
HAL Id: hal-02263385
https://hal-polytechnique.archives-ouvertes.fr/hal-02263385

Submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Depth first forwarding for low power and lossy networks:
Application and extension

Jiazi Yi, Thomas Heide Clausen, Ulrich Herberg

To cite this version:
Jiazi Yi, Thomas Heide Clausen, Ulrich Herberg. Depth first forwarding for low power and lossy
networks: Application and extension. 2014 IEEE World Forum on Internet of Things (WF-IoT), Mar
2014, Seoul, South Korea. pp.462-467, �10.1109/WF-IoT.2014.6803211�. �hal-02263385�

https://hal-polytechnique.archives-ouvertes.fr/hal-02263385
https://hal.archives-ouvertes.fr

Depth First Forwarding for Low Power and Lossy
Networks: Application and Extension

Jiazi Yi, Thomas Clausen
Laboratoire d’Informatique (LIX) – Ecole Polytechnique, France

Jiazi@JiaziYi.com, Thomas@ThomasClausen.org

Ulrich Herberg
Fujitsu Laboratories of America

ulrich@herberg.name

Abstract—Data delivery across a multi-hop low-power and
lossy networks (LLNs) is a challenging task: devices participating
in such a network have strictly limited computational power and
storage, and the communication channels are of low capacity,
time-varying and with high loss rates. Consequently, routing
protocols finding paths through such a network must be frugal
in their control traffic and state requirements, as well as in
algorithmic complexity – and even once paths have been found,
these may be usable only intermittently, or for a very short time
due to changes on the channel. Routing protocols exist for such
networks, balancing reactivity to topology and channel variation
with frugality in resource requirements. Complementary compo-
nent to routing protocols for such LLNs exist, intended not to
manage global topology, but to react rapidly to local data delivery
failures and (attempt to) successfully deliver data while giving a
routing protocol time to recover globally from such a failure.
Specifically, this paper studies the “Depth-First Forwarding
(DFF) in Unreliable Networks” protocol, standardised within the
IETF in June 2013. Moreover, this paper proposes optimisations
to that protocol, denoted DFF++, for improved performance
and reactivity whilst remaining fully interoperable with DFF
as standardised, and incurring neither additional data sets nor
protocol signals to be generated.

I. INTRODUCTION

Low-power and Lossy Networks (LLNs) are often deployed
with constrained devices, under challenging and unreliable
environments. Typical communication and data processing
modules are equipped with CPU in several MHz processing
power, and tens of KBytes of memory. In addition, the com-
munication medium connecting all those devices is “lossy”:
the communication channels are of low capacity, time-varying
and with high loss rates.

Transiting data across such a network, especially when mul-
tiple hops are present between the source and the destination,
is a challenging task: routing protocols finding paths must be
frugal in their control traffic and state requirements, as well
as in algorithmic complexity. To discover appropriate paths
in such networks, protocols such as Light-weight On-demand
Ad hoc Distance-vector Routing Protocol – Next Generation
(LOADng) [1] and IPv6 Routing Protocol for Low-power and
Lossy Networks (RPL) [2] have been developed.

Those routing protocols for LLNs are designed to limit the
routing overhead imposed to networks as much as possible,
and to be adapted to the varying nature of communication
medium. However, even once paths were found, those paths
might be unusable from time to time due to different reasons:
presence of noise or interferences, low power supply in certain

devices, uni-directional links, etc. From a routing protocol
point of view, when such link failure is detected, it needs
some extra signalling and/or time to recover and discover new,
valid routes. During this recovery phase, data packets being
sent over the broken link, must either be buffered and wait for
the route recovery, or be dropped because of lack of memory
in constrained devices.

To alleviate the effects of inevitable random link failures
in LLNs, a set of data forwarding mechanisms have been
proposed [3]. Those mechanisms that work in the “forwarding
plane” use data packet to detect loops, update routing tables,
and reroute data packet through alternative paths when the
primary routes are broken. By doing so, the packets that are
originally forwarded through failed links can be recovered,
instead of being dropped.

