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The complailits of various search algorithms are consuured in ~rms of time. space. and cost of 

solwion path. It is known that breadth·first search requires tOO much space and depth·first Starch can 

UM too much time and d~n't always find a cheapest path. A depth·first iterative·deepening 

algorithm is shown to be asymptotically optimal along all three dimmsions for exponential tree 

searches. The algorithm has been used succt$Sfully in chess programs, has bun effectively combined 

with bi-directional search. and has been applied to best·first heuristic search as well. This heuristic 

depth·first iterative· deePening algorithm is the only known algorithm that is capable of finding 

optimal solUtions to randomly generated instances of the Fif/un Puzzle within practical resource 

limits. 

1. Introduction 

Search is ubiquitous in artificial intelligence. The performance of most AI 
systems is dominated by the complexity of a search algorithm in their inner 

loops. The standard algorithms. breadth-first and depth-first search, both have 

serious limitations, which are overcome by an algorithm called depth-first 

iterative-deepening. Unfortunately, current AI texts either fail to mention this 

algorithm [10, II, 14], or refer to it only in the context of two-person game 

searches [I, 16]. The iterative·deepening algorithm, however, is completely 

general and can also be applied to uni-directional search. bi-directional search. 

and heuristic searches such as A·. The purposes of this article are to demon

strate the generality of depth-first iterative-deepening, to prove its optimality 

for exponential tree searches, and to remind practitioners in the field that it is 

the search technique 'of choice for many applications. 

Depth-first iterative-deepening has no doubt been rediscovered many times 
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independently. The first use of the algorithm that is documented in the 

literature is in Slate and Atkin's Chess 4.5 program [15]. Berliner [2] has 

observed that breadth-first search is inferior to the iterative-deepening al

gorithm. Winston [16] shows that for two-person game searches where only 

terminal-node static evaluations are counted in the cost, the extra computation 

required by iterative-deepening is insignificant. Pearl [12] initially suggested the 

iterative-deepening extension of A·, and Berliner and Goetsch [3] have im

plemented such an algorithm concurrently with this work. 

We will analyze several search algorithms along three dimensions: the 

amount of time they take. the amount of space they use, and the cost of the 

solution paths they find. The standard breadth-first and depth-first algorithms 

will be shown to be inferior to the depth-first iterative-deepening algorithm. 

We will prove that this algorithm is asymptotically optimal along all three 

dimensions for exponential tree searches. Since almost all heuristic tree sear

ches have exponential complexity, this is a fairly general result. 

We begin with the problem-space model of Newell and Simon [9]. A 
problem space consists of a set of states and a set of operators that are partial 

functions that map states into states. A problem is a problem space together 

with a particular initial state and a set of goal states. The task is to find a 

sequeflce of operators that will map the initial state ~o a go~1 state. 

The ~omplexity of a problem will be expressed in terms of two parameters: 

the branching factor of the problem space. and the depth of solution of the 

problem. The node branching factor (b) of a problem is defined as the number 

of new states that are generated by the application of a single operator to a 

given state. averaged over all states in the problem space. We will assume that 

the branching factor is constant throughout the problem space. The depth (d) 

of solution of a problem is the length of the shortest sequence of operators that 

map the initial state into a goal state. The time cost of a search algorithm in 

this model of computation is simply the number of states that are expanded. 

The reason for this choice is that we are interested in asymptotic complexity 

and we assume that the amount of time is proportional to the number of states 

expanded. Similarly, since we assume that the amount of space required is 

proportional to the number of states that are stored, the asymptotic space cost 

of an algorithm in this model will be the number of states that must be stored. 

This work is focused on searches which produce optimal solutions. We 

recognize that for most applications, optimal solutions are not required and 

that their price is often prohibitive. There are occasions. however, when 

optimal solutions are needed. For example. in assessing the quality of non

optimal solutions, it is often enlightening to compare them to optimal solutions 

for the same problem instances. 

