
Depth from Motion for Smartphone AR

JULIEN VALENTIN, ADARSH KOWDLE, JONATHAN T. BARRON, NEAL WADHWA, MAX DZITSIUK,
MICHAEL SCHOENBERG, VIVEK VERMA, AMBRUS CSASZAR, ERIC TURNER, IVAN DRYANOVSKI,
JOAO AFONSO, JOSE PASCOAL, KONSTANTINE TSOTSOS, MIRA LEUNG, MIRKO SCHMIDT, ONUR
GULERYUZ, SAMEHKHAMIS, VLADIMIR TANKOVITCH, SEANFANELLO, SHAHRAM IZADI, andCHRISTOPH
RHEMANN, Google Inc.

Fig. 1. AR occlusions. Estimating the depth of the scene is crucial to render virtual objects such that they realistically blend into the real context. We provide

the first system capable of providing dense, low latency depth maps at 30Hz on a single mobile CPU core, using only the standard color camera found on most

smartphones. Applications include AR shopping, navigation and creative photo apps.

Augmented reality (AR) for smartphones has matured from a technology

for earlier adopters, available only on select high-end phones, to one that

is truly available to the general public. One of the key breakthroughs has

been in low-compute methods for six degree of freedom (6DoF) tracking on

phones using only the existing hardware (camera and inertial sensors). 6DoF

tracking is the cornerstone of smartphone AR allowing virtual content to

be precisely locked on top of the real world. However, to really give users

the impression of believable AR, one requires mobile depth. Without depth,

even simple e�ects such as a virtual object being correctly occluded by the

real-world is impossible. However, requiring a mobile depth sensor would

severely restrict the access to such features. In this article, we provide a novel

Authors’ address: Julien Valentin; Adarsh Kowdle; Jonathan T. Barron; Neal Wad-
hwa; Max Dzitsiuk; Michael Schoenberg; Vivek Verma; Ambrus Csaszar; Eric Turner;
Ivan Dryanovski; Joao Afonso; Jose Pascoal; Konstantine Tsotsos; Mira Leung; Mirko
Schmidt; Onur Guleryuz; Sameh Khamis; Vladimir Tankovitch; Sean Fanello; Shahram
Izadi; Christoph Rhemann, Google Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).
0730-0301/2018/11-ART193
https://doi.org/10.1145/3272127.3275041

pipeline for mobile depth that supports a wide array of mobile phones, and

uses only the existing monocular color sensor. Through several technical

contributions, we provide the ability to compute low latency dense depth

maps using only a single CPU core of a wide range of (medium-high) mobile

phones. We demonstrate the capabilities of our approach on high-level AR

applications including real-time navigation and shopping.

CCSConcepts: •Computingmethodologies→Computer vision;Epipo-

lar geometry; 3D imaging; Mixed / augmented reality;

Additional Key Words and Phrases: depth from motion, structure from

motion, motion stereo.

ACM Reference Format:

Julien Valentin, Adarsh Kowdle, Jonathan T. Barron, Neal Wadhwa, Max

Dzitsiuk, Michael Schoenberg, Vivek Verma, Ambrus Csaszar, Eric Turner,

IvanDryanovski, JoaoAfonso, Jose Pascoal, Konstantine Tsotsos,Mira Leung,

Mirko Schmidt, Onur Guleryuz, Sameh Khamis, Vladimir Tankovitch, Sean

Fanello, Shahram Izadi, and Christoph Rhemann. 2018. Depth from Motion

for Smartphone AR. ACM Trans. Graph. 37, 6, Article 193 (November 2018),

19 pages. https://doi.org/10.1145/3272127.3275041

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275041
https://doi.org/10.1145/3272127.3275041

193:2 • Valentin et al.

1 INTRODUCTION

In recent years, the mobile industry has signi�cantly invested in

augmented reality (AR) for smartphones. Your mobile phone can

now be a view�nder on an augmented world, where virtual con-

tent is rendered on top of the color camera feed in real-time. Al-

most all emerging high-end or mid-range phones now have some

form of six degree of freedom (6DoF) tracking capability using just

the typical sensors found inside these devices – the color camera

and inertial measurement unit (IMU). This shift has required many

breakthroughs in visual inertial odometry (VIO) and simultaneous

localization and mapping (SLAM).

These advancements have led to the release of sparse 6DoF track-

ing platforms such as ARKit [Apple 2018] and ARCore [Google

2018] with AR applications that create the illusion that users can

place and lock virtual objects in their environments. However, the

illusion breaks as soon as visual inconsistencies appear, such as

wrong occlusions between real and virtual objects.

To achieve another level of immersion, one needs dense depth

maps on device, and in real-time. Depth is a prerequisite for more

realistic AR, including correct handling of occlusions of virtual con-

tent by real objects, better placement of virtual content, and enabling

interactions (such as physics collisions) between real and virtual

content. However, despite many breakthroughs on smartphone AR,

none of these devices can currently provide real-time dense depth

maps without adding a dedicated new sensor. While we are clearly

heading towards a future where dedicated depth sensors will be-

comemore ubiquitous, for now, adding such sensors means that a lot

of the ubiquity and appeal of smartphone AR is lost, with additional

negative impact on cost, power, and industrial design. Therefore,

leveraging monocular color cameras is the best path to scale dense

depth estimation to millions of existing devices. Although the lit-

erature on monocular depth estimation is extensive (see related

work), no method exists that is capable of providing dense and

edge-preserving depth maps at low computation on mobile phones

today.

This paper introduces a novel pipeline capable of supplying dense

and low latency QVGA depth maps at 30Hz, leveraging only a single

RGB camera and a single CPU core of a smartphone. Figure 1 illus-

trates how this depth map can be used to realistically render virtual

objects in real-time, enabling new e�ects that can enhance a wide

array of mobile applications including shopping, street navigation

and self expression.

The task at hand has several challenges. First, our approach needs

to work across a variety of di�erent phones with di�erent camera

sensors for which we do not have control over parameters like

exposure or focus. Second, we must deliver dense depth at low

latency and low computation to the user, even under conditions

of poor tracking or untextured environments. Third, we want to

support mid-tier mobile CPUs—e.g. single 1.9GHz Qualcomm A53

CPU core.

