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Depth-First Search Approach for Fault-Tolerant 
Routing in Hypercube Multicomputers 

Abstract-Using depth-first search, we develop and analyze the per- 
formance of a routing scheme for hypercube multicomputers in the pres- 
ence of an arbitrary number of faulty components. We derive an exact 
expression for the probability of routing messages via optimal paths (of 
length equal to the Hamming distance between the corresponding pair 
of nodes) from the source node to an obstructed node. The obstructed 
node is defined as the first node encountered by the message that finds 
no optimal path to the destination node. Also, bounds for this prob- 
ability are derived in closed form. Note that the probability of routing 
messages via an optimal path between any two nodes is a special case of 
our results, and can be obtained by replacing the Obstructed node with 
the destination node. Numerical examples are also given to illustrate 
our results, and show that in the presence of component failures the 
depth-first search routing can route a message via an optimal path to 
its destination with a very high probability. 

Index Terms- Coordinate sequences, depth-first search, fault- 
tolerant routing, hypercube multicomputers, inversions. 

I .  INTRODUCTION 

WING to their structural regularity and high potential 0 for the parallel execution of various algorithms, hyper- 
cube multicomputers have drawn considerable attention in re- 
cent years from both academic and industrial communities 
[ 11-[ 101. Topological properties of hypercubes were investi- 
gated in [ 13. Task and subcube allocation schemes were pro- 
posed to exploit the parallelism within a hypercube multi- 
computer [2]-[4]. Numerous applications on hypercube mul- 
ticomputers were explored [5]-[7], and several research and 
commercial hypercube machines were built [8]-[ 101. Efficient 
message routing is a key to the performance of distributed 
memory multicomputers, such as hypercubes [ l l ] .  To make 
hypercube multicomputers useful for reliability-critical appli- 
cations, significant research efforts have been made on the 
design of fault-tolerant routing schemes for them [ 121-[20]. 

A connected hypercube with faulty components is called an 
injured hypercube. In order to enable nonfaulty nodes in an 
injured hypercube to communicate with one another, enough 
network information must be either kept at each node or added 
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to the message to be routed. For the first approach, several 
algorithms have been proposed in [12]-[15], which gener- 
ally require each hypercube node to keep a certain amount of 
global information for its routing decisions. This, however, 
necessitates the propagationhroadcasting of updated network 
information when the network condition changes. Some broad- 
casting schemes in injured hypercubes can also be found in 
[15]-[17]. For the second approach, in which each node is 
required to know only the condition (faulty or not) of its ad- 
jacent components (links or nodes), several routing schemes 
based on the concept of depth-first search and its variation 
have been proposed [ 181-[20]. Under a depth-first search rout- 
ing scheme, each message is accompanied with a stack which 
keeps track of the history of the path traveled, and tries to 
avoid visiting a node more than once unless a backtracking is 
enforced. Although the concept of depth-first search is well 
understood and appears to be able to exploit the abundant 
connections in the hypercube and thus achieve a high degree 
of fault-tolerance, neither formal presentation nor rigorous 
performance analysis of this scheme has been reported in the 
literature. Development and analysis of a fault-tolerant routing 
scheme using depth-first search for hypercube multicomputers 
is, therefore, the subject of this paper. 

We shall first develop a routing scheme using depth-first 
search, in which every node is only required to know the con- 
dition of its adjacent components. The path that a message 
has traversed is kept track of by the message as it is routed 
toward its destination. Performance of this routing algorithm 
will be rigorously analyzed. An optimal path between a pair 
of nodes is a path of length equal to the Hamming distance 
between the two nodes. Under this routing scheme, the first 
node in the message’s route that is aware of the nonexistence 
of an optimal path from itself to the destination is called the 
obstructed node. At the obstructed node, the message has to 
take a detour. In this paper, we derive exact expressions for 
the probabilities of optimal path routing from the source node 
to a given obstructed node in the presence of both link and 
node failures. Bounds for these probabilities are also derived 
in closed form, which will be shown to closely approximate 
the exact expressions. Note that determination of the prob- 
ability for optimal path routing between any two nodes is a 
special case of our results since the destination node can be 
viewed as an obstructed node that is 0 hop away from the des- 
tination node. Numerical examples are also given to illustrate 
our results. It can be seen that in the presence of component 
failures, the depth-first search routing can route a message via 
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an optimal path to its destination with a very high probability. 
It is worth mentioning that the concept of depth-first search 

is not only useful for the fault-tolerant routing in hyper- 
cubes, but also applicable to fault-tolerant and multipath rout- 
ing in other multicomputer systems such as square meshes and 
hexagonal meshes [21], [22]. Note, however, that the depth- 
first search routing must be guided to fully exploit the con- 
nections in each multicomputer system, and thus, the method 
of guiding depth-first search closely depends on system topol- 
ogy. 