“Depth-First Forwarding in Unreliable Networks” (DFF) [4]
is an experimental data forwarding standard which proposes
a mechanism for rapid and localised recovery in case of
link failure. Colloquially speaking, if a device fails in its
attempt to forward a packet to its intended next-hop, then
DFF suggests a heuristics for “trying another of that devices’
neighbours”, while keeping track of (and preventing) packet
loops. While DFF can operate independently, i.e., without a
routing protocol (which amounts to simply doing a depth-first
exploration of the network), it can also be used conjointly
with a routing protocol: the routing protocol can provide an
“order of priority” of the neighbours of a device, in which
data delivery should be attempted – and DFF can also signal
to a routing protocol when data delivery to a destination
has (possibly repeatedly) failed via a neighbour but (possibly
repeatedly) succeeded via another neighbour.

A. Statement of Purpose

This paper explores the application of DFF in LLNs. One
key issue of DFF – selecting appropriate next-hop candidates
for forwarding data packets, is specially discussed. Based on
experiments and observations, an optimisation to the DFF
standard [4], denoted DFF++, is proposed. It offers a procedure
to choose next hops based on previously processed packets,
and reduces unnecessary explorations in the depth-first search.
The extension is of very low impact to DFF protocol: it
does not introduce additional protocol signalling and data
sets, while remaining completely interoperable with DFF as
standardised in [4].

B. Paper Outline
The remainder of this paper is organised as follows. Sec-

tion II provides a brief overview of DFF, as defined in [4], and
section III studies, by way of an example, one of the cardinal
points of the performance of DFF: the ordering of the elements
of Candidate Next Hop List. Section III also identifies a set
of inconveniences in a “naive” (but, perfectly valid, according
to [4]) ordering. [4] stipulates some basic constraints on how
the Candidate Next Hop List is to be ordered, but otherwise
leaves the exact approach and order unspecified. This paper,
therefore, proceeds by proposing a simple and no-overhead
optimisation to DFF, denoted DFF++, in section IV. This
optimisation remains fully interoperable with DFF. Both DFF
and DFF++ are evaluated in section V. As DFF, and as a
consequence DFF++, are able to operate both independently
and conjointly with a unicast routing protocol, this evaluation
will study the performance of DFF/DFF++ alone and when
used with LOADng [5], [1]. Finally, this paper is concluded
in section VI.

II. DEPTH FIRST FORWARDING

DFF [4] is a forwarding mechanism for improving the data
delivery success ratio across unreliable multi-hop networks.
It operates solely on the forwarding plane, i.e., does not
assume any specific routing protocol to be in operation (or,
indeed, that any routing protocol is in operation) – but can, as
appropriate and as indicated in section I of this paper , interact
with a routing protocol. DFF relies on an external mechanism
providing each router with a list of its neighbours.

In order to support the loop detection and duplicate de-
tection, each router running DFF maintains a Processed Set,
which lists sequence numbers of previously received packets,
as well as a list of Next Hops to which the packet has been sent
successively as part of the depth-first forwarding mechanism.

Schematically, the basic operation of DFF is as follows,
when a data packet for a destination arrives at the forwarding
plane of a router:

1) The router temporarily creates an ordered Candidate
Next Hop list for that packet, which does not contain
the neighbour from which the data packet was received
(if any), from among the neighbours in the router’s
neighbour list.

2) The router attempts to forward the data packet to the
first neighbour in the resulting Candidate Next Hop list.

3) There are five possible outcomes from this attempt:
a) The Candidate Next Hop list is empty, in which

case the data packet is returned to the neighbour
from which it was initially received, and the pro-
cess for this router stops.

b) Delivery to that neighbour succeeds (e.g., as con-
firmed by an L2 acknowledgement), and that
neighbour is the destination for the data packet.
The L2 acknowledgement indicates successful data
packet delivery to the destination. The process for
this router stops.

c) Delivery to that neighbour fails (e.g., detected by
lack of an L2 acknowledgement), in which case
that neighbour is removed from the Candidate Next
Hop list, and the process resumes at step 2 above.

d) Delivery to that neighbour succeeds (e.g., as con-
firmed by an L2 acknowledgement), but the data
packet is returned from the neighbour as “undeliv-
erable”, in which case that neighbour is removed
from the Candidate Next Hop list, and the process
resumes at step 2 above, with the resulting Candi-
date Next Hop list.

e) Delivery to that neighbour succeeds (e.g., as con-
firmed by an L2 acknowledgement), the neighbour
is not the destination for the data packet. That
neighbour will, now, execute this very same proce-
dure (create its own Candidate Next Hop list, and
execute this process starting at step 1).

