
152 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1 , NO. 2, APRIL 1990

Depth-First Search Approach for Fault-Tolerant
Routing in Hypercube Multicomputers

Abstract-Using depth-first search, we develop and analyze the per-
formance of a routing scheme for hypercube multicomputers in the pres-
ence of an arbitrary number of faulty components. We derive an exact
expression for the probability of routing messages via optimal paths (of
length equal to the Hamming distance between the corresponding pair
of nodes) from the source node to an obstructed node. The obstructed
node is defined as the first node encountered by the message that finds
no optimal path to the destination node. Also, bounds for this prob-
ability are derived in closed form. Note that the probability of routing
messages via an optimal path between any two nodes is a special case of
our results, and can be obtained by replacing the Obstructed node with
the destination node. Numerical examples are also given to illustrate
our results, and show that in the presence of component failures the
depth-first search routing can route a message via an optimal path to
its destination with a very high probability.

Index Terms- Coordinate sequences, depth-first search, fault-
tolerant routing, hypercube multicomputers, inversions.

I . INTRODUCTION

WING to their structural regularity and high potential 0 for the parallel execution of various algorithms, hyper-
cube multicomputers have drawn considerable attention in re-
cent years from both academic and industrial communities
[11-[101. Topological properties of hypercubes were investi-
gated in [13. Task and subcube allocation schemes were pro-
posed to exploit the parallelism within a hypercube multi-
computer [2]-[4]. Numerous applications on hypercube mul-
ticomputers were explored [5]-[7], and several research and
commercial hypercube machines were built [8]-[101. Efficient
message routing is a key to the performance of distributed
memory multicomputers, such as hypercubes [l l] . To make
hypercube multicomputers useful for reliability-critical appli-
cations, significant research efforts have been made on the
design of fault-tolerant routing schemes for them [121-[20].

A connected hypercube with faulty components is called an
injured hypercube. In order to enable nonfaulty nodes in an
injured hypercube to communicate with one another, enough
network information must be either kept at each node or added

Manuscript received May 15, 1989; revised December 11, 1989. This
work was supported in part by the Office of Naval Research under Contract
N00014-85-K-0122 and NASA under Grant NAG-1-296.

M.-S. Chen is with I.B.M. Thomas J. Watson Research Center, Yorktown
Heights, NY 10598.

K. G. Shin is with Real-Time Computing Laboratory, Department of Elec-
trical Engineering and Computer Science, The University of Michigan, Ann
Arbor, MI 48109.

IEEE Log Number 8934117.

to the message to be routed. For the first approach, several
algorithms have been proposed in [12]-[15], which gener-
ally require each hypercube node to keep a certain amount of
global information for its routing decisions. This, however,
necessitates the propagationhroadcasting of updated network
information when the network condition changes. Some broad-
casting schemes in injured hypercubes can also be found in
[15]-[17]. For the second approach, in which each node is
required to know only the condition (faulty or not) of its ad-
jacent components (links or nodes), several routing schemes
based on the concept of depth-first search and its variation
have been proposed [181-[20]. Under a depth-first search rout-
ing scheme, each message is accompanied with a stack which
keeps track of the history of the path traveled, and tries to
avoid visiting a node more than once unless a backtracking is
enforced. Although the concept of depth-first search is well
understood and appears to be able to exploit the abundant
connections in the hypercube and thus achieve a high degree
of fault-tolerance, neither formal presentation nor rigorous
performance analysis of this scheme has been reported in the
literature. Development and analysis of a fault-tolerant routing
scheme using depth-first search for hypercube multicomputers
is, therefore, the subject of this paper.

We shall first develop a routing scheme using depth-first
search, in which every node is only required to know the con-
dition of its adjacent components. The path that a message
has traversed is kept track of by the message as it is routed
toward its destination. Performance of this routing algorithm
will be rigorously analyzed. An optimal path between a pair
of nodes is a path of length equal to the Hamming distance
between the two nodes. Under this routing scheme, the first
node in the message’s route that is aware of the nonexistence
of an optimal path from itself to the destination is called the
obstructed node. At the obstructed node, the message has to
take a detour. In this paper, we derive exact expressions for
the probabilities of optimal path routing from the source node
to a given obstructed node in the presence of both link and
node failures. Bounds for these probabilities are also derived
in closed form, which will be shown to closely approximate
the exact expressions. Note that determination of the prob-
ability for optimal path routing between any two nodes is a
special case of our results since the destination node can be
viewed as an obstructed node that is 0 hop away from the des-
tination node. Numerical examples are also given to illustrate
our results. It can be seen that in the presence of component
failures, the depth-first search routing can route a message via

1045-9219/90/0400-0152$01.00 @ 1990 IEEE

CHEN AND SHIN: ROUTING IN HYPERCUBE MULTICOMPUTERS

an optimal path to its destination with a very high probability.
It is worth mentioning that the concept of depth-first search

is not only useful for the fault-tolerant routing in hyper-
cubes, but also applicable to fault-tolerant and multipath rout-
ing in other multicomputer systems such as square meshes and
hexagonal meshes [21], [22]. Note, however, that the depth-
first search routing must be guided to fully exploit the con-
nections in each multicomputer system, and thus, the method
of guiding depth-first search closely depends on system topol-
ogy.