2. Breadth-First Search 

We begin our discussion with one of the simplest search algorithms, breadth-



DEPTH-FIRST ITERATIVE-DEEPENING 99 

first search. Breadth-first search expands all the states one step (or operator 

application) away from the initial state. then expands all states two steps from 

the initial state, then three steps. etc .. until a goal state is reached. Since it 

always expands all nodes at a given depth before expanding any nodes at a 

greater depth. the first solution path found by breadth-first search will be one 

of shortest length. In the worst case. breadth-first search must generate all 

nodes up to depth d. or b + b 2 + b3 + ... + bd which is O(b d
). Note that on the 

average, half of the nodes at depth d must be examined. and therefore the 

average-case time complexity is also O(b d
). 

Since all the nodes at a given depth are stored in order to generate the nodes 

at the next depth. the minimum number of nodes that must be stored to search 

to depth d is bd
-

I
• which is O(bd

). As with time, the average-case space 

complexity is roughly one-half of this, which is also O(bd
). This space 

requirement of breadth-first search is its most critical drawback. As a practical 

matter, a breadth-first search of most problem spaces will exhaust the available 

memory long before an appreciable amount of time is used. The reason fOF this 

is that the typical ratio of memory to speed in modern computers is a million 

words of memory for each million instructions per second (MIPS) of processor 

speed. For example. if we can generate a million states per minute and require 

a word to store each state, memory will be exhausted in one minute. 

3. Depth-First Search 

Depth-first search avoids this memory limitation. It works by always generating 

a descendant of the most recently expanded node. until some depth cutotf is 

reached, and then backtracking to the next most recently expanded node and 

generating one of its descendants. Therefore, only the path of nodes from the 

initial node to the current node must be stored in order to execute the 

algorithm. If the depth cutoff is d, the space required by depth-first search is 

only Oed). 

Since depth-first search only stores the current path at any given point. it is 

bound to search all paths down to the cutoff depth. In order to analyze its time 

complexity. we must define a new parameter. called the edge branching factor 

(e), which is the average number of different operators which are applicable to 

a given state. For trees. the edge and node branching factors are equal, but for 

graphs in general the edge branching factor may exceed the node branching 

factor. For example, the graph in Fig. 1 has an edge branching factor of two, 

while its node branching factor is only one. Note that a breadth-first search of 

this graph takes only linear time while a depth-first search requires exponenti-al 

time. In general. the time complexity of a depth-first search to depth d is O(e
d

). 

Since the space used by depth-first search grows only as the log of the time 

required. the algorithm is time-bound rather than space-bound in practice. 

Another drawback, however, to depth-first search is the requirement for an 

arbitrary cutoff depth. If branches are not cut off and duplicates are not 
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FIG.!. Graph with linear number of nodes but exponential number of paths. 
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checked for, the algorithm may not terminate. In general, the depth at which 

the first goal state appears is not known in advance and must be estimated. If 

the estimate is too low, the algorithm terminates without finding a solution. If 

the depth estimate is too high, then a large price in running time is paid rel<~tive 

to an optimal search. and the first solution found may not be an optimal one. 

4. Deptb-F1rst Iterative-Deepening 

A search algorithm which suffers neither the drawbacks of breadth-first nor 

depth-first search on trees is depth-first iterative-deepening (DFID). The al

gorithm works as follows: First, perform a depth-first search to depth one. 

Then. discarding the nodes generated in the first search, start over and do a 

depth-first search to level two. Next, start over again and do a depth-first 

search to depth three. etc .. continuing this process until a goal state is reached. 

Since DFID expands all nodes at a given depth before expanding any nodes 

at a greater depth. it is guaranteed to find a shortest-length solution. Also. 

since at any given time it is performing a depth-first search, and never searches 

deeper than depth d, the space it uses is O(d). 

The disadvantage of DFID is that it performs wasted computation prior to 

reaching the goal depth. In fact. at first glance it seems very inefficient. Below, 

however. we present an analysis of the running time of DFID that shows that 

this wasted computation does not affect the asymptotic growth of the run time 

for exponential tree searches. The intuitive reason is that almost all the work is 

done at the deepest level of the search. Unfortunately. DFID suffers the same 
drawback as depth-first search on arbitrary graphs, namely that it must explore 

all possible paths to a given depth. 

Definition 4.1. A brute-force search is a search algorithm that uses no in

formation other than the initial state, the operators of the space, and a test for 

a solution. 

