construct the matrix H̆ of 4 × U × V columns, each

column being a vectorized warped disparity map with holes:

H̆ =
[

vec(D̆r1
s1
) |. .| vec(D̆r4

s1
) |. .| vec(D̆r1

sN
) |. .| vec(D̆r4

sN
)
]

(N = U × V ). The mask matrix is defined in the similar way:

M̆ =
[

vec(M̆r1
s1

) |. .| vec(M̆r4
s1

) |. .| vec(M̆r1
sN

) |. .| vec(M̆r4
sN

)
]

.

Given that the warped disparity maps are highly correlated, H̆

can be efficiently inpainted using a matrix completion method

which formalizes the problem as

min
Ĥ

rank(Ĥ)

s.t. P
M̆
(Ĥ) = P

M̆
(H̆),

(12)

where P
M̆

is the sampling operator such that P
M̆
(H)

i,j
is equal

to Hi,j if M̆i,j = 1, and zero otherwise.

The low rank matrix completion is solved using the Inex-

act ALM (IALM) method [14]. The inpainting works well in

practice because the disocclusions in the different warped views

are unlikely to overlap. The inpainting is globally performed by

processing all the view positions at the same time. While the

superpixel-based filtering enhances spatial coherence in the dis-

parity of the input views, angular correlation is exploited here.

After inpainting, four disparity maps (D̂r
s , r ∈ R) per view

are extracted from the matrix Ĥ . In order to obtain a unique

disparity map D̂s per view, a pixel-wise winner-take-all selection

is performed based on the confidence values F̂ r
s :

∀s, ∀p, rwin = argmax
r∈R

F̂
r

s (p),

D̂s(p) = D̂
rwin
s (p).

(13)

Contrary to the reference view where the color information can

be exploited to measure the confidence (cf. Section 3.2), here

F̂ r
s is inferred by projecting (forward warping) the confidence

F̃r from the reference view r to the target view s.

Finally, a step of total variation regularization (TV-L1) using

the primal-dual algorithm [15] is applied on the different epipolar

slice images of the resulting disparity maps in order to enforce

view consistency.



Table 1: Quality evaluation of the estimated disparity maps on center view. Our method (4 corner views input) is compared

against two state-of-the-art methods (4D full LF input), namely *LF [2] and SPO [5]. The best results are marked in bold.

MSE*100 BadPix(0.01) BadPix(0.03) BadPix(0.07) Q25

Light fields [2] [5] Ours [2] [5] Ours [2] [5] Ours [2] [5] Ours [2] [5] Ours

StillLife 2.02 1.72 2.56 81.2 76.2 71.3 51.0 32.1 25.0 20.9 6.8 9.2 1.36 1.02 0.87

Buddha 1.13 0.97 0.82 57.7 41.2 34.9 24.4 14.8 12.3 10.1 6.7 5.4 0.51 0.34 0.31

MonasRoom 0.76 0.58 0.53 46.0 42.5 38.6 22.1 17.8 18.6 11.7 7.8 8.2 0.38 0.34 0.33

Butterfly 4.79 0.74 1.84 82.5 78.9 70.8 49.1 48.5 36.0 15.4 14.1 6.7 1.47 1.22 0.85

Boxes 14.15 8.23 12.71 72.7 62.3 65.8 45.5 28.1 37.7 26.4 15.8 23.9 0.89 0.62 0.68

Cotton 9.98 1.44 1.18 60.5 41.7 42.6 23.3 11.1 10.7 8.9 2.7 4.1 0.59 0.36 0.42

Dino 1.23 0.29 0.88 76.6 57.5 49.1 48.4 17.9 20.0 20.9 3.4 9.5 1.08 0.55 0.43

Sideboard 4.16 0.92 10.31 67.8 64.3 61.7 39.3 31.0 37.5 23.0 10.4 19.6 0.73 0.66 0.51

Average 4.78 1.86 3.85 68.1 58.1 54.4 37.9 25.2 24.7 17.2 8.5 10.8 0.88 0.64 0.55

Ours *LF [2] SPO [5] GT / Image

(4 views input) (4D LF input) (4D LF input)

Fig. 3: Visual comparison of the estimated disparity maps on center

view. The first 2 rows are synthetic LFs “Buddha” and “Cotton”, the

last 2 rows are Illum real LFs “Stone Pillars Outside” and “Fruits”.