This paper is organized as follows. Necessary notation and 
definitions are introduced in Section 11. A fault-tolerant rout- 
ing scheme using depth-first search for hypercube multicom- 
puters is presented in Section 111. The performance of this 
routing scheme is analyzed rigorously in Section IV where il- 
lustrative examples are also given. The paper concludes with 
Section V. 

11. PRELIMINARIES 
An n-dimensional hypercube is defined recursively as Qn = 

K2 x Qn-1 where K2 is the complete graph with two nodes, 
Qo is a trivial graph with one node and x is the product oper- 
ation on two graphs [23]. A Qn contains 2" nodes and n2"-' 
links since the degree of each node in a Qn is n. Let C be 
the ternary symbol set (0,  1, * }  where * is a don't care sym- 
bol. Every subcube in a Qn can then be uniquely addressed 
by a string of symbols in .E. The rightmost coordinate of the 
address of a subcube will be referred to as dimension 1,  and 
the second to the rightmost coordinate as dimension 2, and 
so on. For each hypercube node, the communication link in 
dimension i is called the ith link of the node. For notational 
simplicity, each link is represented by a binary string with a 
"-" symbol in its corresponding dimension. For example, the 
link between nodes oo00 and 0010 is represented by 00-0. 

Definition I: The Hamming distance between two hy- 
percube nodes with addresses U = U n U n - 1  . . .u1 and w = 
wnwn-l "'w1 in a Qn is defined as 

n 

H(U, w) = x h ( u i ,  wi)whereh(ui, wi) 
i=l  

1, ifui # wi, =i 0, ifui = wi. 

Also, it is necessary to introduce the exclusive operation 
between two binary strings, and the concept of relative ad- 
dress between two hypercube nodes. 

Definition 2: The exclusive operation of two binary strings 
q = qnqn-l . . . q l  and m = m,mn-l...ml, denoted by 
q e m  = rnrnVl ".rl is defined as ri = 0 if qi = mi and 
ri = 1  i fq i  =-for 1 < i  i n .  

We use @ fz1 to denote k sequential exclusive operations. 
The relative address of a node U with respect to another node 
w, denoted by u / ~ ,  can then be determined by ulw = U w. 
Let ek = enenPl . . .  el where e k  = 1 and ej  = O V j  # k.  
For example, 1001 @e2 = 1011, 00lljlo01 = 1010, and 

A path in a hypercube is represented by a sequence of nodes 
0*ljloOl = 1*1*. 
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Fig. 1. An optimal path from OOO1 to 1010. 

in which every two consecutive nodes are physically adjacent 
to each other. Thus, a path in a Qn can be viewed as a se- 
quence of binary numbers of n bits such that every two con- 
secutive binary numbers differ by exactly one bit. The number 
of links on a path is called the length of the path. An optimal 
path is a path whose length is equal to the Hamming distance 
between the source and destination nodes. We shall call the 
routing via an optimal path the optimal path routing. Also, 
a link of node U is said to be toward another node w if the 
link belongs to one of the optimal paths from U to w. 

Note that due to the special structure of a hypercube, 
once the source node of a path of length k in a Qn is 
given, the path can be described by a coordinate sequence 
c = [cl, c2, . . . , ck ]  where 1 < ci 5 n for 1 < i < k .  A co- 
ordinate sequence is a sequence of ordered dimensions in each 
of which the corresponding two adjacent nodes in the path dif- 
fer [24]. A coordinate sequence is said to be simple if any 
dimension does not occur more than once in that sequence. 
It is easy to see that a path is optimal if and only if its coor- 
dinate sequence is simple. As shown in Fig. 1, [OOOl, 0011, 
0010, 1010J is an optimal path from the source OOO1 to the 
destination 1010, and can also be represented by a coordinate 
sequence [2, 1, 41. 

