
ARTIFICIAL INTELLIGENCE

C1.:C5-197-85

Depth -First Iterativ e-Deepening:

An Optimal Admissible Tree Search *

ABSTRACT

Richard E. Korf**

Department of Computer Science, Columbia University.
New York, NY 10027, U.S.A.

97

The complailits of various search algorithms are consuured in ~rms of time. space. and cost of

solwion path. It is known that breadth·first search requires tOO much space and depth·first Starch can

UM too much time and d~n't always find a cheapest path. A depth·first iterative·deepening

algorithm is shown to be asymptotically optimal along all three dimmsions for exponential tree

searches. The algorithm has been used succt$Sfully in chess programs, has bun effectively combined

with bi-directional search. and has been applied to best·first heuristic search as well. This heuristic

depth·first iterative· deePening algorithm is the only known algorithm that is capable of finding

optimal solUtions to randomly generated instances of the Fif/un Puzzle within practical resource

limits.

1. Introduction

Search is ubiquitous in artificial intelligence. The performance of most AI
systems is dominated by the complexity of a search algorithm in their inner

loops. The standard algorithms. breadth-first and depth-first search, both have

serious limitations, which are overcome by an algorithm called depth-first

iterative-deepening. Unfortunately, current AI texts either fail to mention this

algorithm [10, II, 14], or refer to it only in the context of two-person game

searches [I, 16]. The iterative·deepening algorithm, however, is completely

general and can also be applied to uni-directional search. bi-directional search.

and heuristic searches such as A·. The purposes of this article are to demon

strate the generality of depth-first iterative-deepening, to prove its optimality

for exponential tree searches, and to remind practitioners in the field that it is

the search technique 'of choice for many applications.

Depth-first iterative-deepening has no doubt been rediscovered many times

• This research was supported in part by the Defense Advanced Research Projects Agency under

contract NOOO39-82·C-0427, and by the National Science Foundation Division of Information

Science and Technology grant IST·84-18879 .

• • Present address: Department of Computer Science, University of California, Los Angeles. CA

90024, U.S.A.

Arrificial Intelligence 27 (1985) 97-109

0004-3702/85/S3.30 © 1985. Elsevier Science Publishers B.V. (North-Holland)

98 R.E. KORF

independently. The first use of the algorithm that is documented in the

literature is in Slate and Atkin's Chess 4.5 program [15]. Berliner [2] has

observed that breadth-first search is inferior to the iterative-deepening al

gorithm. Winston [16] shows that for two-person game searches where only

terminal-node static evaluations are counted in the cost, the extra computation

required by iterative-deepening is insignificant. Pearl [12] initially suggested the

iterative-deepening extension of A·, and Berliner and Goetsch [3] have im

plemented such an algorithm concurrently with this work.

We will analyze several search algorithms along three dimensions: the

amount of time they take. the amount of space they use, and the cost of the

solution paths they find. The standard breadth-first and depth-first algorithms

will be shown to be inferior to the depth-first iterative-deepening algorithm.

We will prove that this algorithm is asymptotically optimal along all three

dimensions for exponential tree searches. Since almost all heuristic tree sear

ches have exponential complexity, this is a fairly general result.

We begin with the problem-space model of Newell and Simon [9]. A
problem space consists of a set of states and a set of operators that are partial

functions that map states into states. A problem is a problem space together

with a particular initial state and a set of goal states. The task is to find a

sequeflce of operators that will map the initial state ~o a go~1 state.

The ~omplexity of a problem will be expressed in terms of two parameters:

the branching factor of the problem space. and the depth of solution of the

problem. The node branching factor (b) of a problem is defined as the number

of new states that are generated by the application of a single operator to a

given state. averaged over all states in the problem space. We will assume that

the branching factor is constant throughout the problem space. The depth (d)

of solution of a problem is the length of the shortest sequence of operators that

map the initial state into a goal state. The time cost of a search algorithm in

this model of computation is simply the number of states that are expanded.

The reason for this choice is that we are interested in asymptotic complexity

and we assume that the amount of time is proportional to the number of states

expanded. Similarly, since we assume that the amount of space required is

proportional to the number of states that are stored, the asymptotic space cost

of an algorithm in this model will be the number of states that must be stored.

This work is focused on searches which produce optimal solutions. We

recognize that for most applications, optimal solutions are not required and

that their price is often prohibitive. There are occasions. however, when

optimal solutions are needed. For example. in assessing the quality of non

optimal solutions, it is often enlightening to compare them to optimal solutions

for the same problem instances.