The initial Candidate Next Hop list for a data packet, by
default, contains all the neighbours of a router, except for
the neighbour from which the data packet was received, but
may be smaller. The list is ordered, section 11 in [4] suggests
several criteria to take into account when ordering that list,
including that if a routing protocol is in operation, then the
neighbour on the shortest path (as indicated by that routing
protocol) must be part of the initial Candidate Next Hop list
– and is recommended to be first in that initial Candidate
Next Hop List. Link quality, historical information on “good
and bad neighbours as next hop” is suggested to be used for
ordering remaining neighbours.

DFF contains mechanisms for detecting looping data pack-
ets, encoded as flags and sequence numbers in IPv6 Hop-by-
Hop header options, carried in each data packet, and specifies
processing here. This incurs a small, but fixed, per-data-
packet overhead of 8 octets. This paper does not discuss this
signalling and processing in further details.

III. ORDERING THE CANDIDATE NEXT HOP LIST

Section II, has introduced the basic operations of DFF,
indicating that a key operational parameter is the ordering of
elements in the Candidate Next Hop List for a data packet.
To elaborate on this parameter, this section will consider the
example in figure 1, where device A sends a data packet to
device D, and which arrives at B – the sole neighbour of A.

A. Ideal Ordering and Default Ordering

The ideal ordering of the elements in the Candidate Next
Hop List for that data packet in B would list F and G
first, followed by E. The ideal list would not include C
at all. Absent topological information (maintained by some
external process), however, B would by default populate the
initial Candidate Next Hop List with all of its bi-directional
neighbours, except for A, would not be able to determine
that E should be listed after F and G, nor that C should be
excluded from the list. This, would lead to a “blind” search for
all the DFF forwarded data packets. Indeed, in this example

constructing the Candidate Next Hop List lexicographically –
{C, E, F, G} – would lead to the worst possible search order.

B. Ordering with Unicast Routing Protocol

If a unicast routing protocol is in place, as suggested by
section 11 in [4], that routing protocol would provide B
with information that F (or G) is the next hop identified
on the shortest path to D, and therefore allow B to ensure
that the first element in the Candidate Next Hop List for a
data packet for D would be F. Unless if the routing protocol
provides multiple paths or a complete topology in each device
– unlikely, given that the application space is constrained
devices with limited memory – the remainder of the list would
have to be constructed without any additional guidance from
the routing protocol as to a specific order of elements. A
simple lexicographical order of the remaining elements, as in
the above, would result in {F, C, E, G}.

C. When Links Break

The Candidate Next Hop List order, obtained when using
a unicast routing protocol as illustrated above, is better than
without – but is still not ideal. Consider that with the Candidate
Next Hop List being {F, C, E, G}, and data packets being
successfully transmitted from A to D along the path A-B-F-D.
Now, the link between device B and F breaks – which would
be detected by B when trying to forward a data packet to F.
B would then remove F from the Candidate Next Hop List,
and forward it to the next entry – C. As C is not on any route
route to device D, the packet would eventually be returned to
device B, after having traversed the network indicated in the
“cloud” in figure 1, and B would be able to remove C from
the Candidate Next Hop List for that data packet.

D. Candidate Next Hop List Per Packet

[4] specifies that the Candidate Next Hop List is constructed
per data packet. [4] also specifies that DFF may signal to
the routing protocol when delivery to a next hop, indicated
by the routing protocol, fails such that the routing protocol
can take corrective action (e.g., remove the entries from the
routing table, corresponding to the failed next hop, and initiate
recovery as specified by the routing protocol). In the example
above, if DFF signals to the routing protocol that F has failed,
and if the routing protocol then removes routing table entries
indicating F as next hop, then for all subsequent data packets
to D (until the routing protocol recovers and establishes a new
entry in the routing table), the initial Candidate Next Hop List
will be {C, E, G} – back to the “worst case” default ordering.