Theorem 4.2. Depth -first iterative-deepening is asymptotically optimal among 

brute-force tree searches in terms of rime, space, and length of solution. 
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Proof. As mentioned above, since DFID generates all nodes at a given depth 

before expanding any nodes at a greater depth. it always finds a shortest path 

to the goal. or any other state for that matter. Hence, it is optimal in terms of 

solution length. 

Next, we examine the running time of DFID on a tree. The nodes at depth d 

are generated once during the final iteration of the search. The nodes at depth 

d - 1 are generated twice. once during the final iteration at depth d, and once 

during the penultimate iteration at depth d - 1. Similarly, the nodes at depth 

d - 2 are generated three times, during iterations at depths d, d - 1, and d - 2. 

etc. Thus the total number of nodes generated in a depth-first iterative

deepening search to depth d is 

Factoring out bd gives 

Letting x = 1/ b yields 

This is less than the infinite series 

which converges to 

Since (1- x r 2
, or (1- 1/ b r 2

, is a constant that is independent of d, if b > 1 

then the running time of depth-first iterative-deepening is O(bd
). 

To see that this is optimal, we present a simple adversary argument. The 

number of nodes at depth d is bd
• Assume that there. exists an algorithm that 

examines less than bd nodes. Then, there must exist at least one node at depth 

d which is not examined by this algorithm. Since we have no additional 

information, an adversary could place the only solution at this node and hence 

the proposed algorithm would fail. Hence, any brute-force algorithm must take 

at least cb d time, for some constant c. 

Finally, we consider the space used by DFID. Since DFID at any point is 

engaged in a depth-first search. it need only store a stack of nodes which 

rep~esents the branch of the tree it is expanding. Since it finds a solution of 

optimal length, the maximum depth of this stack is d, and hence the maximum 

amount of space is O(d). 
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FiG. 2. Graph of branching factor vs. constant coefficient as search depth goes to infinity. 

To show that this is optimal. we note that any algorithm which uses f(n) time 

must use at least k log f(n) space for some constant k [7]. The reason is that 

the algorithm must proceed through f<n) distinct states before looping or 

terminating, and hence must be able to store that many distinct states. Since 

storing f(n) states requires log f(n) bits, and log bd is d log b, any brute-force 

algorithm must use kd space, for some constant k. 0 

The value of the constant (l-l/br2 gives an upper bound o~ how much 

computation is wasted in the lower levels of the search, since it is the limit of 

the constant coefficient as the search depth goes to infinity. Fig. 2 shows a 

graph of this constant versus the branching factor. As the branching factor 

increases, the constant quickly approaches one. For branching factors close to 

one, however, the value of the constant coefficient approaches infinity as the depth 

goes to infinity. 

S. Bi-Directional Search 

For those problems with a single goal state that is given explicitly and for which 

the operators have inverses, such as the Fifteen Puzzle, bi-directional search 
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[13] can be used. Bi-directional search trades space for time by searching forward 

from the initial state and backward from the goal state simultaneously, storing the 

states generated, until a common state is found on both search frontiers. 

Depth-first iterative-deepening can be applied to bi-directional search as follows: 

A single iteration consists of a depth-first search from one direction to depth k, 
storing only the states at depth k, and two depth-first searches from the other 

direction, one to depth k and one to depth k + 1, not storing states but simply 

matching against the stored states from the other direction. The search to depth 

k + 1 is necessary to find odd-length solutions. This is repeated for k from zero (to 

find solutions of length one) to d/2. Assuming that a hashing scheme is used to 

perform the matching in constant time per node, this algorithm will find an 

optimal solution of length d in time O(b di2
) and space O(bdi2

). In experiments 

involving Rubik's Cube [8], which has an effective branching factor of 13.5, this 

algorithm was used to find solutions up to 11 moves long on a DEC V AX 11/780. 

6. Heuristic Search 

Depth-first iterative-deepening can also be combined with a best-first heuristic 

search such as A· [6]. The idea is that successive iterations correspond not to 

increasing depth of search, but rather to increasing values of the total cost of a 

path. For A·, this total cost is composed of the cost so far in reaching the node 

(g) plus the estimated cost of the path from the node to a goal state (h). 