This paper is organized as follows. Necessary notation and
definitions are introduced in Section 11. A fault-tolerant rout-
ing scheme using depth-first search for hypercube multicom-
puters is presented in Section 111. The performance of this
routing scheme is analyzed rigorously in Section IV where il-
lustrative examples are also given. The paper concludes with
Section V.

11. PRELIMINARIES
An n-dimensional hypercube is defined recursively as Qn =

K2 x Qn-1 where K2 is the complete graph with two nodes,
Qo is a trivial graph with one node and x is the product oper-
ation on two graphs [23]. A Qn contains 2" nodes and n2"-'
links since the degree of each node in a Qn is n. Let C be
the ternary symbol set (0, 1, * } where * is a don't care sym-
bol. Every subcube in a Qn can then be uniquely addressed
by a string of symbols in .E. The rightmost coordinate of the
address of a subcube will be referred to as dimension 1, and
the second to the rightmost coordinate as dimension 2, and
so on. For each hypercube node, the communication link in
dimension i is called the ith link of the node. For notational
simplicity, each link is represented by a binary string with a
"-" symbol in its corresponding dimension. For example, the
link between nodes oo00 and 0010 is represented by 00-0.

Definition I: The Hamming distance between two hy-
percube nodes with addresses U = U n U n - 1 . . .u1 and w =
wnwn-l "'w1 in a Qn is defined as

n

H(U, w) = x h (u i , wi)whereh(ui, wi)
i=l

1, ifui # wi, =i 0, ifui = wi.

Also, it is necessary to introduce the exclusive operation
between two binary strings, and the concept of relative ad-
dress between two hypercube nodes.

Definition 2: The exclusive operation of two binary strings
q = qnqn-l . . . q l and m = m,mn-l...ml, denoted by
q e m = rnrnVl ".rl is defined as ri = 0 if qi = mi and
ri = 1 i fq i =-for 1 < i i n .

We use @ fz1 to denote k sequential exclusive operations.
The relative address of a node U with respect to another node
w, denoted by u / ~ , can then be determined by ulw = U w.
Let ek = enenPl . . . el where e k = 1 and ej = O V j # k.
For example, 1001 @e2 = 1011, 00lljlo01 = 1010, and

A path in a hypercube is represented by a sequence of nodes
0*ljloOl = 1*1*.

153

1111

U/
Fig. 1. An optimal path from OOO1 to 1010.

in which every two consecutive nodes are physically adjacent
to each other. Thus, a path in a Qn can be viewed as a se-
quence of binary numbers of n bits such that every two con-
secutive binary numbers differ by exactly one bit. The number
of links on a path is called the length of the path. An optimal
path is a path whose length is equal to the Hamming distance
between the source and destination nodes. We shall call the
routing via an optimal path the optimal path routing. Also,
a link of node U is said to be toward another node w if the
link belongs to one of the optimal paths from U to w.

Note that due to the special structure of a hypercube,
once the source node of a path of length k in a Qn is
given, the path can be described by a coordinate sequence
c = [cl, c2, . . . , ck] where 1 < ci 5 n for 1 < i < k . A co-
ordinate sequence is a sequence of ordered dimensions in each
of which the corresponding two adjacent nodes in the path dif-
fer [24]. A coordinate sequence is said to be simple if any
dimension does not occur more than once in that sequence.
It is easy to see that a path is optimal if and only if its coor-
dinate sequence is simple. As shown in Fig. 1, [OOOl, 0011,
0010, 1010J is an optimal path from the source OOO1 to the
destination 1010, and can also be represented by a coordinate
sequence [2, 1, 41.

Definition 3 [25]: The number of inversions of a simple
coordinate sequence C = [c 1, c2, . . . , Ck], denoted by V (C) ,
is the number of pairs (c;, cj) such that 1 < i < j 5 k and
ci >Cj .

For example, V([3,4,1,2]) = 4 and V([2,4,1]) = 2. Let the
superscript R denote the reversing of a coordinate sequence,
and the notation (3 denote an append operation. Also, the ith
element in a coordinate sequence C is denoted by C[i]. For
example, if C = [2,4,1] is the coordinate sequence of a path,
then C[2] = 4, C R = [1,4,2] and C 0 3 = [2,4,1,3].

111. DEPTH-FIRST SEARCH ROUTING

In this section, we present an adaptive routing algorithm
based on depth-first search, which requires every node to
know only the condition (faulty or not) of its own links. The
case that a node is faulty is treated as that all links of the
node are faulty. This algorithm can successfully route mes-
sages between any pair of connected, nonfaulty nodes. When

154 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. I , NO. 2, APRIL 1990

the insufficient knowledge of faulty components causes a mes-
sage to be sent to an intermediate node from which no optimal
path to the destination node exists, an alternative path will be
chosen in such a way that the connectivity of a hypercube is
fully exploited. Before presenting the routing algorithm, it is
necessary to introduce the following proposition which deter-
mines, from the coordinate sequence of a path, the relative
addresses of those nodes traversed.