Definition 3 [25]: The number of inversions of a simple 
coordinate sequence C = [c 1, c2, . . . , Ck], denoted by V ( C ) ,  
is the number of pairs (c;,  cj)  such that 1 < i < j 5 k and 
ci >Cj .  

For example, V([3,4,1,2]) = 4 and V([2,4,1]) = 2. Let the 
superscript R denote the reversing of a coordinate sequence, 
and the notation (3 denote an append operation. Also, the ith 
element in a coordinate sequence C is denoted by C[i].  For 
example, if C = [2,4,1] is the coordinate sequence of a path, 
then C[2] = 4, C R  = [1,4,2] and C 0 3 = [2,4,1,3]. 

111. DEPTH-FIRST SEARCH ROUTING 

In this section, we present an adaptive routing algorithm 
based on depth-first search, which requires every node to 
know only the condition (faulty or not) of its own links. The 
case that a node is faulty is treated as that all links of the 
node are faulty. This algorithm can successfully route mes- 
sages between any pair of connected, nonfaulty nodes. When 
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the insufficient knowledge of faulty components causes a mes- 
sage to be sent to an intermediate node from which no optimal 
path to the destination node exists, an alternative path will be 
chosen in such a way that the connectivity of a hypercube is 
fully exploited. Before presenting the routing algorithm, it is 
necessary to introduce the following proposition which deter- 
mines, from the coordinate sequence of a path, the relative 
addresses of those nodes traversed. 

Proposition I :  Let [c 1 ,  c2, . . . , ck] be the coordinate se- 
quence of a given path in a Q n  starting from node U, and 
wiu = w,wn-l . . . w 1 denote the relative address of node 
w with respect to U where k = H ( u ,  w). Then, the path 
specified by [cl, c2 , .  . . ,ck] ends at w if and only if @fzl 

Proof: A message's traversal along the ith dimension is 
the same as inverting the bit in the ith coordinate of the relative 
address of its destination. Therefore, traversing along a certain 
dimension an even number of times has the same effect as not 
traversing along that dimension at all. This proposition thus 
follows. Q.E.D. 

Let S(C)  denote the set of the relative addresses of 
those nodes reachable by the coordinate sequence C = 
[cl, c2, . . . , c k ]  from a given node. By Proposition 1, S(C)  = {e rZ1 eci : 1 5 r 5 k}. For example, a path with the coordi- 

/* For each node receiving (d, message, TD). * /  
if d = 0" then stop /* The destination is reached. * I  
else 
begin 

ecl = Wl". 

for j := 1, n do 
begin 

far are recorded in a set TD in the same order if visited, and 
will be delivered together with the message to the next node. 
Note that using TDR each intermediate node can determine 
the addresses of those nodes visited before where TDR is the 
reversing of TD as defined in Section 11. Clearly, sending TD 
along with the message is much cheaper than sending the ad- 
dresses of all the nodes visited. When the source node begins 
routing a message, TD is set to the empty set 4. Therefore, 
the information to be phased on to the next node can be repre- 
sented as (d ,  message, TD) where d is the relative address of 
the destination node with respect to an intermediate node, and 
is updated as the message is routed toward the destination. A 
message reaches its destination when d becomes 0". 

When a node receives a message, it will check the value 
of d to see if the destination is reached. If not, the inter- 
mediate node will try to send the message along an optimal 
path to the destination. However, if all the optimal paths are 
blocked by faulty components and those nodes visited before, 
the node will route the message via an alternative path using 
the concept of depth-first search. When there is no alternative 
path available, backtracking is enforced. More formally, this 
routing scheme can be described in an algorithmic form as 
follows. 
Algorithm G: Depth-first search routing algorithm. 

if (d, = 1) and (the j-th link is not faulty) and (e' @S(TDR)) then 

send (d @ ei, message, TD 0 j) along the j-th link; 
stop; /*terminate Algorithm G*/ 

begin 

end 
end 

/* If the algorithm is not terminated yet, all optimal paths to the destination node are blocked 
by faulty components and nodes traversed before. * / 
if {i : e' @S(TDR) and the i-th link is not faulty, 1 5 i 5 n} # 4 

then h := minlsiln (i : e' @S(TDR) and the i-th link is not faulty} /*  A detour is taken. * /  
else 
begin /*  Backtracking * I  

g := max(m : e E, eTDR[I] = On}; 
if g = IS(TD)I then stop /* The source and destination nodes are not connected. * /  
h := TDR[g + 11; 

end 
send (d @ eh, message, TD 0 h) along the h-th link; 
stop; /*terminate Algorithm G*/ 

end 

nate sequence [2,1,4] from 0000 will traverse the set of nodes 
S(C)  = (0010,0011, 1011). 