2. Breadth-First Search

We begin our discussion with one of the simplest search algorithms, breadth-

DEPTH-FIRST ITERATIVE-DEEPENING 99

first search. Breadth-first search expands all the states one step (or operator

application) away from the initial state. then expands all states two steps from

the initial state, then three steps. etc .. until a goal state is reached. Since it

always expands all nodes at a given depth before expanding any nodes at a

greater depth. the first solution path found by breadth-first search will be one

of shortest length. In the worst case. breadth-first search must generate all

nodes up to depth d. or b + b 2 + b3 + ... + bd which is O(b d
). Note that on the

average, half of the nodes at depth d must be examined. and therefore the

average-case time complexity is also O(b d
).

Since all the nodes at a given depth are stored in order to generate the nodes

at the next depth. the minimum number of nodes that must be stored to search

to depth d is bd
-

I
• which is O(bd

). As with time, the average-case space

complexity is roughly one-half of this, which is also O(bd
). This space

requirement of breadth-first search is its most critical drawback. As a practical

matter, a breadth-first search of most problem spaces will exhaust the available

memory long before an appreciable amount of time is used. The reason fOF this

is that the typical ratio of memory to speed in modern computers is a million

words of memory for each million instructions per second (MIPS) of processor

speed. For example. if we can generate a million states per minute and require

a word to store each state, memory will be exhausted in one minute.

3. Depth-First Search

Depth-first search avoids this memory limitation. It works by always generating

a descendant of the most recently expanded node. until some depth cutotf is

reached, and then backtracking to the next most recently expanded node and

generating one of its descendants. Therefore, only the path of nodes from the

initial node to the current node must be stored in order to execute the

algorithm. If the depth cutoff is d, the space required by depth-first search is

only Oed).

Since depth-first search only stores the current path at any given point. it is

bound to search all paths down to the cutoff depth. In order to analyze its time

complexity. we must define a new parameter. called the edge branching factor

(e), which is the average number of different operators which are applicable to

a given state. For trees. the edge and node branching factors are equal, but for

graphs in general the edge branching factor may exceed the node branching

factor. For example, the graph in Fig. 1 has an edge branching factor of two,

while its node branching factor is only one. Note that a breadth-first search of

this graph takes only linear time while a depth-first search requires exponenti-al

time. In general. the time complexity of a depth-first search to depth d is O(e
d

).

Since the space used by depth-first search grows only as the log of the time

required. the algorithm is time-bound rather than space-bound in practice.

Another drawback, however, to depth-first search is the requirement for an

arbitrary cutoff depth. If branches are not cut off and duplicates are not

100

.. . .
, '.

FIG.!. Graph with linear number of nodes but exponential number of paths.

R.E. KORF

checked for, the algorithm may not terminate. In general, the depth at which

the first goal state appears is not known in advance and must be estimated. If

the estimate is too low, the algorithm terminates without finding a solution. If

the depth estimate is too high, then a large price in running time is paid rel<~tive

to an optimal search. and the first solution found may not be an optimal one.

4. Deptb-F1rst Iterative-Deepening

A search algorithm which suffers neither the drawbacks of breadth-first nor

depth-first search on trees is depth-first iterative-deepening (DFID). The al

gorithm works as follows: First, perform a depth-first search to depth one.

Then. discarding the nodes generated in the first search, start over and do a

depth-first search to level two. Next, start over again and do a depth-first

search to depth three. etc .. continuing this process until a goal state is reached.

Since DFID expands all nodes at a given depth before expanding any nodes

at a greater depth. it is guaranteed to find a shortest-length solution. Also.

since at any given time it is performing a depth-first search, and never searches

deeper than depth d, the space it uses is O(d).

The disadvantage of DFID is that it performs wasted computation prior to

reaching the goal depth. In fact. at first glance it seems very inefficient. Below,

however. we present an analysis of the running time of DFID that shows that

this wasted computation does not affect the asymptotic growth of the run time

for exponential tree searches. The intuitive reason is that almost all the work is

done at the deepest level of the search. Unfortunately. DFID suffers the same
drawback as depth-first search on arbitrary graphs, namely that it must explore

all possible paths to a given depth.

Definition 4.1. A brute-force search is a search algorithm that uses no in

formation other than the initial state, the operators of the space, and a test for

a solution.

Theorem 4.2. Depth -first iterative-deepening is asymptotically optimal among

brute-force tree searches in terms of rime, space, and length of solution.

DEPTH-FIRST ITERATIVE-DEEPENING 101

Proof. As mentioned above, since DFID generates all nodes at a given depth

before expanding any nodes at a greater depth. it always finds a shortest path

to the goal. or any other state for that matter. Hence, it is optimal in terms of

solution length.