We solve this task through a novel depth from motion pipeline,

comprising of the following technical contributions:

• A procedure allowing the use of polar recti�ed images for

e�cient stereo matching.

• A new keyframe selection strategy.

• A highly optimized stereo matching algorithm leveraging the

best aspects of PatchMatch Stereo [Bleyer et al. 2011] and

HashMatch [Fanello et al. 2017a].

• New extensions of the bilateral solver [Barron and Poole

2016] for depth post-processing that: (a) lead to higher qual-

ity point clouds by encouraging planar solutions, (b) a new

initialization scheme leading to faster convergence and lower

computation requirements, and (c) a novel formulation for

producing temporally stable results.

• Finally, a new late stage rendering step that provides a �uid

low-latency experience to users.

2 RELATED WORK

Mobile Depth. We focus on related work for estimating depth on

mobile phones using existing monocular sensors, as opposed to

dedicated hardware. For a more general discussion about the state

of the art on passive depth estimation, we refer the interested reader

to [Fanello et al. 2017a; Hamzah and Ibrahim 2016; Kendall et al.

2017; Scharstein and Szeliski 2002].

In the literature, passive depth estimation onmobile platforms has

almost exclusively been studied in the context of 3D reconstruction.

These types of algorithms fuse sparse depth maps over time into

an underlying volumetric representation. Notable methods that use

Truncated Signed Distance Functions (TSDF) as a representation

include [Kähler et al. 2015; Ondrúška et al. 2015; Schöps et al. 2017b].

The approach described in [Ondrúška et al. 2015] generates sparse

depth maps of size 320 × 240 at 50Hz on an iPhone GPU using an

approximation of PatchMatch Stereo [Bleyer et al. 2011] and a dense

tracking pipeline akin to DTAM [Newcombe et al. 2011] but with

IMU initialization. Their overall pipeline is distributed across the

CPU and the GPU and runs at 25Hz, but is unfortunately unable to

handle general camera motion. The pipeline of [Schöps et al. 2017b]

computes sparse 320×240 depth maps at 12Hz on the GPU of Tango

Tablets. These depth maps are then integrated in a TSDF at 8Hz.

[Kähler et al. 2015] describe a pipeline that fuses depth maps at

24Hz on an iPad Air 2, but assumes that the depth is provided by a

third party.

Unfortunately, the use of mobile GPUs for continuous mobile

usage is prohibitive, due to power consumption, thermal consider-

ations (GPUs cause thermal issues if continually maxed), and the

need to have such GPU resources available for rendering. TSDF rep-

resentations also generally require signi�cant amounts of memory

and also need large camera motions to carve away edge-fattening

caused by stereo-matching and to �ll holes. Surfels are less memory

demanding than a TSDF and are used by [Kolev et al. 2014] to fuse

depth maps generated by the technique described in [Tanskanen

et al. 2013], which takes seconds per frame.

Another approach is described in [Schöps et al. 2014] where

320× 240 semi-dense depth maps are computed at 15Hz on a mobile

CPU, from which a collision mesh is extracted. The mesh does not

cover the whole image however, and object boundaries are not

explicitly handled. Therefore, triangles can span objects belonging

to the foreground and background of the scene.

Fusion-based methods aside, [Suwajanakorn et al. 2015] estimate

depth from defocus. Given a focal sweep captured by a moving

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:3

camera, this technique compensates for small viewpoint changes

that occur during the acquisition of the focal stack and performs

auto-calibration and depth estimation. Although a mobile phone is

used for the data capture, the inference process takes 20 minutes

per depth map.

Various deep learning-based formulations to depth estimation

have been recently investigated. [Liu et al. 2016] trained unary and

pairwise MRF potentials using CNNs to predict depth from a single

image in 120ms . A two-scale deep network was proposed in [Eigen

et al. 2014] and trained on images and their corresponding depth

maps. [Garg et al. 2016] minimize a reconstruction loss using a

warp image for single view depth estimation, but needs to linearize

their objective using Taylor expansion to backpropagate through

it. [Godard et al. 2017] take a similar approach, but instead use

bilinear sampling for a fully di�erentiable objective function. Al-

though [Eigen et al. 2014] and [Godard et al. 2017] report inference

at < 35ms per frame, they both still need a high-end desktop GPU

to achieve this real-time performance.

Late stage rendering. To reduce perceived latency, late stage render-

ing or time-warping [Evangelakos and Mara 2016; Van Waveren

2016] can be used. It is mostly studied in the context of AR/VR

rendering where head-motion occurs after rendering and needs to

be compensated for prior to display to reduce perceived latency. For

best user experiences, this end-to-end latency [Mine and Bishop

1993] should not exceed 20ms [Zhang and Luo 2012].

Common approaches apply a rotational-only correction for asyn-

chronous reprojection by applying a homography which transforms

the rendered viewpoint to the �nal display viewpoint [Hartley and

Zisserman 2003]. Fully positional-aware warping solutions require

access to perfect depth of the scene, which is feasible for rendered

content, but more di�cult in the general case. In this paper, we

present a novel screen-space technique to reduce latency that does

not rely on accurate depth estimation or simpli�ed scene assump-

tions.

Depth map densification. Most stereo or depth-recovery algorithms

contain a densi�cation step in which noisy, sparse, or otherwise

incomplete depth observations are turned into a dense and smooth

depth map, often using a “reference” RGB image to encourage depth

edges to co-occur with color edges. For an extensive overview of

the literature, we refer the interested reader to [Pan et al. 2018; Park

et al. 2014; Weerasekera et al. 2018].

Variational inpainting [Oliveira et al. 2001] approaches based on

Total Variation (TV) [Shen and Chan 2002] have been shown to run

in real-time on the GPU of a tablet [Schöps et al. 2017a]. However,

these systems have signi�cantly more computational performance

than a CPU core of a phone, while carrying the challenges associated

with mobile GPUs outlined earlier.