Proposition I : Let [c 1 , c2, . . . , ck] be the coordinate se-
quence of a given path in a Q n starting from node U, and
wiu = w,wn-l . . . w 1 denote the relative address of node
w with respect to U where k = H (u , w). Then, the path
specified by [cl, c2 , . . . ,ck] ends at w if and only if @fzl

Proof: A message's traversal along the ith dimension is
the same as inverting the bit in the ith coordinate of the relative
address of its destination. Therefore, traversing along a certain
dimension an even number of times has the same effect as not
traversing along that dimension at all. This proposition thus
follows. Q.E.D.

Let S(C) denote the set of the relative addresses of
those nodes reachable by the coordinate sequence C =
[cl, c2, . . . , c k] from a given node. By Proposition 1, S(C) = {e rZ1 eci : 1 5 r 5 k}. For example, a path with the coordi-

/* For each node receiving (d, message, TD). * /
if d = 0" then stop /* The destination is reached. * I
else
begin

ecl = Wl".

for j := 1, n do
begin

far are recorded in a set TD in the same order if visited, and
will be delivered together with the message to the next node.
Note that using TDR each intermediate node can determine
the addresses of those nodes visited before where TDR is the
reversing of TD as defined in Section 11. Clearly, sending TD
along with the message is much cheaper than sending the ad-
dresses of all the nodes visited. When the source node begins
routing a message, TD is set to the empty set 4. Therefore,
the information to be phased on to the next node can be repre-
sented as (d , message, TD) where d is the relative address of
the destination node with respect to an intermediate node, and
is updated as the message is routed toward the destination. A
message reaches its destination when d becomes 0".

When a node receives a message, it will check the value
of d to see if the destination is reached. If not, the inter-
mediate node will try to send the message along an optimal
path to the destination. However, if all the optimal paths are
blocked by faulty components and those nodes visited before,
the node will route the message via an alternative path using
the concept of depth-first search. When there is no alternative
path available, backtracking is enforced. More formally, this
routing scheme can be described in an algorithmic form as
follows.
Algorithm G: Depth-first search routing algorithm.

if (d, = 1) and (the j-th link is not faulty) and (e' @S(TDR)) then

send (d @ ei, message, TD 0 j) along the j-th link;
stop; /*terminate Algorithm G*/

begin

end
end

/* If the algorithm is not terminated yet, all optimal paths to the destination node are blocked
by faulty components and nodes traversed before. * /
if {i : e' @S(TDR) and the i-th link is not faulty, 1 5 i 5 n} # 4

then h := minlsiln (i : e' @S(TDR) and the i-th link is not faulty} /* A detour is taken. * /
else
begin /* Backtracking * I

g := max(m : e E, eTDR[I] = On};
if g = IS(TD)I then stop /* The source and destination nodes are not connected. * /
h := TDR[g + 11;

end
send (d @ eh, message, TD 0 h) along the h-th link;
stop; /*terminate Algorithm G*/

end

nate sequence [2,1,4] from 0000 will traverse the set of nodes
S(C) = (0010,0011, 1011).

To indicate the destination of a message, the relative address
of the destination node is sent along with the message. The
depth-first search routing algorithm will attempt to avoid vis-
iting the same node more than once except when backtracking
is forced. Thus, those dimensions that a message traversed so

Note that an intermediate node can determine whether or
not its ith link is connected to a node that was visited be-
fore by checking if ei belongs to S(T@). When backtracking
is forced, the message must be returned to the node from
which this message was originally received. This explains the
way we determine the value g in the segment commented by
/* Backtracking * / in the above algorithm. When g = \S(TD)),

CHEN AND SHIN: ROUTING IN HYPERCUBE MULTICOMPUTERS 155

we know that backtracking is enforced at the source node, and 1111

can thus conclude that the source and destination nodes are
disconnected.

Note that there is an unavoidable overhead required to
achieve fault-tolerant routing. To route a message to its desti-
nation in an injured hypercube, those nodes traversed before
by the message must be made known to the intermediate nodes
so as to avoid message looping. This is the very reason that
under G every intermediate node has to append to the mes-
sage a tag TD, from which the addresses of nodes traversed
before can be recovered in light of the topology of a hyper-
cube. Depth-first search is thus ensured at the cost of carrying
TD with each message. The values of g and h in G can be
easily determined from TD. It can be verified that the com-
plexity of determining g and h is O(ITDO. Note that when
the probability of the occurrence of a faulty component is low,
the above scheme can be modified to reduce the operational
overhead in such a way that the tag TD is appended to the
message only after faulty components are encountered by the
message. However, when the probability of the occurrence
of a faulty component is high, it is worth using the tag TD
from the beginning so as to fully exploit different paths and

11

loo0
Fig. 2. An injured Q4.

nodes where backtracking may occur under G . These nodes
will form a search tree with 2" - k nodes and 2" - k - 1
links. Since every link in the search tree is traversed twice,
the message will traverse 2(2" - k - 1) hops in the search tree
and k hops on its optimal path to the destination. Q.E.D. - . -

avoid sending the message back to a node which received the
message before. There are some other techniques conceivable
to implement the depth-first search routing for hypercubes.
Instead of keeping the entire path traveled in TD, the search
can also be implemented by using a stack. In such a case, the
operation required for backtracking is simplified, but addi-
tional provisions are needed to ensure that a node will not be
visited more than once.