Iterative-deepening-A· (IDA·) works as follows: At each iteration. perform a 

depth-first search, cutting off a branch when its total cost (g + h) exceeds a 
given threshold. This threshold starts at the estimate of the cost of the initial 

state, and increases for each iteration of the algorithm. At each iteration. the 

threshold used for the next iteration is the minimum cost of all values that 

exceeded the current threshold. 

A well-known property of A· is that it always finds a cheapest solution path if 

the heuristic is admissible, or in other words never overestimates the actual 

cost to the goal [6]. This property also holds for iterative-deepening-A·. 

Furthermore, IDA· expands the same number of nodes, asymptotically, as A· 

in an exponential tree search. 

The proofs of these results are much simpler and more intuitive if we restrict 

our attention to cost functions which are monotonically non-decreasing along 

any path in the problem space. Such a heuristic is called monotone or consistent 

[11]. Formally, 

Definition 6.1. A cost function f(n) is monotone if for all nodes nand sen), 

where sen) is a successor of n, f(n)~f(s(n». 

This restriction is not essential, and slightly more complex proofs will es

tablish the same results without it. As a practical matter. however, almost all 
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reasonable cost functions are monotone [llJ. In fact. using an idea proposed by 

Mera [17], we can formally make this assumption without loss of generality, as 

shown in the following lemma. 

Lemma 6.2. For any admissible cost function f, we can construct a monotone 

admissible function f' which is at least as informed as f. 

Proof. We construct I' recursively from f as follows: if. n is the initial state, 

then I'(n) = f(n); otherwise. I'(s(n» = max[f(s(n», I'(n)]. Clearly, f' is mono
tone since I'(n) ~ I'(s(n ». In order to show that I' is admissible. note that I'(n) 

is equal to the maximum value of f applied to all the predecessors of n along 

the path back to the initial state. Since f is admissible, the maximum value of f 
along a path is a lower bound on the cost of that path, and hence a lower 

bound on the cost of n. Thus, I' does not violate admissibility. Furthermore, I' 
is at least as informed as f since for all n, I'(n) ~ f(n) and hence I'(n) is at least 
as accurate an estimate as f<n). • 0 

Note that this lemma provides a simple and intuitive proof of the ad
missibility of A·. If we restrict our attention to cost functions which are 

monotone non-decreasing, and A· always expanQs the open node of least cost,. 

it is clear that the first solution it finds will be one of least cost. Similarly. the 

result below follows just as easily. 

Lemma 6.3. Given an admissible monotone cost function, iterative-deepening
A· will find a solution of least cost if one exists. 

Proof. Since the initial cost cutoff of IDA· is the heuristic estimate of the cost 

of the initial state, and the heuristic never overestimates cost, the length of the 

shortest solution cannot be less than the initial cost cutoff. Furthermore, since 

the cost cutoff for each succeeding iteration is the minimum value which 

exceeded the previous cutoff, no paths can have a cost which lies in a gap 

between two successive cutoffs. Therefore, since IDA· always expands all 

nodes at a given cost before expanding any nodes at a greater cost. the first 

solution it finds will be a solution of least cost. 0 

Not only does IDA· find a cheapest path to a solution and use far less space 
than A·, but it expands approximately the same number of nodes as A· in a 

tree search. Combining this fact with several recent results on the complexity 

and optimality of A· allows us to state and prove the following general 

result: 

Theorem 6.4. Given an admissible monotone heuristic with constant relative 
error. then iterative-deepening-A * is optimal in terms of solution cost. time. 

and space. over the class of admissible best-first searches on a tree. 
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Proof. From Lemma 6.3. we know that IDA· produces a solution of optimal 

cost. 

To determine the time used by IDA·, consider the final iteration, in other 

words the one which finds a solution. It must expand all descendents of the 

initial state with values greater than or equal to the initial cost estimate and less 

than the optimal solution cost, plus some number of nodes whose cost equals 

the optimal solution cost. If A· employs the tie-breaking rule of 'most recently 

generated', it must also expand these same nodes. Thus, the final iteration of 

IDA· expands the same set of nodes as A· under this tie-breaking rule. 