The fast bilateral solver [Barron and Poole 2016] is another ap-

proach to denoise and complete depthmaps. It produces high-quality

results by solving a global optimization problem in “bilateral space”

as opposed to over all pixels in an image, resulting in runtimes that

are largely independent of image resolution. The bilateral solver

has been used successfully on mobile devices as shown in [Wadhwa

et al. 2018] and recently received a “hardware-friendly” extension

described in [Mazumdar et al. 2017] that allows it to more e�ciently

leverage parallelization and vectorization on mobile hardware. We

build upon this work in this paper.

Although there is a signi�cant body of work on using deep learn-

ing to inpaint color images (e.g, [Oord et al. 2016; Pathak et al. 2016],

the literature on deep depth inpainting is more recent. Given aligned

color and depth input, [Zhang and Funkhouser 2018] predict surface

normals and occlusion boundaries from the color and then solve a

linear system to inpaint the depth. Their approach runs at 1.8 sec-

onds per frame on a Titan X GPU, making it prohibitive for mobile

use cases.

Depth map temporal filtering. To achieve a temporally coherent

depth map many works incorporate temporal consistency directly

into the stereo matching process. The works most closely related

to our approach are [Hosni et al. 2011; Richardt et al. 2010] where

a spatio-temporal �lter based on the guided image �lter and bilat-

eral grid are used to smooth a cost volume. Other approaches use

spatio-temporal �lters to post-process the depth map to provide a

more coherent solution [Richardt et al. 2012]. However, these ap-

proaches perform the �ltering on a GPU. We opt for incorporating

temporal consistency into the bilateral solver which allows for a

computationally e�cient and e�ective approach.

3 SYSTEM OVERVIEW

We now outline all the components of the proposed depth from

motion pipeline.

As the user navigates through their environment with a smart-

phone in hand, our pipeline starts by tracking 6DoF poses using the

o�-the-shelf VIO platform of ARCore [Google 2018]. Note, that our

system could use any other VIO or SLAM platform at this stage.

Once the the 6DoF tracking pipeline is initialized and given the

latest available camera image (we use grayscale images for com-

putational reasons), the �rst step towards computing a depth map

consists of identifying a keyframe from the past image frames that

is suitable to perform stereo matching.

Next, the relative 6DoF pose between the keyframe and the cur-

rent frame is used to perform polar recti�cation. Stereo-recti�cation

is not a mandatory step, but it signi�cantly speeds up stereo match-

ing by reducing the correspondence search to the same horizontal

lines in both images.

A very fast CRF solver is used to compute correspondences; wrong

estimates are discarded via an e�cient machine learning based

solution, leading to disparity maps that are almost free of outliers.

From disparities, one can estimate a sparse depth map through

triangulation.

The sparse depth map is then fed into a novel variant of the fast-

bilateral solver [Barron and Poole 2016] that generates a bilateral

grid of depth (as opposed to a depth map). The bilateral grid can be

converted on-demand into a dense, spatio-temporal smooth depth

map. We do this by slicing the grid with the most recent available

image (as opposed to the frame used to populate the bilateral grid)

which ensures that the edges of the produced depth map are aligned

with the RGB image currently displayed on the smartphone.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:4 • Valentin et al.

Live image Selected keyframe Rectified images

Keyframe

selection

DepthOcclusion rendering Latest viewfinder

imageLate-stage slicing

Keyframe pool

…

Planar Bilateral Solver

Matching +

Invalidation

AR

Assets

1

4

1

1 1

Dense Depth Map

On-demand late-stage rendering

Fig. 2. Depth from Motion pipeline. Dense depth map estimation (generation of the bilateral grid) and late stage rendering using the latest viewfinder image

(conversion of the bilateral grid into a dense, spatio-temporal smooth depth map) are running on di�erent threads, allowing to provide depth with very low

latency.

The generation of the bilateral grid and the slicing are decoupled

and run on separate threads. Depth maps can therefore be gener-

ated at high frame-rate with very low latency, e�ciently making it

independent of the run-time of the CRF inference, allowing deploy-

ment of our system on mid and high-end devices without sacri�cing

quality or e�ective framerate.

Finally, high level applications can leverage this real-time depth-

estimation to enable e�ects such as AR occlusions, as shown in

Figure 1. Figure 2 illustrates the main steps of the above-described

pipeline, which we detail in the following sections.

4 KEYFRAME SELECTION

Our approach for depth estimation is based on stereo matching

between the most recent image and a past keyframe. The choice

of the keyframe is dependent on several disparate factors, each of

which contribute to the potential matching quality of a candidate

keyframe. For instance, greater depth accuracy is gained by increas-

ing the stereo baseline between the chosen keyframe and the present

position, but such frames are also further back in time, which can

introduce temporal inconsistencies.

Previous approaches for motion stereo often rely on keyframes

from a �xed time delay [Kim et al. 2016; Zhou et al. 2017]. This

method is robust when under constant movement, such as in a

vehicle, but usage for handheld devices results in sporadic uneven

motion. Other methods rely on feature or geometry tracking, rather

than matching correspondences to a speci�c frame [Karsch et al.

2016; Li et al. 2006], but these algorithms often result in sparse depth

or are unable to run at adequate framerates. [Pradeep et al. 2013]

select the optimal keyframe for stereo matching in terms of baseline

and image overlap. Finally, [Schönberger et al. 2016; Zheng et al.

2014] introduce notable techniques for pixel-wise view selection, but

these approaches are unfortunately computationally too demanding

for mobile scenarios.

In this paper, we de�ne a soft-cost function to select the optimal

keyframe for the latest target frame using several metrics. We keep

a �xed-capacity pool of potential keyframes, with each newly cap-

tured frame being added to this pool if the 6-DoF visual-inertial

tracking is successful, replacing outdated frames. The cost metrics

we use to pick the best keyframe from the pool are:

• bi, j : The baseline distance in 3D between two frames i and j.

We want this value to be large.

• ai, j : The fractional overlap, in the range [0, 1], of the image

areas for the frames i and j , computed based on their viewing

frustums. We want to maximize this value.

• ei, j : The measured error of pose-tracking statistics for the

two frames. We want to keep this value small.