Consider an injured Q 4 in Fig. 2. Suppose a message f m
is routed from U = 0110 to w = 1001. The original message
at U = 01 10 is (1 11 1, f m , 4). Following the execution of G ,
node 01 10 sends (1 110, f m , [l]) to node 01 11 which then
sends (1 100, f m , [1,2]) to node 0101. Since the third dimen-
sional link of 0101 is faulty, node 0101 will send (0100, f m ,
[1,2,4]) to 1101. However, since the third dimensional link
of 1101 is faulty, node 1101 will choose an alternative path,
and send (0101, f m , [1,2,4,1]) to 1100, which will, in turn,
send (0001, f m , [1,2,4,1,3]) to 1OOO. Then, since links of
lo00 in dimensions 1, 2, and 4 are faulty, backtracking is en-
forced and the message is sent back to 1100. It can be verified
that the message is thereafter sent to its destination via 11 10,
11 11, 101 1, and then 1001. The following proposition follows
directly from the fact that depth-first search is a general graph
search algorithm and can start from any node in a graph [26].

Proposition 2: Algorithm G will route a message to its
destination successfully as long as the destination is reachable.

Algorithm G is a generalized version of the algorithm pre-
sented in [18] where the number of faults is assumed to be
less than n. Also, from the fact that those links traversed will
not form a cycle, we have the following proposition.

Proposition 3: The nodes and links traversed under G form
a tree.

Proposition 3 in turn leads to another proposition.
Proposition 4: The worst case of G uses H (u , w) +2(2" -

H (U , w) - 1) hops to send a message from node U to node w
for a pair of connected nodes U and w.

Proof: Let H (u , w) = k , then there are at most 2" - k

IV. PERFORMANCE ANALYSIS OF DEPTH-FIRST SEARCH ROUTING

To illustrate the performance of depth-first search routing,
let us consider an injured hypercube with a given number of
faulty components. All possible distributions of faulty compo-
nents are assumed to be equally likely. The number of faulty
nodes required for a simple coordinate sequence C to be the
path found by depth-first search is equal to the number of in-
versions in C [191. This fact can be formally stated as follows.

Proposition 5: Suppose H (u , w) = n in a Q n . Then, un-
der G the minimum number of faulty nodes required for the
simple coordinate sequence C = [c1, c2,. . . , c,] to be the
path determined by G from U to w is V (C) .

For example, let 0000 and 11 11 be the source and destina-
tion nodes, respectively. Then, the set of nodes whose fail-
ures will make G choose the coordinate sequence [3,4,1,2]
is (0001, 0010, 0101, OllO}. In light of the fact that the
addresses of hypercube nodes form a partial order set, the
effects of a faulty node, say x, are the same as those of a
faulty link via which an intermediate node is trying to send
the message toward x. For the above example, the set of links
whose failures will force G to choose the coordinate sequence
[3,4,1,2] is {WO-, 00-0, 010-, 01-O}. Proposition 5 can thus
be extended and generalized as follows.

Lemma 1: Let U and w be two nodes in an injured Qn
with f faulty links and g faulty nodes where H (u , w) = n .
Suppose C = [c 1 , c2, . . . , c,] is the path chosen by G from U
to w. Then, f + g 2 V (C) .

Recall that the obstructed node is the first node on a path
that is aware that there is no optimal path to the destination
node and a detour (i.e., nonoptimal path) has to be taken.
To facilitate our presentation, define the weight of a set of
dimensions to be their summation, i.e., W(c1, c2, . . . , c,) =
ELl c;. Then, we can derive the following theorem which
characterizes the performance of G .

Theorem 1: Suppose U and w are respectively the source
and destination nodes in a Qn where H (u , w) = n. Then, the

I56 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, APRIL 1990

number of faulty components (nodes and/or links) required
for the simple coordinate sequence C = [cl, c2,. . . , c,] to
be the path chosen by G to an obstructed node located j hops
away from w is V (C) + W (C ~ , . . . , Cm) - CL, i + j where
m = n - j .

To prove Theorem 1, we need the following lemma.
Lemma 2: Let C = [c 1 , c2, . . . , c,] be a simple coordinate

sequence. Then, V (C) + V (C R) = m(m - 1)/2.
Proof: There are CT = m(m - 1)/2 different ways to

choose pairs (Ci, C j) , i < j , from (~ 1 , C ~ , . . . , C ,) . Since C
is a simple coordinate sequence, either ci > c, or ci < c j ,
meaning that each selection (ci , c,) will be counted for either
V (C) or V (C R) , thus proving the lemma. Q.E.D.

Proof of Theorem I : According to the operations of
depth-first search routing, the lowest dimension among those
dimensions not traversed before will be chosen first. Since
H (u , w) = n , the selection of dimension c1 to the first hop
implies that c1 - 1 faulty components have been encountered.
Also, the selection of dimension c2 to the second hop means
a) there are another c2 - 1 faulty components encountered if
c2 < c 1, or b) there are another c2 - 2 faulty components
encountered if c2 > c1. Following the same reasoning, we
know that up to the obstructed node (i.e., the first m hops),
the message must have encountered CK, (ci - 1) - V (C R) =
E:, ci-m-m(m-1)/2+V(C) = V(C)+E:, ci-m(m+
1)/2 faulty components since V(CR)+V(C) = m(m-1)/2 by
Lemma 2. Also, additional j faulty components are required
to block all the optimal paths from the obstructed node to w ,
thus proving the theorem. Q.E.D.