To indicate the destination of a message, the relative address 
of the destination node is sent along with the message. The 
depth-first search routing algorithm will attempt to avoid vis- 
iting the same node more than once except when backtracking 
is forced. Thus, those dimensions that a message traversed so 

Note that an intermediate node can determine whether or 
not its ith link is connected to a node that was visited be- 
fore by checking if ei belongs to S(T@). When backtracking 
is forced, the message must be returned to the node from 
which this message was originally received. This explains the 
way we determine the value g in the segment commented by 
/* Backtracking * /  in the above algorithm. When g = \S(TD)), 
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we know that backtracking is enforced at the source node, and 1111 

can thus conclude that the source and destination nodes are 
disconnected. 

Note that there is an unavoidable overhead required to 
achieve fault-tolerant routing. To route a message to its desti- 
nation in an injured hypercube, those nodes traversed before 
by the message must be made known to the intermediate nodes 
so as to avoid message looping. This is the very reason that 
under G every intermediate node has to append to the mes- 
sage a tag TD, from which the addresses of nodes traversed 
before can be recovered in light of the topology of a hyper- 
cube. Depth-first search is thus ensured at the cost of carrying 
TD with each message. The values of g and h in G can be 
easily determined from TD. It can be verified that the com- 
plexity of determining g and h is O( ITDO. Note that when 
the probability of the occurrence of a faulty component is low, 
the above scheme can be modified to reduce the operational 
overhead in such a way that the tag TD is appended to the 
message only after faulty components are encountered by the 
message. However, when the probability of the occurrence 
of a faulty component is high, it is worth using the tag TD 
from the beginning so as to fully exploit different paths and 

11 

loo0 
Fig. 2. An injured Q4. 

nodes where backtracking may occur under G .  These nodes 
will form a search tree with 2" - k nodes and 2" - k - 1 
links. Since every link in the search tree is traversed twice, 
the message will traverse 2(2" - k - 1) hops in the search tree 
and k hops on its optimal path to the destination. Q.E.D. - . -  

avoid sending the message back to a node which received the 
message before. There are some other techniques conceivable 
to implement the depth-first search routing for hypercubes. 
Instead of keeping the entire path traveled in TD, the search 
can also be implemented by using a stack. In such a case, the 
operation required for backtracking is simplified, but addi- 
tional provisions are needed to ensure that a node will not be 
visited more than once. 

Consider an injured Q 4  in Fig. 2. Suppose a message f m  
is routed from U = 0110 to w = 1001. The original message 
at U = 01 10 is (1 11 1, f m ,  4). Following the execution of G , 
node 01 10 sends (1 110, f m ,  [l]) to node 01 11 which then 
sends (1 100, f m ,  [1,2]) to node 0101. Since the third dimen- 
sional link of 0101 is faulty, node 0101 will send (0100, f m ,  
[1,2,4]) to 1101. However, since the third dimensional link 
of 1101 is faulty, node 1101 will choose an alternative path, 
and send (0101, f m ,  [1,2,4,1]) to 1100, which will, in turn, 
send (0001, f m ,  [1,2,4,1,3]) to 1OOO. Then, since links of 
lo00 in dimensions 1, 2, and 4 are faulty, backtracking is en- 
forced and the message is sent back to 1100. It can be verified 
that the message is thereafter sent to its destination via 11 10, 
11 11, 101 1, and then 1001. The following proposition follows 
directly from the fact that depth-first search is a general graph 
search algorithm and can start from any node in a graph [26]. 

Proposition 2: Algorithm G will route a message to its 
destination successfully as long as the destination is reachable. 

Algorithm G is a generalized version of the algorithm pre- 
sented in [18] where the number of faults is assumed to be 
less than n. Also, from the fact that those links traversed will 
not form a cycle, we have the following proposition. 