Next, we examine the running time of DFID on a tree. The nodes at depth d

are generated once during the final iteration of the search. The nodes at depth

d - 1 are generated twice. once during the final iteration at depth d, and once

during the penultimate iteration at depth d - 1. Similarly, the nodes at depth

d - 2 are generated three times, during iterations at depths d, d - 1, and d - 2.

etc. Thus the total number of nodes generated in a depth-first iterative

deepening search to depth d is

Factoring out bd gives

Letting x = 1/ b yields

This is less than the infinite series

which converges to

Since (1- x r 2
, or (1- 1/ b r 2

, is a constant that is independent of d, if b > 1

then the running time of depth-first iterative-deepening is O(bd
).

To see that this is optimal, we present a simple adversary argument. The

number of nodes at depth d is bd
• Assume that there. exists an algorithm that

examines less than bd nodes. Then, there must exist at least one node at depth

d which is not examined by this algorithm. Since we have no additional

information, an adversary could place the only solution at this node and hence

the proposed algorithm would fail. Hence, any brute-force algorithm must take

at least cb d time, for some constant c.

Finally, we consider the space used by DFID. Since DFID at any point is

engaged in a depth-first search. it need only store a stack of nodes which

rep~esents the branch of the tree it is expanding. Since it finds a solution of

optimal length, the maximum depth of this stack is d, and hence the maximum

amount of space is O(d).

102 R.E. KORF

I
9~

I
I

8r

7l

6

....
!0.-

S a:a -I -- 4

3

2

L _________________ _

o~--~--~--~--~--~--~----~--~--~
2 . 3 4 s 6 7 8 9

Branching Factor B

FiG. 2. Graph of branching factor vs. constant coefficient as search depth goes to infinity.

To show that this is optimal. we note that any algorithm which uses f(n) time

must use at least k log f(n) space for some constant k [7]. The reason is that

the algorithm must proceed through f<n) distinct states before looping or

terminating, and hence must be able to store that many distinct states. Since

storing f(n) states requires log f(n) bits, and log bd is d log b, any brute-force

algorithm must use kd space, for some constant k. 0

The value of the constant (l-l/br2 gives an upper bound o~ how much

computation is wasted in the lower levels of the search, since it is the limit of

the constant coefficient as the search depth goes to infinity. Fig. 2 shows a

graph of this constant versus the branching factor. As the branching factor

increases, the constant quickly approaches one. For branching factors close to

one, however, the value of the constant coefficient approaches infinity as the depth

goes to infinity.

S. Bi-Directional Search

For those problems with a single goal state that is given explicitly and for which

the operators have inverses, such as the Fifteen Puzzle, bi-directional search

DEPTH· FIRST ITERA TIVE·DEEPENING 103

[13] can be used. Bi-directional search trades space for time by searching forward

from the initial state and backward from the goal state simultaneously, storing the

states generated, until a common state is found on both search frontiers.

Depth-first iterative-deepening can be applied to bi-directional search as follows:

A single iteration consists of a depth-first search from one direction to depth k,
storing only the states at depth k, and two depth-first searches from the other

direction, one to depth k and one to depth k + 1, not storing states but simply

matching against the stored states from the other direction. The search to depth

k + 1 is necessary to find odd-length solutions. This is repeated for k from zero (to

find solutions of length one) to d/2. Assuming that a hashing scheme is used to

perform the matching in constant time per node, this algorithm will find an

optimal solution of length d in time O(b di2
) and space O(bdi2

). In experiments

involving Rubik's Cube [8], which has an effective branching factor of 13.5, this

algorithm was used to find solutions up to 11 moves long on a DEC V AX 11/780.

6. Heuristic Search

Depth-first iterative-deepening can also be combined with a best-first heuristic

search such as A· [6]. The idea is that successive iterations correspond not to

increasing depth of search, but rather to increasing values of the total cost of a

path. For A·, this total cost is composed of the cost so far in reaching the node

(g) plus the estimated cost of the path from the node to a goal state (h).

Iterative-deepening-A· (IDA·) works as follows: At each iteration. perform a

depth-first search, cutting off a branch when its total cost (g + h) exceeds a
given threshold. This threshold starts at the estimate of the cost of the initial

state, and increases for each iteration of the algorithm. At each iteration. the

threshold used for the next iteration is the minimum cost of all values that

exceeded the current threshold.

A well-known property of A· is that it always finds a cheapest solution path if

the heuristic is admissible, or in other words never overestimates the actual

cost to the goal [6]. This property also holds for iterative-deepening-A·.

Furthermore, IDA· expands the same number of nodes, asymptotically, as A·

in an exponential tree search.