Furthermore, if the graph is a tree, each of these nodes will be expanded 
exactly once. IDA· must also expand nodes during the previous iterations as 

well. However, Pearl has shown that if the heuristic used by A· exhibits 

constant relative error, then the number of nodes generated by the algorithm 

increases exponentially with depth [11]. Thus, we can use an argument similar to 

the proof of Theorem 4.2 to show that the previous iterations of IDA· dQ not 

affect the asymptotic order of the total number of nodes [18]. Thus, IDA • expands 

the same number of nodes, asymptotically, as A·. Furthermore, a recent result of 

Dechter -and Pearl [5] shows that A· is optimal, in terms of number of nodes 

expanded, over the class of admissible best-first searches with monotone 

heuristics. Therefore, IDA· is asymptotically optimal in t,erms of time for tree 

searches. 

Since the number of nodes grows exponentially, we can again appeal to the 

argument in the proof of Theorem 4.2 to show that the space used by IDA· is 

also asymptotically optimal. 0 

Is the assumption of constant relative error, i.e. that the error in the estimate 

grows at the same rate as the magnitude of the actual cost. valid for heuristics? 

Pearl observes that heuristics with better accuracy almost never occur in 

practice. For example, most physical measurements are subject to constant 

relative error [11]. Thus, we can conclude that heuristic depth-first iterative

deepening is asymptotically optimal for most best-first tree searches which 

occur in practice. 

An additional benefit of IDA· over A· is that it is simpler to implement 

since there are no open or closed lists to be managed. A simple recursion 

performs the depth-first search inside an outer loop to handle the iterations. 

As an empirical test of the practicality of the algorithm, both IDA· and A· 

were implemented for the Fifteen Puzzle. The implementations were in PASCAL 

and were run on a DEC 2060. The heuristic function used for both was the 

Manhattan distance heuristic: for each movable tile, the number of grid units 

between the current position of the tile and its goal position are computed. and 

these values are summed for all tiles. The two algorithms were tested against 100 

randomly generated. solvable initial states. IDA· solved all instances with a 

median time of 30 CPU minutes. generating over 1.5 million nodes per minute. 

The average solution length was 53 moves and the maximum was 66 moves. A· 
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solved none of the instances since it ran out of space after about 30 000 nodes 

were stored. An additional observation is that even though IDA· generated 

more nodes than A·, it actually ran faster than A· on the .same problem 

instances, due to less overhead per node. The data from this experiment are 

summarized in Table 1. These are the first published optimal solution lengths 

to randomly generated instances of the Fifteen Puzzle. Although the Fifteen 

Puzzle graph is not strictly a tree, the edge branching factor is only slightly 

greater than the node branching factor, and hence the iterative-deepening 

algorithm is still effective. 