We use a multidimensional cost function to select a keyframe k

to pair with the latest reference image r , producing the minimum

total cost from the keyframe pool K :

argmin
k ∈K

ωb
br,k

+ ωa (1 − ar,k) + ωeer,k (1)

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:5

The choice of the weighting ωb for the baseline is relative to the

nominal desired baseline for the target scene depth. Choosing can-

didate frames based on a known baseline is a classic technique for

motion stereo [Jain et al. 1987; Nevatia 1976], but for modern mobile

systems this metric must also be weighted against other considera-

tions. In practice we set ωb = 0.4, with a strict limit of minimum

allowed baseline of 4 cm.

The cost term for area overlap ar,k is weighted heavily with ωa ,

since although successful matching can occur between frames with

only a partial overlap, greater overlap reduces the need of depth

values to be extrapolated to other parts of the target image. We set

ωa = 0.8, with a strict threshold of minimum allowed overlap at

40%.

If 6-DoFmotion tracking–e.g. ARKit or ARCore–produces a frame

that is measured to have poor con�dence, then the frame is never

added to the keyframe pool at all. However, even candidate keyframes

with high con�dence may have some relative error to the latest ref-

erence frame. This relative error cost is weighted against the other

costs with ωe . This weight is set at ωe = 0.5, with a strict thresh-

olds ensuring the measured velocity variance between the chosen

keyframe and the latest reference frame does not exceed 5×10−4 m/s,

as well as ensuring the measured acceleration bias does not exceed

0.2m/s2.

The above parameters were chosen by maximizing pixel-wise

depth error and minimizing the number of reported invalid pixels

across a set of test datasets. The choice of these weights improved

depth accuracy by about 10%. Now that a keyframe has been identi-

�ed, we next perform stereo recti�cation.

5 STEREO RECTIFICATION

Given two cameras and their respective poses, one can estimate

the fundamental matrix [Hartley and Zisserman 2003] that governs

how pixels corresponding to the same 3D point are related. For two

corresponding pixels x and x ′ that come from the projection of a 3D

point X , and the fundamental matrix F , one can observe that x’ lies

on the line l ′ = Fx . The correspondence search is then constrained

to a one-dimensional problem. Once correspondences are estimated,

for instance using the matching algorithm described in Section 6,

the depth of any given pixel can be estimated through triangulation.

Due to the linear cache pre-fetch behavior of modern CPUs, it is

signi�cantly more e�cient to perform this 1-d search along hori-

zontal lines in images that are stereo-recti�ed. Such images have

the property that all epipolar lines are parallel to the horizontal

axis of the image. Standard dual-camera setups with a �xed base-

line have the advantage that at each frame, the captured images

are already close to be stereo-recti�ed. Mostly due to mechanical

imprecision, these images still need to be stereo-recti�ed in soft-

ware. For these setups, practitioners usually resort to using planar

recti�cation [Faugeras et al. 2001; Loop and Zhang 1999] due to

the availability of production-level public implementations [Bradski

and Kaehler 2000].

When dealing with a single camera that is freely moving, epipoles

can be anywhere on the image plane. In particular, when the user is

moving forward with their camera, the epipole is inside the image,

which causes traditional techniques such as planar recti�cation to

fail. In this paper, we aim at allowing users to freely move with their

mobile phones and opt for using the polar recti�cation technique

described in [Pollefeys et al. 1999].

5.1 Using polar rectified images for stereo matching.

In [Pollefeys et al. 1999], the authors describe an algorithm that,

given a pair of images and their relative pose, transforms these

images such that their epipolar lines are parallel and corresponding

epipolar lines have the same vertical coordinate. Also, for computa-

tional reasons described earlier, it is generally desired that for a point

(x ,y) in the left-recti�ed image, the correspondence lies at (x ′,y)

in the right-recti�ed image with x ′ < x and τmin < x − x ′ < τmax ,

with τmin a small constant, usually 0 or 1, and τmax the maximum

disparity, 40 in our case. [Pollefeys et al. 1999] does not describe

how to obtain recti�ed images for which corresponding pixels lie

in a �xed disparity range. Conversely, we propose a solution that

constrains solutions to a known disparity interval which can be

e�ciently exploited while estimating correspondences.

Estimating image-flip. As illustrated in Figure 3, some camera con-

�gurations can lead to recti�ed images that, modulo disparity, are

�ipped version of each other. These con�gurations break the re-

quirement of x ′ < x . These cases are detected when the dot products

between the ray through the optical centers and their respective

image center in world coordinates, and the vector that links both

optical centers, have opposite signs. In that case, one of the images

needs to be �ipped.

Fig. 3. Image flip. Notice how the configuration of the input images (top)

lead to rectified images that are flipped versions of each other. Indeed, in

the bo�om le� image, the red circle is on the le� side of the yellow circle,

where the situation is flipped in the bo�om right image.

Estimating image-swap and x-shi�. As mentioned earlier, e�cient

stereo matching assumes that all correspondences reside in a pre-

de�ned range of disparity values [τmin ,τmax], with τmin > 0. This

assumption can be violated with negative disparities, illustrated in

Figure 4, or disparities that exceed the maximum disparity assumed

by the stereo-matcher. We therefore apply a shift to bring disparities

into a valid range.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:6 • Valentin et al.

First, given the relative transform between the two frames and a

pre-de�ned range of depth values [Dmin ,Dmax] the system is ex-

pected to handle, we estimate [τ Lmin ;τ
L
max] and [τ

R
min ;τ

R
max]. These

intervals correspond to the disparity ranges required to make pre-

dictions if the left or right image is used as reference, respectively.

We then select the reference image and the amount of horizontal

shift required to �t in the expected disparity range [τmin ,τmax]

based on which con�guration requires the smallest shift and on

the sign of the estimated disparities. In the event that the expected

range of disparities is too small to accommodate the current pair,

one can re-size the recti�ed images accordingly.

Fig. 4. Horizontal shi�. In this configuration, we have ∆fg = 4, ∆bg = -3.

