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This paper describes a method of extracting depth in-

formation about a scene from a single, static viewpoint.

The. approach uses aperture variation to obtain a se-

quence of images differing only in depth of field, thus

avoiding the 'correspondence problem associated with

stereo and optical flow techniques. These images contain

the necessary coded depth information. By using one

image (that with the smallest aperture) as a reference

and using knowledge of the. Point Spread function

(PSF) of (he system, we can compare the images and

hence obtain a depth map for all those points in the im-

age which have sufficient grey-level gradient. We pro-

pose a r-alislic model for the system. Several methods

of depth extraction from the data are suggested.

The use of focal variation to recover depth information

about a scene has been the subject of several recent

papers [1,2,3]- We begin with an outline of the method

of depth recovery by focus. In section J a new theore-

tical model for the system is introduced. This is fol-

lowed in section II by a discussion of how to obtain

blurred images. We then outline various methods that

are available for solving these systems. We will consider

methods which give an estimate of the solution and

those which give a statistically optimal' solution.

I. THEORY

Basic Principles

Ixt us consider a simple lens system obeying:

1/u + 1/v - 1/F

where I' is the focal length which is constant for a given

lens, v is the distance from the lens to the image plane,

and u is the distance from the lens to the focal ptanc.

All points in the focal plane I(x,y;u) will map to points

in the image plane Ci(x,y); all points in an object plane

I(x,y;u + d), displacement d from the focal plane, will

map to blur circles in the image plane.
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The radius of the blur circle r is related to the distance

from the focal plane d by the following equation [l,4|

r = 1/(20 ( v - F - Fv/(u + d) )

which may be re-written

D = u + d = Fv/(v - P - 2rf)

(1.1)

(1.2)

where I is the f-numbcr2 of the lens and D is the overall

distance from the lens to the object plane. The above

equation demonstrate!? that there is a gradient of focus,

or blur, for points on cither side of the focal plane. This

can be modelled by a transform function II(), which

describes how the camera system blurs a single point

source. This is referred to as the Point Spread Function

(PSF) and is a characteristic of the lens camera system.

Model of System

If we consider a single object plane l(x,y;u + d) then the

output G(x,y) will be the superposition of all the

projected blur circles, radius r, from each point in the

original input. This output G(x,y) can therefore be re-

lated by a convolution of the intensity image of this

plane, l(x,y), with the system's PSF II(x,y,cr) :

G(x.y) = / / H(i;-x,£-y ; a) (2.1)

1 This researcti has been conducted while the author was a pic-university Student at the IBM UK Scientific

Centre.

2 The f-numbcr for a lens is the ratio of the focal length ( I ) of the lens to (lie diameter of the aperture.
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where the PSF is parameterized by ct which equals the
blur radius r and hence the depth of the object plane
u + d via equation 1.2.

For a 3-dimensional input I(x,yy,), the output G(x,y)
will consist of the superposition of all the blur circles
from points at varying depth in the scene, and is there-
fore scene dependent. We propose to model the output
G(x,y) for this superposition as follows:
We assume initially that the shape of the blur circle
from a point is unaffected by neighbouring points in
the scene. Thus we can write this as a space-variant
convolution since the PSF now varies across the image

G(x,y) = (2.2)

where »;, £, are two spatial variables and the PSF II()
is now parametcrised by the set n(^,i).

In other words, if we know the intensity map I(x,y) and
its corresponding depth map D(x,y) for a given
projection of the scene, we can calculate the blur radius
map <r(x,y) using equation 1.1. Thus the intensity
value at G(x,y) will be the weighted sum of all intensity
values in I(fj,f) whose blur circle overlaps the point at
x,y.