TABLE 1. Optimal solution lengths for 100 randomly generated Fifteen Puzzle 

instances using iterative-deepening-A· with Manhattan distance heuristic func-

tion 

NUMBER INITIAL STATE ESTIMATE ACTUAL TOTAL NODES 

1 14 13 15 1 11 12 9 5 6 0 2 1 4 8 10 3 41 51 216.361.933 
2 13 5 4 10 9 12 8 14 2 3 1 1 0 15 11 6 43 55 15.300.442 
3 14 1 8 2 13 11 10 4 9 12 5 0 3 6 1 15 41 59 S65. 994. 203 
4 5 12 10 1 15 11 14 0 8 2 1 13 3 4 9 6 42 56 62.643.119 
5 4 1 14 13 10 3 9 12 11 5 6 15 1 2 8 0 42 56 11.020.325 
6 14 1 1 9 12 3 6 15 8 11 2 5 10 0 4 13 36 52 32.201.660 
7 2 11 15 5 13 4 6 1 12 8 10 1 9 3 14 0 30 52 381.138.094 
8 12 11 15 3 8 0 4 2 6 13 9 ~ 14 1 10 1 32 50 39.118.931 
9 3 14 ~ 11 5 4 8 2 13 12 6 7 10 1 15 0 32 46 1.650.696 
10 ·13 11 8 9 0 15 1 10 4 3 6 14 5 12 2 1 43 59 198.158.703 
11 5 9 13 14 6 3 7 12 10 8 4 C 15 2 11 1 43 51 1SO. 346.012 
12 14 1 9 6 4 8 12 5 7 2 3 0 10 11 13 15 35 45 546.344 
13 3 6 5 2 10 0 15 14 1 4 13 12 9 8 11 1 36 46 11.861. 705 
14 7 6 8 1 11 5 14 10 3 4 9 13 15 2 0 12 41 59 1.369.596.718 
15 13 11 4 12 1 8 9 15 6 5 14 2 7 3 10 0 44 62 543.598.067 
16 1 3 2 5 10 9 15 6 8 14 13 11 12 4 7 0 24 42 11.984.051 
17 15 14 0 4 11 1 6 13 7 5 8 9 3 2 10 12 46 66 607.399.560 
18 6 0 14 12 1 15 9 10 11 4 1 2 8 3 5 13 43 55 23.711.061 
19 7 11 8 3 14 0 6 15 1 4 13 9 5 12 2 10 36 46 1. 280.495 
20 6 12 11 3 13 1 9 15 2 14 8 10 4 1 5 0 36 52 11.954.810 
21 12 8 14 6 11 4 7 0 5 1 10 15 3 13 9 2 34 54 257.064.810 
22 14 3 9 1 15 8 4 5 11 7 10 13 0 2 12 6 41 59 750.146.755 
23 10 9 3 11 0 13 2 14 5 6 4 1 8 15 1 12 33 49 15.911.319 
24 7 3 14 13 4 1 10 8 5 12 9 11 2 15 6 0 34 54 42.693.209 
25 11 4 2 7 1 0 10 15 6 9 14 8 3 13 5 12 32 52 100.734.844 
26 5 7 3 12 15 13 14 8 0 10 9 6 1 4 2 11 40 58 226.668.645 
27 14 1 8 15 2 6 0 3 9 12 10 13 4 7 5 11 33 53 306.123.421 
28 13 14 6 12 4 5 1 0 9 3 10 2 15 11 8 7 36 52 5.934.442 
29 9 8 0 2 15 1 4 14 3 10 1 5 11 13 6 12 38 54 111.016.111 
30 12 15 2 6 1 14 4 8 5 3 1 0 10 13 9 11 35 41 2.196.593 
31 12 8 15 13 1 0 5 4 6 3 2 11 9 7 14 10 38 50 2.351.811 
32 14 10 9 4 13 6 5 8 2 12 7 0 1 3 11 IS 43 59 661.041.936 
33 14 3 5 15 11 6 13 9 0 10 2 12 4 1 7 8 42 60 480,637.861 
34 6 11 1 8 13 2 5 4 1 10 3 9 14 0 12 15 36 52 20.671,552 
35 1 6 12 14 3 2 15 8 4 5 13 9 0 7 11 10 39 55 47.506,056 
36 12 6 0 4 7 3 15 1 13 9 8 11 2 14 5 10 36 52 59.802.602 
31 8 1 7 12 11 0 10 5 9 15 6 13 14 2 3 4 40 58 280.018.791 
38 7 15 8 2 13 6 3 12 11 0 4 10 9 5 1 14 41 53 24.492.852 
39 9 0 4 10 1 14 15 3 12 6 5 7 11 13 8 2 35 49 19,355.806 
40 11 5 1 14' 4 12 10 0 2 7 13 3 9 15 6 8 36 54 63.216.188 
41 8 13 10 9 11 3 15 6 0 1 2 14 12 5 4 1 36 54 51.501.544 
42 4 5 7 2 9 14 12 13 0 3 6 11 8 1 15 10 30 42 877.023 
43 11 15 14 13 1 9 10 4 3 6 2 12 1 5 8 0 48 64 41.124.761 
44 12 9 0 6 8 3 5 14 2 4 11 7 10 1 15 13 32 50 95.733.125 
45 3 14 9 7 12 15 0 4 1 8 5 6 1: 10 2 13 39 51 6.158.733 
46 8 4 6 1 14 12 2 15 13 10 9 5 3 7 0 11 35 49 22.119.320 
47 6 10 1 14 15 8 3 5 13 0 2 7 4 9 11 12 35 47 1.411.294 
48 8 11 4 6 7 3 10 9 2 12 15 13 0 1 5 14 39 49 1. 905.023 
49 10 a 2 4 5 1 6 Il 11 13 9 1 15 3 14 8 33 59 1.809,933.698 
50 12 5 13 11 2 10 0 9 7 8 4 3 14 6 15 1 39 53 63.036.422 
51 10 2 8 4 15 0 1 14 11 13 3 6 9 7 5 12 44 56 26.622.863 
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TABU: 1. Continued 