IV. DFF++: THE DESTINATION FIELD EXTENSION

As introduced in section II, when data delivery of a data
packet fails, DFF removes the failed “next hop entry” from the
Candidate Next Hop List for that data packet, and forwards
the data packet to the next entry (if any) in that list. Section III
illustrated, by way of an example, that while DFF thus may
eventually succeed in delivering data packets to the intended
destination, the efficiency of that operation – the path-length

A

Devices not connected
to Device D

B

C

D

F

G

E H

Figure 1. An example of DFF. device A sends packets to device D. Dahsed
line is broken link.

and number of forwards of a data packet – depends on the
ordering of entries in that Candidate Next Hop List. As the
Candidate Next Hop List is constructed per-packet, several
subsequent data packets to the same destination may take the
same “detour” through the network (or, in the example in
figure 1, all explore the same “blind alley” in the network
by way of C) – either persistently, or, if a unicast routing
protocol is also operating in the network, until such time that
that unicast routing protocol has recovered from the failure
and provided a new entry for the destination in the routing
table.

This section proposes a simple extension to DFF, henceforth
denoted DFF++, for establishing “memory” across several
data packets for the same destination. In the interest of being
frugal with required state, this extension (i) piggy-bags off
information already maintained by DFF, and (ii) maintains
information only temporarily, for as long as DFF otherwise
maintains information pertaining to forwarded packets.

A. State

In order to support loop and duplicate detection, each
device running DFF maintains a Processed Set, which records
sequence numbers of previously received data packets, as
well as a list of next hops to, which each data packet has
been successively sent, as part of the depth-first forwarding
mechanism. Without going into the details of the loop and
duplicate detection mechanisms in DFF (refer to [4]), the
“Processed Set” consists of “Processed Tuples”, of the form:

(P_orig_address, P_seq_number,

P_prev_hop, P_next_hop_neighbor_list,

P_time)

where:
• P_orig_address is the originator address of the re-

ceived packet;
• P_seq_number is the sequence number of the received

packet;
• P_prev_hop is the address of the previous hop of the

packet;
• P_next_hop_neighbor_list is a list of addresses of

next hops to which the packet has been sent previously,

as part of the depth-first forwarding mechanism;
• P_time specifies when this tuple expires and must be

removed.
The proposed DFF++ extensions adds an element to each

such tuple, thus:
(P_orig_address, P_seq_number,

P_prev_hop, P_next_hop_neighbor_list,

P_time, P_dest_address)

where:
• P_dest_address indicates the destination address of the

received packet.
The proposed DFF++ extension also imposes an additional

constraint on P next hop neighbor, which is that:
• P_next_hop_neighbor must be ordered such that the

last element (P_next_hop_neighbor_list[LAST]) of
that list contains the last neighbour, to which delivery to
P dest address was attempted (and all previous entries
in that list contain successively earlier attempts, with the
first element of the list containing the first neighbour, to
which delivery was attempted).

B. Processing

On receiving a data packet, not destined to itself, DFF++
defines the following process for selecting an ordered
Candidate Next Hop List (CNHL), within the constraints and
guidelines from section 11 in [4].

Find the (unique) Processed Tuple, where:
• P_dest_address == the destination address of the data

packet; AND
• which has the greatest P_time.

Using that tuple, the CHNL is constructed thus (where ⊕ indi-
cates list concatenation, \ indicates list exclusion, RT(address)
is the next hop on the shortest path to the destination from the
routing table – if any, and NS indicates the set of neighbours
of the device):

1) CNHL = RT(P_dest_address)
2) CHNL = CHNL⊕ P_next_hop_neighbor_list[LAST]
3) CHNL = CHNL ⊕ {NS\ {P_prev_hop} \