E�icient stereo-matchers assume that candidate disparities range between

0 and a pre-defined maximum disparity. By default, this assumption can be

violated when using polar-rectified images.

Improving horizontal resolution for higher quality stereo-matching

results. When operating on textured scenes, standard techniques

like PatchMatch Stereo [Bleyer et al. 2011] or HashMatch [Fanello

et al. 2017a] have a very similar sub-pixel accuracy around 0.2 pixels.

By default, the recti�ed images can be signi�cantly bigger that the

original image, which is not a desirable property for computational

reasons. A naive strategy would be to re-size the recti�ed images

to the original resolution, which can lead to recti�ed images with a

width smaller than it could be, directly impacting depth-accuracy

due to the �xed sub-pixel accuracy described above. Hence, to in-

crease depth-accuracy, we propose to re-size the recti�ed images

such that the size of [τmin ;τmax] matches the maximum expected

number of disparities (40 in our case), while keeping the total num-

ber of pixels constant.

Accounting for some pose uncertainty. Most imprecision in the rela-

tive transform between the two images lead to gross recti�cation

problems. In practice, systems like ARCore only su�er from minor

pose imprecision. When the epipoles are ‘far’ from the images, some

small pose imprecision lead to imprecision in the position of the

epipole, which in turn can lead in solving for both negative and

positive disparities. We found that setting τmin between [5, 10] as

opposed to 0 or 1 e�ectively combats small pose inaccuracies. When

the epipole(s) are located within the image, we preemptively invali-

date a disk of pixels located around the epipole. In our system the

radius of this disk is 20 pixels.

At this stage, regardless of the trajectory that the smartphone

has followed, we have a recti�ed pair of images. The next section

addresses performing stereo-matching on these recti�ed images.

6 STEREO-MATCHING

Recent works [Fanello et al. 2017b] and [Fanello et al. 2017a] have

demonstrated high-resolution stereo-depth estimation respectively

at 500Hz and 1000Hz on a high end GPU. In the following, we brie�y

describe the paradigm on which these techniques are based on.

Assuming the likelihood of solutions are well captured by a con-

ditional probability from the exponential family

P(Y |D) =
1

Z (D)
e−E(Y |D), (2)

practitioners often favor a factorization of the form

E(Y |D) =
∑
i

ψu (yi = li) +
∑
i

∑
j ∈Ni

ψp (yi = li ,yj = lj) (3)

which is usually referred to as a pairwise-CRF. HereY := {y1 . . .yn }

is the set of latent variables associated to pixels {x1 . . . xn }. Each

yi ∈ Y can take values in L, which is a subset of R and correspond-

ing to disparities. Finally, Ni is the set of pixels adjacent to pixel

i . Although NP-hard to solve in general [Boykov et al. 2001], this

decomposition has been widely used for numerous computer vision

tasks. The termψu is usually referred to as the unary potential, and

in the context of depth estimation via stereo matching, measures

the likelihood that two pixels are in correspondence. The function

ψp is commonly referred to as the pairwise potential and acts as a

regularizer that encourages piece-wise smooth solutions. The com-

ponents that make the minimization costly are evaluatingψu and

the number of steps that the chosen optimizer takes to converge to

good solutions. In this work, we use the unary potential described in

[Fanello et al. 2017a] for its low-computational requirements, a trun-

cated linear pairwise potential as pairwise potential. We optimize

this cost function using a hybrid of PatchMatch [Barnes et al. 2009]

and HashMatch [Fanello et al. 2017a] that is particularly e�cient

on CPU architectures, which we introduce below.

6.1 Vectorized Inference

The basic idea of CRF inference using PatchMatch [Barnes et al.

2009] is to propagate good labels to neighboring pixels, exploiting

local smoothness of solutions. Di�erent propagation/update strate-

gies have been explored in the literature, some of them designed for

GPU architectures [Bailer et al. 2012; Fanello et al. 2017a; Pradeep

et al. 2013].

In this section, we introduce a propagation strategy that is tai-

lored for modern CPU instruction sets that rely on Single Instruction

Multiple Data (SIMD) instructions to achieve intra-register paral-

lelism and improved throughput. Achieving high performance on

such architectures, mainly ARM NEON for mobile devices, requires

e�cient utilization of these vector registers. In particular, loading

data from memory bene�ts from use of coherent loads - that is, for

a vector register with n lanes of width b bits, SIMD instruction set

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:7

architectures (ISAs) typically o�er an instruction that loads n ∗ b

sequential bits, �lling all lanes with one instruction. The counter-

part is a diverged load, where each lane of the vector register is

inserted into the vector register one at a time. Such diverged loads

are required when the memory to be loaded is not sequential. This

behavior poses a challenge to stereo algorithms, which typically

samples diverged o�sets per pixel when exploring the solution space.

To make matters worse, this data parallelism is inherently direc-

tional. For typical image layouts in memory, a vector register of

pixels represents a subset of a particular image row, which prevents

typical inference schemes (e.g. PatchMatch) from mapping well to

SIMD architectures. The propagation of information horizontally in

the image prevents e�cient utilization of vector registers.