Proposition 3: The nodes and links traversed under G form 
a tree. 

Proposition 3 in turn leads to another proposition. 
Proposition 4: The worst case of G uses H ( u ,  w )  +2(2" - 

H (  U ,  w )  - 1) hops to send a message from node U to node w 
for a pair of connected nodes U and w. 

Proof: Let H ( u ,  w )  = k ,  then there are at most 2" - k 

IV. PERFORMANCE ANALYSIS OF DEPTH-FIRST SEARCH ROUTING 

To illustrate the performance of depth-first search routing, 
let us consider an injured hypercube with a given number of 
faulty components. All possible distributions of faulty compo- 
nents are assumed to be equally likely. The number of faulty 
nodes required for a simple coordinate sequence C to be the 
path found by depth-first search is equal to the number of in- 
versions in C [ 191. This fact can be formally stated as follows. 

Proposition 5: Suppose H ( u ,  w )  = n in a Q n .  Then, un- 
der G the minimum number of faulty nodes required for the 
simple coordinate sequence C = [c1, c2,. . . , c,] to be the 
path determined by G from U to w is V ( C ) .  

For example, let 0000 and 11 11 be the source and destina- 
tion nodes, respectively. Then, the set of nodes whose fail- 
ures will make G choose the coordinate sequence [3,4,1,2] 
is (0001, 0010, 0101, OllO}. In light of the fact that the 
addresses of hypercube nodes form a partial order set, the 
effects of a faulty node, say x, are the same as those of a 
faulty link via which an intermediate node is trying to send 
the message toward x. For the above example, the set of links 
whose failures will force G to choose the coordinate sequence 
[3,4,1,2] is {WO-, 00-0, 010-, 01-O}. Proposition 5 can thus 
be extended and generalized as follows. 

Lemma 1: Let U and w be two nodes in an injured Qn 
with f faulty links and g faulty nodes where H ( u ,  w )  = n .  
Suppose C = [c 1 ,  c2, . . . , c,] is the path chosen by G from U 
to w. Then, f + g  2 V ( C ) .  

Recall that the obstructed node is the first node on a path 
that is aware that there is no optimal path to the destination 
node and a detour (i.e., nonoptimal path) has to be taken. 
To facilitate our presentation, define the weight of a set of 
dimensions to be their summation, i.e., W(c1, c2, . . . , c,)  = 
ELl c;. Then, we can derive the following theorem which 
characterizes the performance of G . 

Theorem 1: Suppose U and w are respectively the source 
and destination nodes in a Qn where H ( u ,  w )  = n.  Then, the 
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number of faulty components (nodes and/or links) required 
for the simple coordinate sequence C = [cl, c2,. . . , c,] to 
be the path chosen by G to an obstructed node located j hops 
away from w is V ( C )  + W ( C ~ ,  . . . , Cm) - CL, i + j where 
m = n - j .  

To prove Theorem 1, we need the following lemma. 
Lemma 2: Let C = [c 1 ,  c2, . . . , c,] be a simple coordinate 

sequence. Then, V ( C )  + V ( C R )  = m(m - 1)/2. 
Proof: There are CT = m(m - 1)/2 different ways to 

choose pairs (Ci, C j ) ,  i < j ,  from ( ~ 1 ,  C ~ , . . . , C , )  . Since C 
is a simple coordinate sequence, either ci > c, or ci < c j  , 
meaning that each selection (ci , c,) will be counted for either 
V ( C )  or V ( C R ) ,  thus proving the lemma. Q.E.D. 

Proof of Theorem I :  According to the operations of 
depth-first search routing, the lowest dimension among those 
dimensions not traversed before will be chosen first. Since 
H ( u ,  w )  = n ,  the selection of dimension c1 to the first hop 
implies that c1 - 1 faulty components have been encountered. 
Also, the selection of dimension c2 to the second hop means 
a) there are another c2 - 1 faulty components encountered if 
c2 < c 1, or b) there are another c2 - 2 faulty components 
encountered if c2 > c1. Following the same reasoning, we 
know that up to the obstructed node (i.e., the first m hops), 
the message must have encountered CK, (ci - 1) - V ( C R )  = 
E:, ci-m-m(m-1)/2+V(C) = V(C)+E:, ci-m(m+ 
1)/2 faulty components since V(CR)+V(C)  = m(m-1)/2 by 
Lemma 2. Also, additional j faulty components are required 
to block all the optimal paths from the obstructed node to w ,  
thus proving the theorem. Q.E.D. 