P_next_hop_neighbor_list}
4) CHNL = CHNL ⊕ P_next_hop_neighbor_list

Where 1) satisfies the requirement from [4] that first element
in the CNHL is the next hop, indicated by a routing table (if
present). Items 2) and 3) capture “pick up where the most
recent data packet delivery to the same destination left off”.
Specifically, 2) is the neighbour, last tried for the most recent
packet to the same destination, and which is not yet confirmed
as having failed (in which case there would be a subsequent
entry in the list, except if all neighbours had been tried and
failed), 3) includes all other so far untried (by the most
recent data packet delivery for this destination) neighbours.
Finally, 4) – which is an optional step in DFF++ – includes
all previously (by the most recent data packet delivery) tried
neighbours – excluding, of course, the one from which the

data packet was received – capturing the fact that a previous
failure may have been due to transient losses.

C. Impact

Adding and using P dest address, as described above, al-
lows construction of the Candidate Next Hop List to make use
of information on previous data packet forwards to the same
destination.

Returning to the example in figure 1, one of the issues raised
in section III-C, and detailed in section III-D, is alleviated:

1) The initial Candidate Next Hop List for the first data
packet arriving at B for destination D will – using the
same ordering (routing table entry first, then the the
“worst-case” lexicographical order) be {F, C, E, G}.

2) Initial delivery is attempted via F (which is added to
the end of P next hop neighbor list) and fails, and
delivery via C is attempted (which is added to the end
P next hop neighbor list).

3) Delivery via C also fails (no path via C to D), and
delivery is now attempted via E (which is added to
the end of P next hop neighbor list) – as there is
a valid path to D via E, delivery succeeds, and the
P next hop neighbor[LAST] for that processing tuple
now contains E.

4) Other data packet for D, arriving at B, before the routing
protocol (if any) has recovered and provided an entry in
the routing table for D, will, using the DFF++ Candidate
Next Hop List construction rules given in section IV-B,
result in a Candidate Next Hop List of:

• If they arrive after step 3), {E, G} – thus avoiding
the “broken link” to F, as well as the “blind alley”
that would be attempting delivery via C.

• If they arrive after step 2) but before step 3), {C, E,
G} – thus avoiding the “broken link” to F, but not
the “blind alley” that would be attempting delivery
via C

• If they arrive before step 2), {F, C, E, G} – thus
offering no improvement over DFF, but also no
additional penalty.

Note that DFF++ avoids the problem of repeatedly attempt-
ing delivery to a given destination via “blind alleys” and
over “recently detected broken links”, but does not attempt at
offering “shortest paths” – that remains under the auspices of
a routing protocol (if any) in the network. Also, DFF++ does
not affect interoperability: the extension does not introduce
any new signals or any new external behaviours, but simply
offers guidance for how to order the Candidate Next Hop List
for a data packet. The specification of DFF [4] specifically
encourages an intelligent ordering, and DFF++ does just that.
As that ordering of the Candidate Next Hop List for a data
packet concerns only internal processing of a device, DFF
and DFF++ remain interoperable. DFF++ can furthermore
be deployed with exactly the same (or no) unicast routing
protocols as DFF.

V. SIMULATION AND ANALYSES

In order to evaluate the performance of DFF++, and com-
pare its performance to that of DFF, network simulations by
way of NS2 are employed. While network simulations are, at
best, an approximation of real-world performance (particularly
due to the fidelity of their lower layers to reality), they do
provide a baseline for comparison and, generally, best-case
results, i.e., real-world performance is expected to be no
better than that which is obtained through simulations. The
reason for using network simulations is that it allows running
experiments with different protocols under identical conditions
and parameters (MAC layer, distribution, number of nodes,
etc.).

Simulations were conducted using the TwoRayGround prop-
agation model and the IEEE 802.11 MAC. Although there are
various low-layer technologies more commonly (and, perhaps,
more viably) used for LLNs (power line communication,
802.15.4, low-power wifi, bluetooth low energy, etc.), general
behaviours of a protocol can be inferred from simulations
using 802.11.