5. PERFORMANCE ASSESSMENT

The performance of our method has been assessed using different

datasets: both the synthetic LFs from the HCI datasets [10, 16]

and the real ones captured by Lytro Illum cameras [17, 18] are

considered. In our experiments, the center 7 × 7 sub-aperture

views are considered for all test LFs. We have set the parameters

as follows: λ1 = 2, λ2 = 2, σe = 0.1, σs = 2 and σc = 1.

Synthetic data. Ground truth disparity on center view is avail-

able for HCI synthetic light fields. Using the evaluation metrics

defined in [10,11], we compare in Table 1 our scheme against two

state-of-the-art methods, namely *LF [2] and SPO [5]. In our ex-

periments, the number of discretized disparity levels is kept the

same as in [11], i.e. 100 for *LF and 256 for SPO. In order to

achieve satisfying results, both methods require a high sampling

rate on the angular dimension. Despite the fact that our method is

disadvantaged as we only exploit the corner views and infer the

disparity for other views, our method achieves significantly bet-

ter performance than *LF, and comparable results to SPO. Espe-

cially, our method is the best among the three evaluated methods

for BadPix(0.01), BadPix(0.03) and Q25 which indicates “the

best case accuracy” of a given algorithm. One of the main rea-

sons for this gain is that our algorithm preserves continuity of the

disparity space. Nevertheless, for scenes with very fine details,

such as “Sideboard”, the sampling rate (4 input views out of 49

of the light field) turns out to be too low.

Real data. Limited by current technology, real light fields cap-

tured by plenoptic imaging devices are often prone to noise

and distortion, which significantly compromises the accuracy

of many depth estimation algorithms. In Fig. 3, we observe

that SPO performs best on object boundary, but fails to pro-

vide consistent estimates on noisy homogenous zones. Our

algorithm achieves a good balancing between accuracy and

robustness. Readers are invited to view more simulation re-

sults and animations (estimation on every viewpoint) on the

web page https://www.irisa.fr/temics/demos/

lightField/DepthEstim/DepthEstimXR.html. Our

method has been also used to compute disparity maps from

video light fields captured with a Raytrix camera [19] (http://

clim.inria.fr/Datasets/RaytrixR8Dataset-5x5/

index.html).

Runtime. Thanks to the low sampling rate, our algorithm is

comparatively efficient. Simulations have been carried out on

a Macbook Pro with a 2.8GHz Intel Core i7 processor and 16G

RAM. For a light field of resolution 7×7×512×512, it takes ap-

proximately 13 mins to estimate scene depth using our method,

against 63 mins for SPO and 16 mins for *LF. Moreover, our

method generates 49 disparity maps at a time. Note that the code

is written in Matlab and could be further optimized in the future.

6. CONCLUSIONS

In this paper, we have proposed a light field depth estimation

algorithm using only a small subset of light field views and in-

ferring the depth for other views without exploiting the color in-

formation of all the views. The experiments show that, both for

synthetic and real light fields, our algorithm achieves competitive

performance compared with state-of-the-art algorithms, despite

the fact that the algorithm uses much less light field information.

https://www.irisa.fr/temics/demos/lightField/DepthEstim/DepthEstimXR.html
https://www.irisa.fr/temics/demos/lightField/DepthEstim/DepthEstimXR.html
http://clim.inria.fr/Datasets/RaytrixR8Dataset-5x5/index.html
http://clim.inria.fr/Datasets/RaytrixR8Dataset-5x5/index.html
http://clim.inria.fr/Datasets/RaytrixR8Dataset-5x5/index.html
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