For example, suppose C = [3,2] is the coordinate sequence
of the path chosen by G from OOOO to the obstructed node 01 10
when node 11 11 is the destination. (Without loss of generality,
one can consider node failures only.) Then, the required faulty
nodesare0001,0010,0101,0111, and 1110. Thisagrees with
that V(C)+W(3,2)-(1+2)+2 = 1+5-3+2 = 5 . Itcanbe
seen that Lemma 1 is a special case of Theorem 1, where the
obstructed node is the destination node, i.e., m = n , j = 0
and W(c l , c2 , . . . , c n) = Er=, whereas Proposition 5 is a
special case of Lemma 1 in which both node and link failures
are considered.

Let S (n , m) be the set of combinations of m different num-
bersoutof{l,2,...,n}[27] . Forexample,S(3,2) = {(1,2),
(1,3), (2,3)}. Clearly, IS(n, m)l = C: is the number of com-
binations of m objects out of n different objects. Let Z,(k)
denote the number of permutations of n numbers with exactly
k inversions. Note that the value of Z,(k) can be obtained
from its generation function given in (1) later [25]. Then,
from Theorem 1 we have the following important theorem.

Theorem 2: Suppose there are f faulty links in a Q n , and
a message is routed by G from node U to node w where
H (u , w) = n. Let hL be the Hamming distance between the
obstructed node and the destination node. Then

min { w , f - j >

c 1
P(hL = j) = -

C: o E S (n , m) k=O

f -j-k k - W (U) + ~

where P (E) is the probability of event E , L = n2"-' and
m + j = n .

Proof: Since faults may occur at any f links in the Qn,
there are C t different configurations of faulty links. The prob-
lem of obtaining P(hL = j) is then reduced to that of count-
ing the number of configurations which lead to the case of
h~ = j . Note that the message traverses m = n - j hops
before it reaches the obstructed node, meaning that there are
IS(n, m) 1 possible locations of the obstructed node. Without
loss of generality, one can assume that 0" is the source node
and 1" is the destination node. Then, there is a one-to-one
correspondence between each element in S(n, m) and each
possible location of the obstructed node.

Consider an obstructed node location x which is determined
by an element U E S (n , m). Let C be the coordinate sequence
from node U to x. From Theorem 1, we know that the message
has encountered V (C) + W (U) - m(m + 1)/2 faulty links
before reaching x. Thus, the number of different paths from
U to x while traversing the dimensions in U and encountering k
faulty links can be expressed as Z,(k - W (U) +m(m + 1)/2)
where Z,(q) is the number of permutations of m numbers
with q exactly inversions. For each given coordinate sequence
to x, the locations of these k faulty links encountered before
reaching x are determined. Moreover, there are additional j
faulty links adjacent to x. Also, note that m links in the path
from U to x are nonfaulty. Therefore, the number of different
configurations for a given coordinate sequence or path to a
certain obstructed node location x is C;I:It -m = Ci:;::.
Thus, this theorem follows. Q.E.D.

It is worth mentioning that determination of the probability
of an optimal path routing can be viewed as a special case of
Theorem 2 by setting the obstructed node to the destination
node, i.e., the determination of P(hL = 0). More formally,
we have the following corollary.

Corollary 2.1: Under Algorithm G , the probability for a
message to be routed in an injured Qn with f faulty links via
an optimal path to a destination node which is n hops away
can be expressed as

'

Proof: Since the destination node is viewed as the ob-
structed node which is 0 hop away from the destination node,
one can substitute j = 0 and m = n into the expression in The-
orem 2. Note that the only element in S (n , n) is (1, 2, . . . , n)
and W (1, 2, . . . ,n) = n(n + 1)/2, leading to this corollary.

Q.E.D.
As mentioned earlier, the value of Z,(k) can be obtained

from its generation function [25],

n (n - 1) 12

Gn(z) = I n (j > z '
j =O

= (1 +z) (l + z + z 2) . - (1 + z +z2 + . . .+z" - ') ,

(1)

because Z,(k) = l /k!dkG,(0)/dzk. It can be seen that

CHEN AND SHIN: ROUTING IN HYPERCUBE MULTICOMPUTERS 157

TABLE 11-B TABLE I
PERMUTATIONS WITH k INVERSIONS APPROXIMATION FOR P (~ L = 0) BY (2)

TABLE 11-A
P(hr. = 0), PROBABILITIES OF OPTIMAL PATH ROUTING BETWEEN

Two NODES WITH HAMMING DISTANCE n IN A Qn WITH min { n , f } Cn2"-'-;
P (h L = 0) > 1 - f-j. (2)

;=I cp"-'
Numerical examples for (2) are given in Table 11-B. From

Table 11-A and B, it can be observed that (2) very closely ap-
proximates the exact expression given in Corollary 2.1. Sim-

Z,(k) = 0 if k < 0 or k > n(n - 1)/2. The values of Zn(k),
for 3 5 n 5 6 and 0 5 k 5 n(n - 1)/2, are computed in Ta-
ble I. The exact values for P (~ L = j) can thus be determined
by Theorem 2, and the probability of an optimal path routing
between two nodes can be obtained by Corollary 2.1. From
Corollary 2.1 and the data in Table I, we obtain Table 11-A
which shows the probabilities of optimal path routing between
two nodes n hops away from each other in a Qn with f faulty
links. It can be seen that in the presence of link failures, Algo-
rithm G can route a message to the destination via an optimal
path with a very high probability.