The proofs of these results are much simpler and more intuitive if we restrict

our attention to cost functions which are monotonically non-decreasing along

any path in the problem space. Such a heuristic is called monotone or consistent

[11]. Formally,

Definition 6.1. A cost function f(n) is monotone if for all nodes nand sen),

where sen) is a successor of n, f(n)~f(s(n».

This restriction is not essential, and slightly more complex proofs will es

tablish the same results without it. As a practical matter. however, almost all

104 R.E. KORF

reasonable cost functions are monotone [llJ. In fact. using an idea proposed by

Mera [17], we can formally make this assumption without loss of generality, as

shown in the following lemma.

Lemma 6.2. For any admissible cost function f, we can construct a monotone

admissible function f' which is at least as informed as f.

Proof. We construct I' recursively from f as follows: if. n is the initial state,

then I'(n) = f(n); otherwise. I'(s(n» = max[f(s(n», I'(n)]. Clearly, f' is mono
tone since I'(n) ~ I'(s(n ». In order to show that I' is admissible. note that I'(n)

is equal to the maximum value of f applied to all the predecessors of n along

the path back to the initial state. Since f is admissible, the maximum value of f
along a path is a lower bound on the cost of that path, and hence a lower

bound on the cost of n. Thus, I' does not violate admissibility. Furthermore, I'
is at least as informed as f since for all n, I'(n) ~ f(n) and hence I'(n) is at least
as accurate an estimate as f<n). • 0

Note that this lemma provides a simple and intuitive proof of the ad
missibility of A·. If we restrict our attention to cost functions which are

monotone non-decreasing, and A· always expanQs the open node of least cost,.

it is clear that the first solution it finds will be one of least cost. Similarly. the

result below follows just as easily.

Lemma 6.3. Given an admissible monotone cost function, iterative-deepening
A· will find a solution of least cost if one exists.

Proof. Since the initial cost cutoff of IDA· is the heuristic estimate of the cost

of the initial state, and the heuristic never overestimates cost, the length of the

shortest solution cannot be less than the initial cost cutoff. Furthermore, since

the cost cutoff for each succeeding iteration is the minimum value which

exceeded the previous cutoff, no paths can have a cost which lies in a gap

between two successive cutoffs. Therefore, since IDA· always expands all

nodes at a given cost before expanding any nodes at a greater cost. the first

solution it finds will be a solution of least cost. 0

Not only does IDA· find a cheapest path to a solution and use far less space
than A·, but it expands approximately the same number of nodes as A· in a

tree search. Combining this fact with several recent results on the complexity

and optimality of A· allows us to state and prove the following general

result:

Theorem 6.4. Given an admissible monotone heuristic with constant relative
error. then iterative-deepening-A * is optimal in terms of solution cost. time.

and space. over the class of admissible best-first searches on a tree.

DEPTH-ARST ITERATIVE-DEEPENING 105

Proof. From Lemma 6.3. we know that IDA· produces a solution of optimal

cost.

To determine the time used by IDA·, consider the final iteration, in other

words the one which finds a solution. It must expand all descendents of the

initial state with values greater than or equal to the initial cost estimate and less

than the optimal solution cost, plus some number of nodes whose cost equals

the optimal solution cost. If A· employs the tie-breaking rule of 'most recently

generated', it must also expand these same nodes. Thus, the final iteration of

IDA· expands the same set of nodes as A· under this tie-breaking rule.

Furthermore, if the graph is a tree, each of these nodes will be expanded
exactly once. IDA· must also expand nodes during the previous iterations as

well. However, Pearl has shown that if the heuristic used by A· exhibits

constant relative error, then the number of nodes generated by the algorithm

increases exponentially with depth [11]. Thus, we can use an argument similar to

the proof of Theorem 4.2 to show that the previous iterations of IDA· dQ not

affect the asymptotic order of the total number of nodes [18]. Thus, IDA • expands

the same number of nodes, asymptotically, as A·. Furthermore, a recent result of

Dechter -and Pearl [5] shows that A· is optimal, in terms of number of nodes

expanded, over the class of admissible best-first searches with monotone

heuristics. Therefore, IDA· is asymptotically optimal in t,erms of time for tree

searches.

Since the number of nodes grows exponentially, we can again appeal to the

argument in the proof of Theorem 4.2 to show that the space used by IDA· is

also asymptotically optimal. 0

Is the assumption of constant relative error, i.e. that the error in the estimate

grows at the same rate as the magnitude of the actual cost. valid for heuristics?