For example, suppose C = [3,2] is the coordinate sequence 
of the path chosen by G from OOOO to the obstructed node 01 10 
when node 11 11 is the destination. (Without loss of generality, 
one can consider node failures only.) Then, the required faulty 
nodesare0001,0010,0101,0111, and 1110. Thisagrees with 
that V(C)+W(3,2)-(1+2)+2 = 1+5-3+2 = 5 .  Itcanbe 
seen that Lemma 1 is a special case of Theorem 1, where the 
obstructed node is the destination node, i.e., m = n ,  j = 0 
and W(c l ,  c2 , . . .  , c n )  = Er=, whereas Proposition 5 is a 
special case of Lemma 1 in which both node and link failures 
are considered. 

Let S ( n ,  m) be the set of combinations of m different num- 
bersoutof{l,2,...,n}[27] . Forexample,S(3,2) = {(1,2), 
(1,3), (2,3)}. Clearly, IS(n, m)l = C: is the number of com- 
binations of m objects out of n different objects. Let Z,(k) 
denote the number of permutations of n numbers with exactly 
k inversions. Note that the value of Z,(k) can be obtained 
from its generation function given in (1) later [25]. Then, 
from Theorem 1 we have the following important theorem. 

Theorem 2: Suppose there are f faulty links in a Q n ,  and 
a message is routed by G from node U to node w where 
H ( u ,  w )  = n.  Let hL be the Hamming distance between the 
obstructed node and the destination node. Then 

min { w , f - j >  

c 1 
P(hL = j ) =  - 

C: o E S ( n , m )  k=O 

f -j-k k - W ( U )  + ~ 

where P ( E )  is the probability of event E ,  L = n2"-' and 
m + j = n .  

Proof: Since faults may occur at any f links in the Qn,  
there are C t  different configurations of faulty links. The prob- 
lem of obtaining P(hL = j )  is then reduced to that of count- 
ing the number of configurations which lead to the case of 
h~ = j .  Note that the message traverses m = n - j hops 
before it reaches the obstructed node, meaning that there are 
IS(n, m) 1 possible locations of the obstructed node. Without 
loss of generality, one can assume that 0" is the source node 
and 1" is the destination node. Then, there is a one-to-one 
correspondence between each element in S(n, m) and each 
possible location of the obstructed node. 

Consider an obstructed node location x which is determined 
by an element U E S ( n ,  m). Let C be the coordinate sequence 
from node U to x. From Theorem 1, we know that the message 
has encountered V ( C )  + W ( U )  - m(m + 1)/2 faulty links 
before reaching x. Thus, the number of different paths from 
U to x while traversing the dimensions in U and encountering k 
faulty links can be expressed as Z,(k - W ( U )  +m(m + 1)/2) 
where Z,(q) is the number of permutations of m numbers 
with q exactly inversions. For each given coordinate sequence 
to x, the locations of these k faulty links encountered before 
reaching x are determined. Moreover, there are additional j 
faulty links adjacent to x. Also, note that m links in the path 
from U to x are nonfaulty. Therefore, the number of different 
configurations for a given coordinate sequence or path to a 
certain obstructed node location x is C;I:It -m = Ci:;::. 
Thus, this theorem follows. Q.E.D. 

It is worth mentioning that determination of the probability 
of an optimal path routing can be viewed as a special case of 
Theorem 2 by setting the obstructed node to the destination 
node, i.e., the determination of P(hL = 0). More formally, 
we have the following corollary. 

Corollary 2.1: Under Algorithm G ,  the probability for a 
message to be routed in an injured Qn with f faulty links via 
an optimal path to a destination node which is n hops away 
can be expressed as 

' 

Proof: Since the destination node is viewed as the ob- 
structed node which is 0 hop away from the destination node, 
one can substitute j = 0 and m = n into the expression in The- 
orem 2. Note that the only element in S ( n ,  n )  is (1, 2, . . . ,  n )  
and W (  1, 2, . . . ,n) = n(n + 1)/2, leading to this corollary. 