DFF and DFF++ were evaluated both in isolation (without
a concurrently operating unicast routing protocol) and when
used in conjunction with the Lightweight On-Demand Ad hoc
Distance-vector Next Generation (LOADng) routing protocol,
standardised for use in, e.g., SmartGrid/SmartMeter Automatic
Metering Infrastructure (AMI) networks [5], [1] – and, com-
pared with LOADng operating alone in the same networks, so
as to evaluate the benefits of DFF and DFF++, respectively.
In total, five different protocol combinations were evaluated:

• DFFonly: DFF according to [4], with Neighbourhood
Discovery Protocol (NHDP) [6] used for bi-directional
neighbour discovery, suggested by [4].

• DFF++only: As described in section IV, with [6].
• LOADng: LOADng, according to [1].
• LOADngDFF: LOADng with DFF ([4], [6] and [1]).
• LOADngDFF++: LOADng with DFF++ ([1] + the pro-

cess described in section IV and with [6]).

A. Network Topology and Traffic Characteristics

The general network topology of a scenario is as follows:
n (from 63 to 500) devices are placed randomly (while
ensuring that the network is still connected) in a square field,
such that to maintain a constant device density. There are
n − 1 Constant Bit Rate (CBR) streams in the network. The
original node of the CBR stream (chosen randomly) sends one
packet of 512 octets every 5 seconds to a destination (chosen
randomly). As DFF is supposed to be particularly beneficial
in lossy networks the simulations enforce that a packet is lost
with a probability of 20%. Simulations were run for 100s each,
and for each datapoint 20 different and randomly generate
scenarios – all corresponding to the same abstract parameters –
were simulated, with the results presented below representing
averages from among these.

For NHDP [6], a HELLO message interval must be chosen.
The shorter the HELLO message interval, the more accurate a

list of neighbours can be acquired (and so, the better can DFF
and DFF++ do their jobs) – but at the expense of increased
control traffic overhead. For the purpose of these simulations, a
HELLO interval of 1s was (arbitrarily) chosen as it represents
a “very frequent” HELLO message exchange and therefore
a good “worst case” example. In a deployment, the HELLO
interval should be selected so as to correspond to the expected
local network topology change rate.

B. Simulation Results

Figure 2 depicts the packet deliver ratio of the different pro-
tocols combination. When DFF (DFFonly and DFF++only) is
running without an external routing protocol, DFF++ offers a
significant improvement of the packet delivery ratio over DFF.
The lower performance, experienced when running without
an external routing protocol is due to depth first searching
being inefficient, worst case causing a complete transversal
of the network graph for each data packet. DFF, used with
LOADng, yields about 20 percentage points improvement of
the delivery ratio, as compared to LOADng alone, and DFF++
used with LOADng further improves the data delivery ratio –
albeit marginally so.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 100 150 200 250 300 350 400 450 500

D
e

liv
e

ry
 r

a
ti
o

Number of nodes

DFFonly
DFF++only

LOADngDFF
LOADng

LOADngDFF++

Figure 2. Average data packet delivery ratio

Figure 3 depicts the average end-to-end delays – and it
should be noted, particularly for this figure, that only data
packets that successfully arrive the destination are accounted
in the statistics. DFF and DFF++ alone exhibit significantly
greater delays than when running with LOADng – balance
with the data delivery ratio in figure 2, this is noteworthy:
combining DFF/DFF++ yields lower delays and better data
delivery. LOADng alone exhibits a slightly lower delay than
when compared with DFF and DFF++ – which is compen-
sated by the fact that inclusion of DFF/DFF++ increases the
data delivery ratios obtained by approximately 20 percentage
points.

Figure 4 depicts the average path length (of successfully
delivered packets), i.e., the number of hops required for a
packet to reach its destination. When running without an
external routing protocol, the “blind” depth-first search of DFF
causes 6-7 times as long paths as LOADng – with DFF++
offering shorter path lengths than DFF. When combined with
LOADng, both DFF and DFF++ yield significantly shorter

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300 350 400 450 500

D
e

la
y
 (

s
)

Number of nodes

DFFonly
DFF++only

LOADngDFF
LOADng

LOADngDFF++

Figure 3. Everage end-to-end delay

path lengths, as compared to DFF/DFF++ alone – and slightly
longer path-lengths than when running LOADng alone. This,
again, is explained by the fact that LOADng with DFF/DFF++
increases the data delivery ratio.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250 300 350 400 450 500