Pearl observes that heuristics with better accuracy almost never occur in

practice. For example, most physical measurements are subject to constant

relative error [11]. Thus, we can conclude that heuristic depth-first iterative

deepening is asymptotically optimal for most best-first tree searches which

occur in practice.

An additional benefit of IDA· over A· is that it is simpler to implement

since there are no open or closed lists to be managed. A simple recursion

performs the depth-first search inside an outer loop to handle the iterations.

As an empirical test of the practicality of the algorithm, both IDA· and A·

were implemented for the Fifteen Puzzle. The implementations were in PASCAL

and were run on a DEC 2060. The heuristic function used for both was the

Manhattan distance heuristic: for each movable tile, the number of grid units

between the current position of the tile and its goal position are computed. and

these values are summed for all tiles. The two algorithms were tested against 100

randomly generated. solvable initial states. IDA· solved all instances with a

median time of 30 CPU minutes. generating over 1.5 million nodes per minute.

The average solution length was 53 moves and the maximum was 66 moves. A·

106 R.E. KORF

solved none of the instances since it ran out of space after about 30 000 nodes

were stored. An additional observation is that even though IDA· generated

more nodes than A·, it actually ran faster than A· on the .same problem

instances, due to less overhead per node. The data from this experiment are

summarized in Table 1. These are the first published optimal solution lengths

to randomly generated instances of the Fifteen Puzzle. Although the Fifteen

Puzzle graph is not strictly a tree, the edge branching factor is only slightly

greater than the node branching factor, and hence the iterative-deepening

algorithm is still effective.

TABLE 1. Optimal solution lengths for 100 randomly generated Fifteen Puzzle

instances using iterative-deepening-A· with Manhattan distance heuristic func-

tion

NUMBER INITIAL STATE ESTIMATE ACTUAL TOTAL NODES

1 14 13 15 1 11 12 9 5 6 0 2 1 4 8 10 3 41 51 216.361.933
2 13 5 4 10 9 12 8 14 2 3 1 1 0 15 11 6 43 55 15.300.442
3 14 1 8 2 13 11 10 4 9 12 5 0 3 6 1 15 41 59 S65. 994. 203
4 5 12 10 1 15 11 14 0 8 2 1 13 3 4 9 6 42 56 62.643.119
5 4 1 14 13 10 3 9 12 11 5 6 15 1 2 8 0 42 56 11.020.325
6 14 1 1 9 12 3 6 15 8 11 2 5 10 0 4 13 36 52 32.201.660
7 2 11 15 5 13 4 6 1 12 8 10 1 9 3 14 0 30 52 381.138.094