Notice, however, that when n is large, the determination of
Zn(k), although it is feasible, may require excessive compu-
tation. To obtain more insights into the performance of G as
well as reduce the computation required to obtain P (~ L = j) ,
an upper bound of P (~ L = j) can be derived in closed form
as follows.

Lemma 3: Suppose there are f faulty links in an in-
jured Qn, and a message is routed by G from node U to
w, where H (u , w) = n . Then, P(hL = j) ICFI;/C$ if
0 5 j 5 min {n, f } where L = n2"-' is the number of links
in a Q n .

Proof: As mentioned before, the problem of obtaining
P(hL = j) is to count the number of configurations which lead
to the case of hL = j . When h~ = j , all the j links toward
w of the obstructed node, say x, must be faulty. According to
depth-first search, the location of the obstructed node is de-
termined by those faulty links which are not within SQ(x, w)
where SQ(x, w) is the smallest subcube that contains both x
and w Since the j links of node x within SQ(x, w) are faulty,
there are CFI; different distributions of the other f - j faulty
links. When these f - j faulty links cause node y, instead of
x, to be the obstructed node, we exchange the links (including
faulty links) in S Q (y , w) with those in SQ(x, w), and obtain
a configuration which leads to the case when the obstructed
node is y and h~ = j . Notice that some of the CFI; differ-
ent distributions of faulty links may lead to the case hL > j ,
meaning that the number of confi urations leading to the case

Q.E.D. h~ = j is less than or equal to C f - i .
P(hL = j) = 1,

a lower bound for the probability P (~ L = 0) can be derived
in closed form as below.

% - .

In light of Lemma 3 and the fact that

ilarly to the case of faulty links, the performance of G can be
analyzed with respect to faulty nodes as stated in the following
theorem.

Theorem 3: Suppose there are g faulty nodes in an injured
en, and a message is routed by G from node U to node w
where H (u , w) = n . Let hN be the Hamming distance be-
tween the obstructed node and the destination node. Then, for
2 5 j 5 min {g, n}, we have,

min { v , g - j)

where m + j = n.
Proof: Recall that the source and destination nodes are

assumed to be nonfaulty. We, therefore, consider only Cr-'
different distributions of the g faulty nodes. Also, note that
when a message reaches an obstructed node which is j hops
away from the destination, the message must have traversed
n - j = m nonfaulty nodes (not including the source node),
and is blocked by at least j faulty nodes at the obstructed
node. The conditions (faulty or not) of these m + j + 2 =
n + 2 (including the source and destination nodes) are then
determined from a given coordinate sequence to the obstructed
node. This theorem thus follows from the same reasoning as
the one in the proof of Theorem 2. Q.E.D.

Also, the probability of an optimal path routing in the pres-
ence of g faulty nodes, i.e., P(hN = 0), can be obtained by
Corollary 3.1 below.

Corollary 3 . I : Under Algorithm G , the probability for a
message to be routed in a Qn with g faulty nodes via an
optimal path to a destination node located n hops away is

k =O

Proofi Note that in this case the destination node is
viewed as an obstructed node that is 0 hop away from the
destination node. From a given coordinate sequence of an op-
timal path, the locations of n + 1 nonfaulty nodes (including

158

1.00UU00
1.000000

IEEE TRANSACTIONS ON PARALLEL AND DISTFUBUTED SYSTEMS, VOL. 1, NO. 2 , APRIL 1990

2 3 4 5 6

,933333 ,750000 .400000 .000000 .000000
.989011 .964286 .922078 ,858142 ,768565

TABLE 111-A
P(hN = 0), PROBABILITIES OF OPTIMAL PATH ROUTING BETWEEN

Two NODES WITH HAMMING DISTANCE n IN A Qn WITH
g FAULTY NODES

5 I 1.000000 ,997701 I .992857 1.985185 I .974366 1.960045
6 I 1.0000~10 I ,999471 1 .998387 I ,996720 I ,994438 1.991512

the source and destination nodes) in the path are known. This
corollary thus follows from Theorem 3. Q.E.D.