Recently, [Fanello et al. 2017a] has demonstrated an inference

technique that allows updates to each pixel in parallel, allowing

depth map prediction at 1000Hz on GPU. Compared to PatchMatch,

HashMatch requires more iterations for information to propagate

further in the image, but each iteration is substantially cheaper and

can be performed independently. PatchMatch, by contrast, is com-

pletely sequential in nature: it iteratively goes from one pixel to the

next, evaluates some particle/solutions for that pixel, and continues

until reaching the end of the image. Motivated by the strengths of

each approach, we propose a hybrid variant that is well-suited for

SIMD architectures. Instead of performing multiple independent

propagation passes for each of the eight directions, we perform k

passes in sequence, each designed to utilize the data-parallelism of

the underlying vector architecture. For typical scenes, k ranging

from 2 to 4 is su�cient. During even-numbered passes, each pixel

considers hypotheses from the three neighbors above it (that is,

the pixel at (x ,y) considers hypotheses from (x − 1,y − 1), (x ,y −

1), (x + 1,y − 1)) in addition to the currently stored hypothesis. Dur-

ing odd-numbered passes, each pixel considers hypotheses from

the three neighbors below it in addition to the currently stored

hypothesis. Rows are processed sequentially, starting at the top of

the image in even-numbered passes and the bottom of the image in

odd-numbered passes. Consequently, all pixels for a given row are

independent of all other pixels in the same row, allowing parallel

processing. Is is important to note that NEON acceleration in the

inference step is possible due to breaking of dependency chains in

the X direction (rows). The reason for this is that vector units of

SIMD processors load data in chunks along the X direction, and

hence they are more e�cient at vectorizing operations on pixels at

discrete Y values. As is standard for such inference strategies, we

evaluate each hypothesis by summing the stereo matching unary

cost and a weighted smoothness term, the aforementioned trun-

cated linear pairwise potential. The unary cost evaluation cannot

be fully parallelized due to the distinct disparity value in each lane

of the vector register. However, we can fully parallelize the rest of

the data movement: the load of initial disparity values, the load of

neighboring disparity values, and the smoothness cost computation.

Overall, the proposed approach has been consistently measured as

4x faster than HashMatch and 10x faster than PatchMatch.

Fig. 5. The proposed factorization makes any pixel belonging to a given

horizontal line (e.g. green pixels) to be independent to each other. If we now

focus on pixel p , one can update it’s prediction by evaluating the particle

currently at p , and the particles in the neighbors of p (black link); the

updated solution is the particle that minimizes this local CRF. Best viewed

in color.

6.2 Invalidation

The approximate MAP inference performed over the pairwise con-

ditional random �eld yields one disparity value estimated for each

pixel in the image. Unfortunately, when the scene lacks texture (e.g.

white wall in Figure 7, second line) or contains repetitive patterns,

the MAP solution of the corresponding pixels can be wrong. It is usu-

ally preferred to invalidate such pixels since the distribution of their

errors depends on image content, and hence estimating the MLE of

these distributions is non-trivial (e.g. to be used in KinectFusion-like

�ltering). Invalidation is usually performed using thresholding on

the unary cost of the solution [Fanello et al. 2017b; Mühlmann et al.

2002], using left-right consistency check [Mühlmann et al. 2002;

Scharstein and Szeliski 2002], using connected component analysis

[Fanello et al. 2017b], or a combination of the above. Performing a

left-right consistency check leads to good invalidation results, but

involves computing a disparity map for each image, which adds a

signi�cant computational cost to the pipeline.

(a) (b) (c)

Fig. 6. CRF-cost invalidation in disparity space. (a): Rectified image. (b):

Raw output from the matcher. (c): CRF-cost invalidation.

By breaking the whole CRF in cliques containing each pixel and

their immediate neighbours, one can compute the negative log-

likelihood Li using:

Li = ψu (li) +
∑
j ∈Ni

ψp (li , lj) (4)

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:8 • Valentin et al.

(a) (b) (c)

Fig. 7. Connected component invalidation in disparity space. (a): Rectified

image. (b): CRF-cost invalidation. (c): Connected component invalidation.

This formulation leads to slightly better invalidation results than

only considering the unary potential. As can be observed in Figure 6,

pruning unlikely solutions removes a large portion of undesirable

pixels. Unfortunately, in the case of untextured regions, the like-

lihood of solutions can be high yet incorrect. Following prior art

[Fanello et al. 2017b], we invalidate small connected components

in disparity space. The resulting depth map is free from the vast

majority of unstable predictions, as can be observed in Figure 7.

Depending on the compute architecture, running this last invalida-

tion step can become as expensive as solving the CRF described in

Equation 3. We approximate the connected component invalidation

step using a single decision tree to minimize the computational

resources required [Criminisi et al. 2012]. In particular, we model

this invalidation step as a classi�cation problem, where we assign to

valid pixels a positive label y = 1 and for invalid pixel a label y = −1.

In the context of predicting the con�dence of time of �ight, the

authors of [Reynolds et al. 2011] also propose to use Random Forest.

Unfortunately, their approach runs in 5s on 200 × 200 frames. For

the sake of completeness, we brie�y describe the training procedure

for decision trees. A decision tree consists of split nodes and leaves.

Each split node n stores a ‘weak learner’ that is parameterized by

function parameters θn and a scalar threshold τn . To perform infer-

ence over the tree for pixel p, one starts at the root of the tree and

evaluates:

s(p,n) = ✶[f (p,θn) > τn], (5)

If s(p,n) evaluates to 0, the inference continues over the left children

of noden, and over the right children otherwise. This process repeats

until reaching a leaf, which contains a binary probability distribution

over the prediction space, invalidation in this case.

As it is common practice, we chose f to be a dot product between

the values of two pixel indices located around p. The values of θn
and τn are greedily optimized to maximize the information gain:

IG(θn ,τn) = E(S) −
∑

c ∈L,R

|Sc |

|S|
E(Sd), (6)

with E the Shannon entropy, L,R the left and right children of node

n. Finally, each leaf stores the probability for a pixel to be valid or

invalid.

At test time, inference over that tree is performed for each pixel,

allowing to decide which pixels should be invalidated.

6.3 Disparity to depth

Now that we have an outlier-free disparity map, we can �nally

infer depth. When one uses planar recti�cation, given a disparity

d , a baseline b, and a focal length f , the depth Z can be trivially

computed as Z =
bf
d
. However, this closed form solution cannot be

used in the case of polar recti�cation.

A well known solution in literature to deal with these cases is the

optimal triangulation method proposed in paragraph 12.2 of [Hart-

ley and Sturm 1997]. Optimal triangulation requires minimizing a

polynomial of degree 6, which could be ine�cient on mobile archi-

tectures. Therefore we resort to solving the simpler linear problem

described in [Hartley and Zisserman 2003], which is not optimal

but fast to solve.

7 BILATERAL SOLVER EXTENSIONS

The previous sections describe how to obtain depth maps with few

false positives. However, these depth maps are sparse (containing

information only in textured regions), temporally inconsistent, and

are not aligned with the edges in the image. In this section we use a

novel extension of the bilateral solver to e�ciently generate dense,

temporally stable, and edge aligned depth maps with low latency.