8 12 11 15 3 8 0 4 2 6 13 9 ~ 14 1 10 1 32 50 39.118.931
9 3 14 ~ 11 5 4 8 2 13 12 6 7 10 1 15 0 32 46 1.650.696
10 ·13 11 8 9 0 15 1 10 4 3 6 14 5 12 2 1 43 59 198.158.703
11 5 9 13 14 6 3 7 12 10 8 4 C 15 2 11 1 43 51 1SO. 346.012
12 14 1 9 6 4 8 12 5 7 2 3 0 10 11 13 15 35 45 546.344
13 3 6 5 2 10 0 15 14 1 4 13 12 9 8 11 1 36 46 11.861. 705
14 7 6 8 1 11 5 14 10 3 4 9 13 15 2 0 12 41 59 1.369.596.718
15 13 11 4 12 1 8 9 15 6 5 14 2 7 3 10 0 44 62 543.598.067
16 1 3 2 5 10 9 15 6 8 14 13 11 12 4 7 0 24 42 11.984.051
17 15 14 0 4 11 1 6 13 7 5 8 9 3 2 10 12 46 66 607.399.560
18 6 0 14 12 1 15 9 10 11 4 1 2 8 3 5 13 43 55 23.711.061
19 7 11 8 3 14 0 6 15 1 4 13 9 5 12 2 10 36 46 1. 280.495
20 6 12 11 3 13 1 9 15 2 14 8 10 4 1 5 0 36 52 11.954.810
21 12 8 14 6 11 4 7 0 5 1 10 15 3 13 9 2 34 54 257.064.810
22 14 3 9 1 15 8 4 5 11 7 10 13 0 2 12 6 41 59 750.146.755
23 10 9 3 11 0 13 2 14 5 6 4 1 8 15 1 12 33 49 15.911.319
24 7 3 14 13 4 1 10 8 5 12 9 11 2 15 6 0 34 54 42.693.209
25 11 4 2 7 1 0 10 15 6 9 14 8 3 13 5 12 32 52 100.734.844
26 5 7 3 12 15 13 14 8 0 10 9 6 1 4 2 11 40 58 226.668.645
27 14 1 8 15 2 6 0 3 9 12 10 13 4 7 5 11 33 53 306.123.421
28 13 14 6 12 4 5 1 0 9 3 10 2 15 11 8 7 36 52 5.934.442
29 9 8 0 2 15 1 4 14 3 10 1 5 11 13 6 12 38 54 111.016.111
30 12 15 2 6 1 14 4 8 5 3 1 0 10 13 9 11 35 41 2.196.593
31 12 8 15 13 1 0 5 4 6 3 2 11 9 7 14 10 38 50 2.351.811
32 14 10 9 4 13 6 5 8 2 12 7 0 1 3 11 IS 43 59 661.041.936
33 14 3 5 15 11 6 13 9 0 10 2 12 4 1 7 8 42 60 480,637.861
34 6 11 1 8 13 2 5 4 1 10 3 9 14 0 12 15 36 52 20.671,552
35 1 6 12 14 3 2 15 8 4 5 13 9 0 7 11 10 39 55 47.506,056
36 12 6 0 4 7 3 15 1 13 9 8 11 2 14 5 10 36 52 59.802.602
31 8 1 7 12 11 0 10 5 9 15 6 13 14 2 3 4 40 58 280.018.791
38 7 15 8 2 13 6 3 12 11 0 4 10 9 5 1 14 41 53 24.492.852
39 9 0 4 10 1 14 15 3 12 6 5 7 11 13 8 2 35 49 19,355.806
40 11 5 1 14' 4 12 10 0 2 7 13 3 9 15 6 8 36 54 63.216.188
41 8 13 10 9 11 3 15 6 0 1 2 14 12 5 4 1 36 54 51.501.544
42 4 5 7 2 9 14 12 13 0 3 6 11 8 1 15 10 30 42 877.023
43 11 15 14 13 1 9 10 4 3 6 2 12 1 5 8 0 48 64 41.124.761
44 12 9 0 6 8 3 5 14 2 4 11 7 10 1 15 13 32 50 95.733.125
45 3 14 9 7 12 15 0 4 1 8 5 6 1: 10 2 13 39 51 6.158.733
46 8 4 6 1 14 12 2 15 13 10 9 5 3 7 0 11 35 49 22.119.320
47 6 10 1 14 15 8 3 5 13 0 2 7 4 9 11 12 35 47 1.411.294
48 8 11 4 6 7 3 10 9 2 12 15 13 0 1 5 14 39 49 1. 905.023
49 10 a 2 4 5 1 6 Il 11 13 9 1 15 3 14 8 33 59 1.809,933.698
50 12 5 13 11 2 10 0 9 7 8 4 3 14 6 15 1 39 53 63.036.422
51 10 2 8 4 15 0 1 14 11 13 3 6 9 7 5 12 44 56 26.622.863