Using Table I and Corollary 3.1, we can obtain Table 111-A
which gives the probabilities of optimal path routing between
two nodes n hops away from each other in an Qn with g
faulty nodes. It can be seen that P(hN = 0) is greater than
P (~ L = 0) when the number of faulty components g = f is
relatively small as compared with the number of nodes in a
hypercube. This is due to the fact that a faulty node is viewed
as all the links attached to the node are faulty, and thus, the
message can find a faulty node sooner than a faulty link. This
in turn means that a detour will be taken sooner in the presence
of faulty nodes than in the presence of faulty links. This is the
reason that P (~ N = 0) is greater than P (~ L = 0) when g = f
is small. However, when the number of faulty components
g = f is large, P (~ L = 0) is greater than P (~ N = 0). This
also agrees with our intuition since there are much more links
than nodes in a hypercube. Similarly to the case of faulty
links, the associated bounds in the case of faulty nodes can
be obtained from the following lemma.

Lemma 4: Suppose there are g faulty nodes in an in-
jured Qn and messages are to be routed from an arbitrary
node U to another node w where H (u , w) = n. Then,
P (~ N = j) 5 CrJ2-i /Cf-2 if 2 5 j 5 min { n , g}, and
P (~ N = j) = 0 if j = 1 where N = 2” is the total num-
ber of nodes in a Q,,.

From Lemma 4 and the reasoning used in determining the
lower bound of P (~ L = 0), we can obtain a lower bound for
the probability P (~ N = 0) in closed form as:

(3)

Numerical examples for (3) are given in Table 111-B. It can
be seen from Tables 111-A and B that (3) closely approximates
the expression given in Corollary 3.1, and also that Algorithm
G routes a message to the destination via an optimal path with
a rather high probability in the presence of faulty nodes.

V. CONCLUSION

In this paper, we presented a routing scheme based on
depth-first search. The knowledge on the number of inversions
of a given permutation is used to analyze the performance of
this routing scheme. The number of faulty linkshodes re-
quired for a coordinate sequence to become the coordinate
sequence of a path toward a given obstructed node is deter-
mined. Probabilities for routing messages via optimal path to
given obstructed node locations are determined, and their as-
sociated bounds are derived in closed form. By setting the

TABLE 111-B
APPROXIMATION FOR P(hN = C) BY (3)

obstructed node to the destination node, the probability of the
optimal path routing between any two nodes can be obtained
as a special case of our results. It is also shown that this
routing scheme can route a message to its destination via an
optimal path with a very high probability.

ACKNOWLEDGMENT

The authors would like to thank J.-C. J. Chen at IBM for
her assistance in obtaining the data for Tables I1 and 111.

REFERENCES
Y. Saad and M. H. Schultz, “Topological properties of hypercubes,”
ZEEE Trans. Comput., vol. C-37, pp. 867-872, July 1988.
F. Ercal, J. Ramanujam, and P. Sadayappan, “Task allocation onto a
hypercube by recursive mincut bipartitioning,” in Proc. 3rd Conf.
Hypercube Concurrent Comput. Appl., Jan. 19-20, 1988, pp.
2 10-22 1.
M.-S. Chen and K. G. Shin, “Processor allocation in an n-cube mul-
tiprocessor using gray codes,” ZEEE Trans. Comput., vol. C-36, pp.
1396-1407, Dec. 1987.
- , “On relaxed squashed embedding of graphs into a hypercube,”
SIAM J. Comput., vol. 18, pp. 1226-1244, Dec. 1989.
T. N. Mudge and T. S. Abdel-Rahman, “Vision algorithms for hyper-
cube machines,” J. Parallel Distributed Comput., vol. 4, pp. 79-94,
1987.
T. F . Chan and Y. Saad, “Multigrid algorithms on the hypercube
multiprocessors,” IEEE Trans. Comput., vol. C-35, pp. 969-977,
Nov. 1986.
C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan, “Iterative al-
gorithms for solution of large sparse systems of linear equations on hy-
percubes,” ZEEE Trans. Comput., vol. C-37, pp. 1554-1568, Dec.
1988.
C. L. Seitz, “The cosmic cube,” Commun. Assoc. Comp. Mach.,
vol. 28, no. 1, pp. 22-33, Jan. 1985.
NCUBE Corp., “NCUBE/ten: An overview,” Beaverton, OR, Nov.
1985.
Intel Corp., Intel iPSC System Overview, Jan. 1986.
S. L. Johnson and C. T. Ho, “Optimum broadcasting and personalized
communication in hypercubes,” IEEE Trans. Comput., vol. C-38,
pp. 1249-1268, Sept. 1989.
M.-S. Chen and K. G . Shin, “On hypercube fault-tolerant routing
using global information,” in Proc. Fourth Conf. Hypercube Con-
current Comput. Appl., Mar. 6-8, 1989.
C. K. Kim and D. A. Reed, “Adaptive packet routing in a hypercube,”
in Proc. 3rd Conf. Hypercube Concurrent Comput. Appl., Jan.