Q.E.D. 
As mentioned earlier, the value of Z,(k) can be obtained 

from its generation function [25], 

n ( n  - 1) 12 

Gn(z) = I n ( j > z '  
j =O 

= (1 +z ) ( l  + z  + z 2 ) . - ( 1  + z  +z2  + . . .+z" - ' ) ,  

(1) 

because Z,(k) = l /k!dkG,(0)/dzk. It can be seen that 
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TABLE 11-B TABLE I 
PERMUTATIONS WITH k INVERSIONS APPROXIMATION FOR P ( ~ L  = 0)  BY (2) 

TABLE 11-A 
P(hr. = 0), PROBABILITIES OF OPTIMAL PATH ROUTING BETWEEN 

Two NODES WITH HAMMING DISTANCE n IN A Qn WITH min { n , f }  Cn2"-'-; 
P ( h L = 0 ) > 1 -  f-j. (2) 

;=I cp"-' 
Numerical examples for (2) are given in Table 11-B. From 

Table 11-A and B, it can be observed that (2) very closely ap- 
proximates the exact expression given in Corollary 2.1. Sim- 

Z,(k) = 0 if k < 0 or k > n(n - 1)/2. The values of Zn(k),  
for 3 5 n 5 6 and 0 5 k 5 n(n - 1)/2, are computed in Ta- 
ble I. The exact values for P ( ~ L  = j) can thus be determined 
by Theorem 2, and the probability of an optimal path routing 
between two nodes can be obtained by Corollary 2.1. From 
Corollary 2.1 and the data in Table I, we obtain Table 11-A 
which shows the probabilities of optimal path routing between 
two nodes n hops away from each other in a Qn with f faulty 
links. It can be seen that in the presence of link failures, Algo- 
rithm G can route a message to the destination via an optimal 
path with a very high probability. 

Notice, however, that when n is large, the determination of 
Zn(k),  although it is feasible, may require excessive compu- 
tation. To obtain more insights into the performance of G as 
well as reduce the computation required to obtain P ( ~ L  = j ) ,  
an upper bound of P ( ~ L  = j )  can be derived in closed form 
as follows. 

Lemma 3: Suppose there are f faulty links in an in- 
jured Qn,  and a message is routed by G from node U to 
w, where H ( u ,  w) = n .  Then, P(hL = j )  ICFI;/C$ if 
0 5 j 5 min {n, f } where L = n2"-' is the number of links 
in a Q n .  

Proof: As mentioned before, the problem of obtaining 
P(hL = j )  is to count the number of configurations which lead 
to the case of hL = j .  When h~ = j ,  all the j links toward 
w of the obstructed node, say x, must be faulty. According to 
depth-first search, the location of the obstructed node is de- 
termined by those faulty links which are not within SQ(x,  w) 
where SQ(x,  w) is the smallest subcube that contains both x 
and w Since the j links of node x within SQ(x, w) are faulty, 
there are CFI; different distributions of the other f - j  faulty 
links. When these f - j faulty links cause node y, instead of 
x, to be the obstructed node, we exchange the links (including 
faulty links) in S Q ( y ,  w) with those in SQ(x,  w), and obtain 
a configuration which leads to the case when the obstructed 
node is y and h~ = j .  Notice that some of the CFI; differ- 
ent distributions of faulty links may lead to the case hL > j ,  
meaning that the number of confi urations leading to the case 

Q.E.D. h~ = j is less than or equal to C f - i .  
P(hL = j )  = 1, 

a lower bound for the probability P ( ~ L  = 0) can be derived 
in closed form as below. 

% - .  

In light of Lemma 3 and the fact that 

ilarly to the case of faulty links, the performance of G can be 
analyzed with respect to faulty nodes as stated in the following 
theorem. 

Theorem 3: Suppose there are g faulty nodes in an injured 
en, and a message is routed by G from node U to node w 
where H ( u ,  w) = n .  Let hN be the Hamming distance be- 
tween the obstructed node and the destination node. Then, for 
2 5 j 5 min {g, n}, we have, 

min { v , g - j )  

where m + j = n. 
Proof: Recall that the source and destination nodes are 

assumed to be nonfaulty. We, therefore, consider only Cr-'  
different distributions of the g faulty nodes. Also, note that 
when a message reaches an obstructed node which is j hops 
away from the destination, the message must have traversed 
n - j = m nonfaulty nodes (not including the source node), 
and is blocked by at least j faulty nodes at the obstructed 
node. The conditions (faulty or not) of these m + j + 2 = 
n + 2 (including the source and destination nodes) are then 
determined from a given coordinate sequence to the obstructed 
node. This theorem thus follows from the same reasoning as 
the one in the proof of Theorem 2. Q.E.D. 