INITIAL STATE ESTIMATE ACIUAL TOTAL NODES 

52 10 8 0 12 3 7 6 2 1 14 4 11 15 13 9 5 
53 14 9 12 13 15 4 8 10 0 2 1 7 3 11 5 6 
54 12 11 0 8 10 2 13 15 5 4 7 3 6 9 14 1 
55 13 8 14 3 9 1 0 7 15 5 4 10 12 2 6 11 
56 3 15 2 5 11 6 4 7 12 9 1 0 13 14 10 8 
57 5 11 6 9 4 13 12 0 8 2 15 10 1 7 3 14 
58 5 0 15 8 4 6 1 14 10 11 3 9 7 12 2 13 
59 15 14 6 7 10 1 0 11 12 8 4 9 2 5 13 3 
60 11 14 13 1 2 3 12 4 15 7 9 5 10 6 8 0 
61 6 13 3 2 11 9 5 10 1 7 12 14 8 4 0 15 
62 4 6 12 0 14 2 9 13 11 8 3 15 7 10 1 5 
63 8 10 9 11 14 1 7 15 13 4 0 12 6 2 5 3 
64 5 2 14 0 7 8 6 3 11 12 13 15 4 10 9 1 
65 7 8 3 2 10 12 4 6 11 13 5 15 0 1 9 14 
66 11 6 14 12 3 5 1 15 8 0 10 13 9 7 4 2 
67 7 1 2 4 8 3 6 11 10 15 0 5 14 12 13 9 
68 7 3 1 13 12 10 5 2 8 0 6 11 14 15 4 9 
69 6 0 5 15 1 14 4 9 2 13 8 10 11 12 7 3 
70 15 1 3 12 4 0 6 5 2 8 14 9 13 10 7 11 
71 5 7 0 11 12 1 9 10 15 6 2 3 8 4 13 14 
72 12 15 11 10 4 5 14 0 13 7 1 2 9 8 3 6 
73 6 14 10 5 15 8 7 1 3 4 2 0 12 9 11 13 
74 14 13 4 11 15 8 6 9 0 7 3 1 2 10 12 5 
75 14 4 0 10 6 5 1 3 9 2 13 15 12 7 8 11 
76 15 10 8 3 0 6 9 5 1 14 13 11 7 2 12 4 
77 0 13 2 4 12 14 6 9 15 1 10 3 11 5 8 7 
78 3 14 13 6 4 15 8 9 5 12 10 0 2 7 1 11 
79 0 1 9 7 11 13 5 3 14 12 4 2 8 6 10 15 
80 11 0 15 8 13 12 3 5 10 1 4 6 14 9 7 2 
81 13 0 9 12 11 6 3 5 15 8 1 10 4 14 2 7 
82 14 10 2 1 13 9 8 11 7 3 6 12 15.5 4 0 
~3 ·12 3 9 1 4 5 10 2 6 11 15 0 14 7 13 8 
84 15 8 10 7 0 12 14 1 5 9 6 3 13 11 4 2 
85 4 7 13 10 1 2 9 6 12 8 14 5 3 a 11 15 
86 6 0 5 10 11 12 9 2 1 7 4 3 14 8 13 15 
87 9 5 11 10 13 0 2 1 8 6 14 12 4 7 3 15 
88 15 2 12 11 14 13 9 5 1 3 8 7 0 10 6 4 
89 11 1 7 4 10 13 3 8 9 14 0 15 6 S 2 12 
90 5 4 7 1 11 12 14 15 10 13 8 6 2 0 9 3 
91 9 7 5 2 14 15 12 10 11 3 6 1 8 13 a 4 
92 3 2 7 9 a 15 12 4 6 11 5 14 8 13 10 1 
93 13 9 14 6 12 8 1 2 3 4 0 7 5 10 11 15 
94 5 7 11 8 0 14 9 13 10 12 3 15 6 1 4 2 
95 4 3 6 13 7 15 9 0 10 5 8 11 2 12 1 14 
96 1 7 15 14 2 6 4 9 12 11 13 3 0 8 5 10 
97 9 14 5 7 8 15 1 2 10 4 13 6 12 0 11 3 
98 0 11 3 12 5 2 1 9 8 10 14 15 7 4 13 6 
99 7 15 4 0 10 9 2 5 12 11 13 6 1 3 14 8 
100 11 4 0 8 6 10 5 13 12 7 14 3 1 2 9 15 