Before modifying the bilateral solver, we �rst review it as it has

been previously described in the literature. We build upon the “hard-

ware friendly” variant of the solver as presented in [Mazumdar et al.

2017], which is built upon the original bilateral solver as described in

[Barron and Poole 2016], which itself builds upon the optimization

approach of [Barron et al. 2015].

The bilateral solver is de�ned as an optimization problem with

respect to a “reference” image r (in our case, a grayscale image from

the camera), a “target” image t of noisy observed values (in our case,

a noisy depth map as computed in Section 6), and a “con�dence”

image c (in our case, the inverse of the invalidation mask as de�ned

in Section 6.2). The solver recovers an “output” image x that is close

to the target where the con�dence is large while being maximally

smooth with respect to the edges in the reference image, by solving

the following optimization problem.

minimize
x

λ

2

∑
i, j

Ŵi, j
(
xi − x j

)2
+

∑
i

ci (xi − ti)
2 (7)

The �rst term encourages that all pairs of pixels (i, j) to be smooth

according to the bilateral a�nity matrix Ŵi, j and the smoothness

parameter λ (set to 4 in our experiments), while the second term

encourages each xi to be close to each ti when ci is large. The

Ŵ matrix is a bistochastic version of a bilateral a�nity matrixW,

where eachWi, j is de�ned as:

Wi, j = exp
©­­«
−

(
pxi − p

x
j

)2
+

(
p
y
i − p

y
j

)2
2σ 2xy

−

(
ri − r j

)2
2σ 2r

ª®®¬
(8)

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:9

where for each pixel i , (pxi ,p
y
i) is its (x ,y) location and ri is its

grayscale intensity in our reference image r. These spatial and in-

tensity dimensions are modulated by bandwidth parameters σxy
and σr , which we both set to 16 in our experiments.

As shown in [Barron and Poole 2016], the large and dense bis-

tochastic bilateral a�nity matrix can be represented with a compact

factorization using a bilateral grid:

Ŵ = ST diag
(n
m

)
B diag

(n
m

)
S (9)

Where the S and ST matrices splat and slice into a bilateral grid

respectively, B is a [1, 2, 1] blur along the three dimensions of a bi-

lateral grid, and vectorsm and n induce a normalization that results

in Ŵ being approximately bistochastic (we use the normalization

of [Mazumdar et al. 2017]). With this factorization we can perform

a variable substitution from pixel-space into “bilateral-space”:

x = STy (10)

where y contains values for each bilateral grid vertex and x contains

values for each pixel. Assuming the σ∗ parameters are not small, y

will be substantially smaller than x. We turn the expensive pixel-

space optimization problem in Equation 7 into a tractable bilateral-

space optimization problem:

minimize
y

1

2
yTAy − bTy + c (11)

A = λ(diag(m) − diag(n)B diag(n)) + diag(Sc)

b = S(c ◦ t) c =
1

2
(c ◦ t)Tt

where y is the solution to the problem in bilateral-space, and ◦

denotes a Hadamard product. Solving this problem simply requires

solving a sparse linear system and undoing our variable substitution:

x̂ = ST(A−1b) (12)

Following [Mazumdar et al. 2017], we solve this sparse linear system

using preconditioned heavy ball optimization, which produces simi-

lar results to the preconditioned conjugate gradient used in [Barron

and Poole 2016] while being better suited to a fast implementation.

The bilateral solver as previously described is capable of pro-

ducing edge-aware smooth depth maps from noisy or incomplete

inputs and can be made to produce real-time results running on a

mobile CPU. In the following sections we describe a number of im-

provements to the solver. First, we generalize the solver (or indeed

any linear smoothing operator) to produce output that is smooth

in a coplanar sense, rather than smooth in a fronto-parallel sense.

This formulation results in signi�cantly improved output on scenes

containing foreshortened planes (walls, �oors, etc.), which are com-

mon in photographic and AR contexts. Second, we present a simple

and cheap method for inducing real-time temporal consistency in

the solver, as well as an approach for “warm starting” multiple in-

stances of a solver that improves convergence rates in a real-time

/ video-processing context. Third, we demonstrate that the solver

can be used for “late stage” slicing, in which we use a bilateral grid

computed from earlier stereo inputs to produce edge-aware depth

maps from the most recent view�nder frame. The result is extremely

low-latency output that is still edge-aware.

7.1 Planar Bilateral Solver

The bilateral solver produces a per-pixel labeling that, along with a

data term, minimizes the squared distances between pixels that are

spatially nearby and have similar colors or grayscale intensities. The

output of the solver (ignoring the data term) is therefore an image

containing a single constant value, which in a stereo context means

that the solver is strongly biased towards producing fronto-parallel

depth maps. This bias is problematic, as real-world environments

frequently contain surfaces that are smooth or �at but not fronto-

parallel, such as �oors, walls, and ceilings. For an illustration of how

this can be problematic, see Figure 8, which shows that the regular

bilateral solver’s output may be dramatically incorrect in the pres-

ence of �at but not fronto-parallel surfaces, causing foreshortened

surfaces to be erroneously recovered as “billboard”-like �at surfaces

oriented perpendicularly to the camera.

This fronto-parallel bias in depth estimation has been noted in

the literature. [Woodford et al. 2009] and [Zhang et al. 2014] address

this issue using specialized optimization algorithms designed to

recover depth maps that minimize second-order variation, rather

than �rst-order variation. These approaches work well, but are too

expensive for real-time use and do not appear to be amenable to fast

bilateral-space optimization. [Furukawa et al. 2009] present a stereo

pipeline built around the assumption that the world is “Manhattan-

like”, but this rigid assumption hurts performance in the many cases

that do not obey this strong assumption of co-planarity, such as

human subjects or the natural (not man-made) world. The trilateral

�lter of [Choudhury and Tumblin 2005] modi�es a bilateral �lter

to produce piece-wise linear output, but this approach does not

provide a way to similarly modify the bilateral solver.