Also, the probability of an optimal path routing in the pres- 
ence of g faulty nodes, i.e., P(hN = 0), can be obtained by 
Corollary 3.1 below. 

Corollary 3 . I :  Under Algorithm G , the probability for a 
message to be routed in a Qn with g faulty nodes via an 
optimal path to a destination node located n hops away is 

k =O 

Proofi Note that in this case the destination node is 
viewed as an obstructed node that is 0 hop away from the 
destination node. From a given coordinate sequence of an op- 
timal path, the locations of n + 1 nonfaulty nodes (including 
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,933333 ,750000 .400000 .000000 .000000 
.989011 .964286 .922078 ,858142 ,768565 

TABLE 111-A 
P(hN = 0), PROBABILITIES OF OPTIMAL PATH ROUTING BETWEEN 

Two NODES WITH HAMMING DISTANCE n IN A Qn WITH 
g FAULTY NODES 

5 I 1.000000 ,997701 I .992857 1.985185 I .974366 1.960045 
6 I 1.0000~10 I ,999471 1 .998387 I ,996720 I ,994438 1.991512 

the source and destination nodes) in the path are known. This 
corollary thus follows from Theorem 3. Q.E.D. 

Using Table I and Corollary 3.1, we can obtain Table 111-A 
which gives the probabilities of optimal path routing between 
two nodes n hops away from each other in an Qn with g 
faulty nodes. It can be seen that P(hN = 0) is greater than 
P ( ~ L  = 0) when the number of faulty components g = f is 
relatively small as compared with the number of nodes in a 
hypercube. This is due to the fact that a faulty node is viewed 
as all the links attached to the node are faulty, and thus, the 
message can find a faulty node sooner than a faulty link. This 
in turn means that a detour will be taken sooner in the presence 
of faulty nodes than in the presence of faulty links. This is the 
reason that P ( ~ N  = 0) is greater than P ( ~ L  = 0) when g = f 
is small. However, when the number of faulty components 
g = f is large, P ( ~ L  = 0) is greater than P ( ~ N  = 0). This 
also agrees with our intuition since there are much more links 
than nodes in a hypercube. Similarly to the case of faulty 
links, the associated bounds in the case of faulty nodes can 
be obtained from the following lemma. 

Lemma 4: Suppose there are g faulty nodes in an in- 
jured Qn and messages are to be routed from an arbitrary 
node U to another node w where H ( u ,  w) = n. Then, 
P ( ~ N  = j )  5 CrJ2-i /Cf-2 if 2 5 j 5 min { n ,  g}, and 
P ( ~ N  = j )  = 0 if j = 1 where N = 2” is the total num- 
ber of nodes in a Q,,. 

From Lemma 4 and the reasoning used in determining the 
lower bound of P ( ~ L  = 0), we can obtain a lower bound for 
the probability P ( ~ N  = 0) in closed form as: 

(3) 

Numerical examples for (3) are given in Table 111-B. It can 
be seen from Tables 111-A and B that (3) closely approximates 
the expression given in Corollary 3.1, and also that Algorithm 
G routes a message to the destination via an optimal path with 
a rather high probability in the presence of faulty nodes. 

V. CONCLUSION 

In this paper, we presented a routing scheme based on 
depth-first search. The knowledge on the number of inversions 
of a given permutation is used to analyze the performance of 
this routing scheme. The number of faulty linkshodes re- 
quired for a coordinate sequence to become the coordinate 
sequence of a path toward a given obstructed node is deter- 
mined. Probabilities for routing messages via optimal path to 
given obstructed node locations are determined, and their as- 
sociated bounds are derived in closed form. By setting the 

TABLE 111-B 
APPROXIMATION FOR P(hN = C) BY (3) 

obstructed node to the destination node, the probability of the 
optimal path routing between any two nodes can be obtained 
as a special case of our results. It is also shown that this 
routing scheme can route a message to its destination via an 
optimal path with a very high probability. 
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