J. G. Kuhl and S. M. Reddy, “Distributed fault tolerance for large
multiprocessor systems,” in Proc. 7th Annu. Znt. Symp. Comput.
Architecture, May 1980, pp. 23-30.
T. C. Lee and J. P. Hayes, “Routing and broadcasting in faulty hyper-
cube computers,” in Proc. 3rd Conf. Hypercube Concurrent Appl.,
Jan. 19-20, 1988, pp. 346-354.
P. Ramanathan and K. G. Shin, “Reliable broadcast in hypercube
multicomputers,” ZEEE Trans. Comput., vol. C-37, pp. 1654-1656,
Dec. 1988.
J. R. Armstrong and F. G. Gray, “Fault diagnosis in a Boolean n-
cube array of multiprocessors,” ZEEE Trans. Comput., vol. C-30,
pp. 587-590, Aug. 1981.
M . 3 . Chen and K. G. Shin, “Message routing in an injured hyper-
cube,” in Proc. 3rd Conf. Hypercube Concurrent Comput. Appl.,
Jan. 19-20, 1988, pp. 312-317.
1. M. Gordon and Q. F. Stout, “Hypercube message routing in the
presence of faults,’’ in Proc. 3rd Conf. Hypercube Comput. Appl.,
Jan. 19-20, 1988, pp. 318-327.

19-20, 1988, pp. 625-630.

AND SHIN: ROUTING IN HYPERCUBE MULTICOMPUTERS 159

E. Chow, H. S. Madan, J. C. Peterson, D. Grunwald, and D. Reed,
“Hyperswitch network for the hypercube computer,” in P m . 25th
Annu. Int. Symp. Comput. Architecture, May 30-June 2 , 1988, pp.
90-99.
T. Y. Feng, “A survey of interconnection networks,” IEEE Comput.,
pp. 12-27, Dec. 1981.
M.-S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, routing,
and broadcasting in hexagonal mesh multiprocessors,” IEEE Trans.
Comput., vol. C-39, pp. 10-18, Jan. 1990.
F. Harary, Graph Theory.
E. N. Gilbert, “Gray codes and paths on the n-cube,” Bell Syst. Tech.

D. E. Knuth, The Art of Computer Programming, Vol. 3. Read-
ing, MA: Atldison-Wesley, 1973.
A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Anal-
ysis of Computer Algorithms. Reading, MA: Addison-Wesley,
1974.
C. L. Liu, Introduction of Combinatorial Mathematics. New
York: McGraw-Hill, 1968.

Reading, MA: Addison-Wesley, 1969.

J. , vol. 37, pp. 263-267, 1973.

algorithms, graph and combinatorial theory, especially graph embedding, and
enumerative combinatorics.

Dr. Chen is a member of the Association for Computing Machinery.

Kang G. Shin (S’75-M’78-SM’83) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea, in 1970, and
both the M.S. and Ph.D. degrees in electrical en-
gineering from Cornell University, Ithaca, NY, in
1976 and 1978, respectively.

He is currently a Professor of Electrical Engi-
neering and Computer Science, The University of
Michigan, Ann Arbor, which he joined in 1982.
From 1970 to 1972 he served in the Korean Army
as an ROTC officer and from 1972 to 1974 he was

on the research staff of the Korea Institute of Science and Technology, Seoul,
Korea, working on the design of VHFKJHF communication systems. From
1978 to 1982 he was an Assistant Professor at Rensselaer Polytechnic In-
stitute, Troy, NY. He was also a visitor at the U.S. Airforce Flight Dy-
namics Laboratorv in Summer 1979 and at Bell Laboratories. Holmdel. NJ

Ming-Syan Chen (S’87-M’88) was born in Taipei,
Taiwan, Republic of China. He received the B.S.
degree in electrical engineering from National Tai-
wan University in 1982, and the M.S. and Ph.D.
degrees in computer, information, and control en-
gineering from The University of Michigan, Ann
Arbor, MI, in 1985 and 1988, respectively.

Since Fall 1988, he has been with I.B.M. Thomas
J. Watson Research Center, Yorktown Heights, NY,
where he is currently a research staff member in
the Architecture Analysis and Design group. From

1982 to 1984, he served in the ROC military service as an electronics in-
structor. In Fall 1984, he went to The University of Michigan, Ann Arbor,
MI, where he was a research assistant in Real Time Computing Labora-
tory of EECS department, and completed graduate studies in the area of
routing and task allocation in multiprocessor interconnection networks. His
research interests include parallel computer architectures, especially hyper-
cubes, distributed database systems, multiprocessor interconnection networks,

in Summer 1980. During the 1988-1989 academic year, he was a Visiting
Professor in the CS Division, Electrical Engineering and Computer Science,
UC Berkeley and at International Computer Science Institute, Berkeley, CA.
He has authoredkoauthored over 160 technical papers in the areas of fault-
tolerant computing, distributed real-time computing, computer architecture,
and robotics and automation. In 1985, he founded the Real-Time Computing
Laboratory, where he and his colleagues are currently building a 19-node
hexagonal mesh multicomputer, called HARTS, to validate various architec-
tures and analytic results in the area of distributed real-time computing.

Dr Shin received the Outstanding Paper Award in 1987 from the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL for a paper on robot trajectory plan-
ning. In 1989, he also received the Research Excellence Award from The
University of Michigan. He was the Program Chairman of the 1986 IEEE
Real-Time Systems Symposium (RTSS), the General Chairman of the 1987
RTSS and the Guest Editor of the 1987 August special issue of IEEE TRANS-
ACTIONS ON COMPUTERS on real-time systems. He is currently a Distinguished
Visitor of the Computer Society of the IEEE and an Area Editor of Interna-
tional Journal of Time-Critical Computing Systems.