Some authors have used the assumption that the blur
remains constant over the blur circle [1,2,3,5|. This re-
duces the region over which this integral is evaluated
to being the area of the blur circle centred on the point
(x,y). The integral is then reduced to the space-
invariant form of convolution:

II. DISCUSSION

In order to obtain the unknown set <r(x,y), we can ei-
ther seek to estimate the parameters by observing some
characteristic of grey-level variation in a single blurred
image, or by comparing two or more images which
differ by some change to the lens system. If we exam-
ine just one image we arc limited in the accuracy to
which we can estimate depth. This accuracy will be
highly dependent on the scene; it will introduce ambi-
guities at rough edges which appear naturally blurred.
I Iowcver, if we look at two or more images, we can
look at the change of blur, which allows us to construct
a more reliable depth map. We need a method of ob-
taining a sequence of images which can be easily com-
pared, and we recommend that these are obtained by
aperture variation. This gives us a sequence of images
which differ only in depth of field and overall intensity,
whereas by varying the focus or position of the camera
we introduce the correspondence problem common to
stcrcopsis and optical flow methods. The change in
overall intensity can be normalised, either when the
data is collected, by using different exposure times or
mutual density filters, or numerically (though this
would affect the dynamic range of the images). Hence
introducing the f-numbcr into our equation and writing
it in the discrete form gives:

G(x,y;f)

• j

<T(i,j;f) = 1/(20 (v - P - I;v/D(i,j))

(2.4)

(2.5)

where I(i,j) is an estimate of the ideal unblurrcd image
and D(i,j) is the unknown depth map.

G(x,y) = / / ; *(x,y)) !(»,,£) «5i,«5£ (2.3) HI. M E T H O D S O F S O L U T I O N

However, I believe this places too great a restriction on
the scene and limits accuracy |4|.

Form of Point Spread Function

From geometrical optics the PSF for a simple camera
system can be shown to be a uniform cylindrical im-
pulse function. However imperfections in the optical
system introduce aberrations (e.g. spherical and chro-
matic aberration). Most important is the effect of
diffraction. The full system can be described by a
complex series of Besscl functions with appropriate
constants [1]. However, for standard optical systems
diffraction effects can be ignored since the aperture di-
ameter is always several orders of magnitude larger than
the wavelength of light. Hence the true PSF for the
"ystem still has the shape of a cylindrical function.
Unfortunately the PSF is therefore a generalised func-
tion and lacks a specific functional form. This has per-
haps led other authors to adopt the use of a Gaussian
PSF which is simpler to manipulate. In fact, the exact-
ness of the PSF probably only becomes significant
when high resolution depth recovery is undertaken.

We have two possible data sets to consider. The first
is where we have an image of the source I(x,y) and one
or more blurred images G(x,y); the second is where
I(x,y) is unknown. The former will be the more useful
since, in order to perform any subsequent scene analy-
sis, we will need the unblurrcd image I(X'Y) of the

We can either choose to solve the problem of obtaining
the set a(x,y) using equation 2.2, or using the simpler
form of equation 2.3. which approximates 2.2 by as-
suming local-invariance within a certain region about
each point. The space-variant form requires a method
of inverse optimisation, whereas the second form can
be solved more directly. Previous work has concen-
trated on solving this simpler model [1,2,3]. The depth
maps obtained by this method will be coarse and will
give, in effect, the average depth over each region. The
practical implementation of this method is straightfor-
ward and fast, which makes it attractive to real-time
applications. The approach requires estimating the high
frequency component of the Fourier spectrum for each
region |1,3,4,5|. The main drawback appears to be that
in order to obtain a stable solution a large region is re-
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quired, but this results in a breakdown of the assump-
tion that blur remains constant over the region. Hence
there is a trade-off between the size of the region and
the stability of the solution. The ultimate size required
to obtain a stable solution therefore constrains the
density of the final depth map.

The new model, however, does not require the image
to be broken up into regions, and therefore the depth
map can be dense. Moreover, it should be reliable, as
any errors may be modelled mathematically and it will
not be prone to the occasional large mismatch errors
common to mistaken correspondence in other tech-
niques. Unfortunately, the solution of the model is
nontrivial and requires the use of an inversion tech-
nique. This is more computationally expensive and so
will be less useful in a real-time application.

Inversion Techniques

Inverting the model requires the deconvolvution of
equation 2.2 which has total parametric uncertainty in
the model. Similar problems involving incomplete
model knowledge also arise in fields such as seismology.
The problems are generally considered to be ill-posed,
by which we mean that they do not satisfy the three
conditions of existence, uniqueness and stability of the
solution. Several methods do exist which in some cases
exploit parallelism.