DEPTH.FIRST ITERATIVE-DEEPENING

TABU: 1. Continued

INITIAL STATE ESTIMATE ACIUAL TOTAL NODES

52 10 8 0 12 3 7 6 2 1 14 4 11 15 13 9 5
53 14 9 12 13 15 4 8 10 0 2 1 7 3 11 5 6
54 12 11 0 8 10 2 13 15 5 4 7 3 6 9 14 1
55 13 8 14 3 9 1 0 7 15 5 4 10 12 2 6 11
56 3 15 2 5 11 6 4 7 12 9 1 0 13 14 10 8
57 5 11 6 9 4 13 12 0 8 2 15 10 1 7 3 14
58 5 0 15 8 4 6 1 14 10 11 3 9 7 12 2 13
59 15 14 6 7 10 1 0 11 12 8 4 9 2 5 13 3
60 11 14 13 1 2 3 12 4 15 7 9 5 10 6 8 0
61 6 13 3 2 11 9 5 10 1 7 12 14 8 4 0 15
62 4 6 12 0 14 2 9 13 11 8 3 15 7 10 1 5
63 8 10 9 11 14 1 7 15 13 4 0 12 6 2 5 3
64 5 2 14 0 7 8 6 3 11 12 13 15 4 10 9 1
65 7 8 3 2 10 12 4 6 11 13 5 15 0 1 9 14
66 11 6 14 12 3 5 1 15 8 0 10 13 9 7 4 2
67 7 1 2 4 8 3 6 11 10 15 0 5 14 12 13 9
68 7 3 1 13 12 10 5 2 8 0 6 11 14 15 4 9
69 6 0 5 15 1 14 4 9 2 13 8 10 11 12 7 3
70 15 1 3 12 4 0 6 5 2 8 14 9 13 10 7 11
71 5 7 0 11 12 1 9 10 15 6 2 3 8 4 13 14
72 12 15 11 10 4 5 14 0 13 7 1 2 9 8 3 6
73 6 14 10 5 15 8 7 1 3 4 2 0 12 9 11 13
74 14 13 4 11 15 8 6 9 0 7 3 1 2 10 12 5
75 14 4 0 10 6 5 1 3 9 2 13 15 12 7 8 11
76 15 10 8 3 0 6 9 5 1 14 13 11 7 2 12 4
77 0 13 2 4 12 14 6 9 15 1 10 3 11 5 8 7
78 3 14 13 6 4 15 8 9 5 12 10 0 2 7 1 11
79 0 1 9 7 11 13 5 3 14 12 4 2 8 6 10 15
80 11 0 15 8 13 12 3 5 10 1 4 6 14 9 7 2
81 13 0 9 12 11 6 3 5 15 8 1 10 4 14 2 7
82 14 10 2 1 13 9 8 11 7 3 6 12 15.5 4 0
~3 ·12 3 9 1 4 5 10 2 6 11 15 0 14 7 13 8
84 15 8 10 7 0 12 14 1 5 9 6 3 13 11 4 2
85 4 7 13 10 1 2 9 6 12 8 14 5 3 a 11 15
86 6 0 5 10 11 12 9 2 1 7 4 3 14 8 13 15
87 9 5 11 10 13 0 2 1 8 6 14 12 4 7 3 15
88 15 2 12 11 14 13 9 5 1 3 8 7 0 10 6 4
89 11 1 7 4 10 13 3 8 9 14 0 15 6 S 2 12
90 5 4 7 1 11 12 14 15 10 13 8 6 2 0 9 3
91 9 7 5 2 14 15 12 10 11 3 6 1 8 13 a 4
92 3 2 7 9 a 15 12 4 6 11 5 14 8 13 10 1
93 13 9 14 6 12 8 1 2 3 4 0 7 5 10 11 15
94 5 7 11 8 0 14 9 13 10 12 3 15 6 1 4 2
95 4 3 6 13 7 15 9 0 10 5 8 11 2 12 1 14
96 1 7 15 14 2 6 4 9 12 11 13 3 0 8 5 10
97 9 14 5 7 8 15 1 2 10 4 13 6 12 0 11 3
98 0 11 3 12 5 2 1 9 8 10 14 15 7 4 13 6
99 7 15 4 0 10 9 2 5 12 11 13 6 1 3 14 8
100 11 4 0 8 6 10 5 13 12 7 14 3 1 2 9 15

COAL STATE

012 3
456 7
8 9 10 11

12 13 a 15

LEGEND

ESTIMATE
ACTUAL
TOTAL NODES

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7. Two-Person Games

38
so
40
29
29
36
37
35
48
31
43
40
31
31
41
28
31
37
30
30
38
37
46
30
41
34
41
28
43
39
40
31
37
32
35
34
43
36
36
41
37
34
45
34
35
32
34
39
38

56. 377.141.881
64 465.225.698
56 220.374.385
41 927.212
55 1.199.487.996
so 8.841.527
51 12.955.404
57 1.207.520.464
66 3.337.690.331
45 7.096.850
57 23.540.413
56 995.472.712
51 260.054.152
47 18.997.681
61 1.957.191.378
50 252.783.878
51 64.367.799
53 109.562.359
52 151.042.571
44 8.885.972
56 1.031.641.140
49 3.222.276
56 1.897.728
48 42.772.589
57 126.638.417
54 18.918.269
53 10.907.1SO
42 540.860
57 132.945.856
53 9,982.569

.62 5,506.801,123
49 65,533.432
55 106.074.303
44 2.725.456
45 2.304.426
52 64.926.494
65 6,009.130.748
54 166.571.097
50 7.171.137
57 602.886.858
57 1.101.072.541
46 1.599.909
53 1.337.340
so 7.115.967
49 12.808.564
44 1.002.927
54 183.526.883
57 83.477.694
54 67.880.056

Initial heur1st1c est1mate
Length of optimal solution
Total number of states generated

107

In the discussion so far, we have assumed a single-agent search to find a

solution to a problem, and have been concerned with minimizing time and

space subject to a fixed solution depth and branching factor. However. a

108 R.E. KORF

two-person game such as chess with static evaluation and mini-max search is a

somewhat different situation. In this case, we assume that accuracy of the static

evaluation increases with increasing search depth, and hence we want to

maximize search depth subject to fixed time and space constraints. Since

depth-first iterative-deepening minimizes, at least asymptotically, time and

space for any given search depth. it follows that it maximizes the depth of

search possible for any fixed time and space restrictions as well.
Another reason that DFID is used in game programs is that the amount of

time required to search the next deeper level in the tree is not known when the

ply begins, and the search ply may have to be aborted due to time constraints.