COAL STATE 

012 3 
456 7 
8 9 10 11 

12 13 a 15 

LEGEND 

ESTIMATE 
ACTUAL 
TOTAL NODES 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

7. Two-Person Games 

38 
so 
40 
29 
29 
36 
37 
35 
48 
31 
43 
40 
31 
31 
41 
28 
31 
37 
30 
30 
38 
37 
46 
30 
41 
34 
41 
28 
43 
39 
40 
31 
37 
32 
35 
34 
43 
36 
36 
41 
37 
34 
45 
34 
35 
32 
34 
39 
38 

56. 377.141.881 
64 465.225.698 
56 220.374.385 
41 927.212 
55 1.199.487.996 
so 8.841.527 
51 12.955.404 
57 1.207.520.464 
66 3.337.690.331 
45 7.096.850 
57 23.540.413 
56 995.472.712 
51 260.054.152 
47 18.997.681 
61 1.957.191.378 
50 252.783.878 
51 64.367.799 
53 109.562.359 
52 151.042.571 
44 8.885.972 
56 1.031.641.140 
49 3.222.276 
56 1.897.728 
48 42.772.589 
57 126.638.417 
54 18.918.269 
53 10.907.1SO 
42 540.860 
57 132.945.856 
53 9,982.569 

.62 5,506.801,123 
49 65,533.432 
55 106.074.303 
44 2.725.456 
45 2.304.426 
52 64.926.494 
65 6,009.130.748 
54 166.571.097 
50 7.171.137 
57 602.886.858 
57 1.101.072.541 
46 1.599.909 
53 1.337.340 
so 7.115.967 
49 12.808.564 
44 1.002.927 
54 183.526.883 
57 83.477.694 
54 67.880.056 

Initial heur1st1c est1mate 
Length of optimal solution 
Total number of states generated 
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In the discussion so far, we have assumed a single-agent search to find a 

solution to a problem, and have been concerned with minimizing time and 

space subject to a fixed solution depth and branching factor. However. a 
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two-person game such as chess with static evaluation and mini-max search is a 

somewhat different situation. In this case, we assume that accuracy of the static 

evaluation increases with increasing search depth, and hence we want to 

maximize search depth subject to fixed time and space constraints. Since 

depth-first iterative-deepening minimizes, at least asymptotically, time and 

space for any given search depth. it follows that it maximizes the depth of 

search possible for any fixed time and space restrictions as well. 
Another reason that DFID is used in game programs is that the amount of 

time required to search the next deeper level in the tree is not known when the 

ply begins, and the search ply may have to be aborted due to time constraints. 

In this case, the complete search at the next shallower depth can be used to 

make the move. 

Finally, the information from previous iterations of a DFID search can be 

used to order the nodes in the search tree so that alpha-beta cutoff is more 

efficient. In fact, the best move at a given iteration has been shown .experi

mentally to terminate the next iteration in about 70% of cases. This improve
ment in ordering, which is critical to alpha-beta efficiency, is only possible with 

the use of iterative-deepening [4]. 

8. Conclusions 

The standard algorithms for brute-force search have serious drawbacks. 

Breadth-first search uses too much space, and depth-first search in general uses 

too much time and is not guaranteed to find a shortest path to a solution. The 

depth-first iterative-deepening algorithm, however, is asymptotically optimal in 

terms of cost of solution, running time, and space required for brute-force 

tree searches. DFID can also be applied to bi-directional search. heuristic 

best-first search. and two-person game searches. Since almost all heuristic 
searches have exponential complexity, iterative-deepening-A· is an optimal 

admissible tree search in practice. For example, IDA· is the only known algorithm 

that can find optimal paths for randomly generated instances of the Fifteen Puzzle 

within practical time and space constraints. 
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