A simple approach is the least-squared method of resi-
duals whereby a set <T() is "guessed" to minimise the
Chi-squared statistic C in the following equation.

C(<7(U),.,T(n,n)) =

Examples of methods other than the straightforward
unconstrained iterative least squares , which allow the
incorporation of a priori knowledge, are the Maximum
I'ntropy Method [4|, Stochastic relaxation and Simu-
lated Annealing.

It is worth noting that since most methods require it-
cralivcly updating a guessed set <r(), it is quicker to es-
timate a() using a Fourier transform based method
(using the simpler model outlined in the last section),
rather than by starting with a uniform guess for <r().
However, by doing so we introduce a slight bias on
these results and slightly effect the convergence of any
statistical procedure.

IV. PRELIMINARY RESULTS

Image 1.1 shows the intensity image of a computer
generated textured 3-dimcnsional object. Image 1.2
shows the corresponding depth map.

(3.1)

where G(i,j) is the actual noisy data, and G'(ij) is the
predicted data calculated under equation 2.4. using the
"guessed" set <r(). The variance term V(i,j) is related to
the stability of the solution G(i,j) = G'(i,j). It is as-
sumed initially to be uniform but it is in some sense
related to the image I(i,j) and the depth map which
suggests we should use it as a weighting factor to allow
stricter control over the chi-squared statistic [4|.

Equation 3.1 effectively generates a set of solutions
which fit the data. In practice, in order to determine a
unique and stable solution for such an ill-posed prob-
lem, we need to introduce additional a priori informa-
tion (sometimes referred to as regularization functions).
Any a priori constraints can either be in a deterministic
form (arising from physical or geometric considerations
such as positivity) or in some stochastic form (direct
constraints on probability density functions). A
stochastic approach derived from Bayesian probability
theory allows us to coherently handle noisy data and
is an effective method of solving inverse problems of
this nature.
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Imnge I.I - Source Image

Image 1.2 - Depth Map

These images were then used in equation 2.4 to calcu-
late the predicted blurred image (Image 2) that, would
be obtained through a camera with a narrow depth of
field (i.e. with a small f-number).



If we assume a constant error da in determining a then
the error in depth dD is related by the following
equation:

Image 2 - Blurred Image

This image was used as the actual data (j(i,j). We then
calculated the predicted data (i'(i,.j) that would be ob-
tained from a uniform depth map using equation 2.4
and 2.5. Hence the magnitude of the chi-squarcd sta-
tistic in 3.1 tells us how good our estimated uniform
depth map is by comparing the predicted data G'(ij)
with the actual data G(i,j). The derivative of 3.1 with
respect to the estimated depth map gives us a measure
on the iterative change to be made to improve the
depth estimate at each point. The following image was
obtained from image 1.1 and image 2, using constant
variance, and shows this derivative.

Image .? •• Qualitative Depth Information

This derivative shows qualitative evidence that depth
information is recoverable from a blurred image, and it
is used in a first stage of the iterative depth extraction
algorithm (4).

V. DEPTH RESOLUTION

A detailed account of the depth resolution and errors
is beyond the scope of this paper (a more detailed
analysis can be found in 4). Two general observations
are apparent: the depth resolution is directly limited
by the accuracy to which we can determine a; and the
error in determining <r(x,y) depends on the magnitude
of the intensity at I(x,y), the gradient at I(x,y), the
magnitude of o and the accuracy of the algorithm used
to determine it. We will only be able to obtain reliable
depth estimates for those points in I(x,y) which have
sufficient grey-level gradient.

3D/D = ( D/u - 1 ) da/a (4.1)

which gives the following graph for a 2 % error in a,
and u = 2:

1 r
4- 8 B 7

D-pth (M.»r»»>

CONCLUSION

The emphasis in this paper has been to outline the
theory behind depth extraction by focus. We have
proposed a new model which is a more accurate de-
scription of the physical system. This model can be re-
duced under assumptions to the simpler less accurate
form adopted by previous authors; it also allows us to
investigate the theoretical potential of depth informa-
tion obtained from blurred images.
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