In this case, the complete search at the next shallower depth can be used to

make the move.

Finally, the information from previous iterations of a DFID search can be

used to order the nodes in the search tree so that alpha-beta cutoff is more

efficient. In fact, the best move at a given iteration has been shown .experi

mentally to terminate the next iteration in about 70% of cases. This improve
ment in ordering, which is critical to alpha-beta efficiency, is only possible with

the use of iterative-deepening [4].

8. Conclusions

The standard algorithms for brute-force search have serious drawbacks.

Breadth-first search uses too much space, and depth-first search in general uses

too much time and is not guaranteed to find a shortest path to a solution. The

depth-first iterative-deepening algorithm, however, is asymptotically optimal in

terms of cost of solution, running time, and space required for brute-force

tree searches. DFID can also be applied to bi-directional search. heuristic

best-first search. and two-person game searches. Since almost all heuristic
searches have exponential complexity, iterative-deepening-A· is an optimal

admissible tree search in practice. For example, IDA· is the only known algorithm

that can find optimal paths for randomly generated instances of the Fifteen Puzzle

within practical time and space constraints.

ACKNOWLEDGEMENT

Judea Pearl originally suggested the application of iterative-deepening to A'. Hans Berliner pointed

out the use of iterative-deepening for ordering nodes to maximize alpha-beta cutoffs. Michael

Lebowitz. Andy Mayer. and Mike Townsend read earlier drafts of this paper and suggested many

improvements. Andy Mayer implemented the A· algorithm that was compared with IDA·. An

anonymous referee suggested the shoncomings of depth-first search on a graph with cycles. Finally.

Jodith Fried drew the figures.

REFERENCES

1. Barr, A. and Feigenbaum, E.A. (Eds.), Handbook of Arrificiallntelligtmu (Kaufmann, U:>s Altos.

CA, 1981).

DEPTH-FIRST ITERA TIYE·DEEPENING 109

2. Berliner. H .. Search. Artificial Intelligence Syllabus. Department of Computer Science. Carnegie

Mellon University. Pitlsburgh. PA. 1983.

3. Berliner. H. and Goetsch, G .• A quantilalive study of search methods and the effect of constraint

satisfaction. Tech. Rept. CMU-CS-84-147, Department of Computer Science. Carnegie-Mellon

I)niversity. Pitlsburgh. PA. 1984.

4. Berliner, H., Personal communication. 1984.

5. Dechter. R. and Pearl. J .• The optimality of A· revisited. in: Proceedings of (he National

Conference on Artificial Intelligence. Washington. DC (August. 1983) 9S-99.

6. Hart. P.E .• Nilsson. N.J. and Raphael. B .• A formal basis for the heuristic determination of

minimum cost paths. IEEE Trans. Syst4ms Sci. Cybenut. 4(2) (1968) 100-107.

7. Hopcroft. J.E. and Ullman. J.D .. Introduction to Automata Theory. Languages. and Computation

(Addison-Wesley, Reading. MA. 1979).

8. Korf. R.E .• Learning to Sol~ Problems by ~arching for Macro-Operators (Pittman. London.

1985).

9. Newell. A. and Simon, H.A.. Human Problem Solving (Prentice-Hall. Englewood Cliffs. NJ.

1972).

10. Nilsson. N.J .• Principles of Artificial Intelligence (Tioga. Palo Alto. CA, 1980).

11. Pearl. J .• Heuristics (Addison-Wesley, Reading. MA, 1984).

12. Pearl. J .• Personal communication. 1984.

13. Pohl. I.. Bi-directional search. in: B. Meltzer and D. Michie (Eds.). Machi~ Intelligence 6

(American Elsevier. New York. 1971) 127-140.

14. Rich. E .• Artificial Intelligence (McGraw-Hill. New York. 1983).

15. Slate. DJ. and Atkin, L.R., CHESS 4.5- The Northwestern University Chess Program (Springer

Verlag, New York. 1977).

16. Winston: P.H .• Artificial Intelligence (Addison:Wesley. Reading. MA. 1984).

17. Mer6. L.. A heuristic search algorithm with modifiable estimate. Artificial Intelligence 2J (1984)

13-21.

18. Korf. R.E .• lterative-deepening-A·: an optimal admissible tree search, in: Proceedings Ninth

International Joint Conference on Artificial Intelligence, Los Angeles, CA, 1985.

Received December 1984; revised version received March 1985