A
v
e

ra
g

e
 p

a
th

 l
e

n
g

th
 (

h
o

p
s
)

Number of nodes

DFFonly
DFF++only

LOADngDFF
LOADng

LOADngDFF++

Figure 4. Average path length

Figure 5 illustrate the control packet overhead. For DFF and
DFF++ without an external routing protocol, the overhead is
constituted from locally exchanged HELLO messages, gener-
ated by NHDP to discover the bi-directional neighbours. When
introducing LOADng (either alone, or in conjunction with
DFF/DFF++), the protocol overhead of that routing protocol
for route discovery (see [7] for details) is also imposed on the
network, and causes additional MAC layer collisions.

VI. CONCLUSION

This paper studies the application of depth-first forwarding
in LLNs, and presented a minimal-impact optimisation to
DFF [4], denoted DFF++. DFF++ is fully interoperable with
DFF; it offers a procedure for ordering the Candidate Next
Hop List for a data packet to be forwarded at a device.
Using DFF++ alleviates some problems of DFF, such as
repeatedly trying to forward traffic down “blind alleys” and
across recently detected broken links. Performance studies
comparing DFF and DFF++ alone (without a concurrently

operating unicast routing protocol) have revealed the benefits
of this optimisation to be significant: DFF++ attains a higher

 0

 50000

 100000

 150000

 200000

 250000

 50 100 150 200 250 300 350 400 450 500

O
v
e

rh
e

a
d

 (
b

y
te

s
/s

e
c
)

Number of nodes

DFFonly
DFF++only

LOADngDFF
LOADng

LOADngDFF++

Figure 5. Control packet overhead

data delivery rate, shorter paths and lower data delivery delays
than DFF.

Neither DFF nor DFF++ attempt to offer “shortest paths”
– that remains under the auspices of a routing protocol, and
both DFF and DFF++ are intended to operate concurrently
with a unicast routing protocol. For the purpose of this study,
the unicast routing protocol LOADng [5] has been tested
with and without DFF/DFF++. A first observation is that the
performance of both DFF and DFF++ is significantly improved
by operating conjointly with LOADng. A second observation
is, that the data delivery ration of LOADng also is significantly
improved by the use of either of DFF and DFF++ – but
that LOADng with DFF++ offers a moderate, but consistently
better, performance when compared to LOADng with DFF.

DFF++ attains these performance improvements without
introducing new control signals, minimal additional state (a
single IP address added to an existing data set) and low imple-
mentation complexity – and, remains completely interoperable
with DFF, as specified in [4].

REFERENCES

[1] T. Clausen, A. C. de Verdiere, J. Yi, A. Niktash, Y. Igarashi, H. Satoh, and
U. Herberg, “The lln on-demand ad hoc distance-vector routing protocol -
next generation,” The Internet Engineering Task Force, July 2013, internet
Draft, work in progress, draft-clausen-lln-loadng.

[2] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, and J. Vasseur, “RPL: IPv6 Routing Protocol for Low power
and Lossy Networks,” March 2012, IETF RFC 6550.

[3] S. Cespedes, A. Cardenas, and T. Iwao, “Comparison of data forwarding
mechanisms for ami networks.” Proceedings of 2012 IEEE Innovative
Smart Grid Technologies Conference (ISGT), January 2012.

[4] U. Herberg, A. Cardenas, T. Iwao, M. Dow, and S. Cespedes, “Depth-first
forwarding (dff) in unreliable networks,” Experimental RFC 6971, June
2013.

[5] “ITU-T G.9903: Narrow-band orthogonal frequency division multiplexing
power line communication transceivers for G3-PLC networks: Amend-
ment 1,” May 2013.

[6] T. Clausen, C. Dearlove, and J. Dean, “Mobile Ad Hoc Network Neigh-
borhood Discovery Protocol,” Std. Track RFC 6130, April 2010.

[7] T. Clausen, J. Yi, and A. C. de Verdiere, “Loadng: Towards aodv version
2.” in VTC Fall. IEEE, 2012, pp. 1–5.