Our approach is to simply embed the bilateral solver in a per-pixel

plane-�tting algorithm, such that the minimal-�rst-order-variation

assumption of the bilateral solver causes the �nal output of our

algorithm to have low second-order variation. Local plane-�tting

is well studied in the literature [Klasing et al. 2009; Wang et al.

2001], usually under the assumption that the spatial support of each

plane �t is limited. By using the bilateral solver as the engine for

aggregating plane-�t information, we can perform global and edge-

aware plane-�tting. This causes our recovered depth map to not be

confounded by foreshortened surfaces, as it can explain away such

surfaces as simply being slanted planes.

Our approach, which we dub the “planar bilateral solver”, �ts a

plane to each pixel in the image in a moving least squares context,

where the interpolator in each pixel’s least-squares �t is the output of

a bilateral solver. Implicitly we construct a 3D linear system at every

pixel, in which the left and right hand sides of each linear system use

the bilateral solver to compute the “scatter” matrix used in standard

plane �tting. This approach is in no way dependent on any property

of the bilateral solver except that the solver is a linear �lter whose

weights are always non-negative, and so we describe this plane-

�tting procedure in completely general terms. Because the math for

plane-�tting is tedious and well-understood, for the sake of brevity

and reproducibility we describe this “planar �ltering” approach

primarily using pseudo-code, in Algorithm 1. This planar_�lter(·)

operator takes as input some image Z to be �ltered (in our case a

depth map), some non-negative �ltering operator �lter(·) (in our

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:10 • Valentin et al.

(a) Input image and cropped+recti�ed region (b) Raw point cloud (c) Bilateral solver (d) Our planar bilateral solver

Fig. 8. Here we demonstrate the e�icacy of our planar bilateral solver. In (a) we have two input images from our pipeline showing common indoor environments.

In (b) we have a raw point cloud from stereo matching, visualized from a di�erent angle than the camera. In (c) we have the output of the standard bilateral

solver, which produces reasonable results when surfaces happen to be fronto-parallel (ie, on the wall in the top image) but exhibits significant artifacts when

this fronto-parallel bias is incorrect. In (d) we see that our planar bilateral solver resolves these issues and produces significantly improved output, in which

the heavily foreshortened walls and floor are more accurately recovered.

case a bilateral solver), and some regularization parameter ϵ . This

algorithm �lters the outer product of (x ,y,Z , 1) with itself, which

gives us the left- and right-hand sides of a linear system at each

pixel that we represent as a 6-channel imageA and 3-channel image

b (x and y are the coordinates of each pixel, 1 is an image of all 1’s,

◦ is the Hadamard product, and / is element-wise division). With

these images we can solve the linear system at each pixel in parallel

using an LDL decomposition (which we found to be more stable

than other options we explored). Pseudo-code for this per-pixel

solve can be found in Algorithm 2. In our pseudo-code we recover

Zz , the constant o�set of each pixel’s plane �t, which we use as the

output depth at each pixel. Our pseudo-code also computes (Zx ,Zy),

the gradient of Zz at each pixel, which we do not use in this work.

The parameter ϵ biases the output of planar �ltering to be fronto-

parallel, by imposing Tikhonov regularization on the gradient of the

recovered surface. As ϵ approaches∞ the output of planar_�lter(·)

exactly approaches the output of �lter(·). The standard bilateral

solver can therefore be viewed as a planar bilateral solver that has

been heavily regularized to produce maximally fronto-parallel out-

put — further demonstrating the standard bilateral solver’s fronto-

parallel bias. We set ϵ = 1 in our experiments.

Because a planar �lter requires calling �lter(·) 9 times, and be-

cause calling this �lter is signi�cantly more expensive than perform-

ing element-wise per-pixel math, applying a planar bilateral solver

is roughly 9× more expensive than applying a standard bilateral

solver. This can be reduced somewhat by noting that �lter(1) = 1,

and by calculating the other 8 bilateral solver instances in parallel

which allows for easy vectorization. The next section will demon-

strate that, in practice, the planar solver bene�ts substantially from

temporal warm-start initialization, thereby giving it runtimes that

are not much more than those of the regular bilateral solver.

7.2 Temporal Smoothness, Warm-Start Initialization, and

Late-Stage Slicing

To produce a compelling user experience, the depth maps produced

by our system must be smooth over time. This goal of temporal

consistency is somewhat at odds with our need for responsive, low-

latency output that is tightly aligned to the edges of the current

view�nder frame. In this section, we present a simple and e�ective

method for the bilateral solver and planar bilateral solver to produce

high quality, temporally consistent real-time results.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:11

Algorithm 1 planar_�lter(Z ,�lter(·), ϵ)

Input: Some image to be �ltered Z , some linear averaging �lter

�lter(·), and some non-negative regularization parameter ϵ .

Output: A three channel image of per-pixel plane �ts (Zx ,Zy ,Zz).

1: [F1, Fx , Fy , Fz , Fxx , Fxy , Fxz , Fyy , Fyz]

← map(�lter(·), [1,x ,y,Z ,x ◦ x ,x ◦ y,x ◦ Z ,y ◦ y,y ◦ Z])

2: A1,1 ← F1 ◦ y ◦ y − 2(y ◦ Fy) + Fyy + ϵ
2

3: A1,2 ← F1 ◦ y ◦ x − x ◦ Fy − y ◦ Fx + Fxy
4: A2,2 ← F1 ◦ x ◦ x − 2(x ◦ Fx) + Fxx + ϵ

2

5: A1,3 ← F1 ◦ y − Fy
6: A2,3 ← F1 ◦ x − Fx
7: A3,3 ← F1 + ϵ

2

8: b1 ← Fz ◦ y − Fyz
9: b2 ← Fz ◦ x − Fxz
10: b3 ← Fz
11: (Zx ,Zy ,Zz) ← solve_image_ldl3(A,b)

Algorithm 2 solve_image_ldl3(A,b)

Input: A 6-channel image A and a 3-channel image b, where chan-

nels in A correspond to the upper triangular part of a 3 × 3 matrix.

Output:A three-channel image x where for each pixel i in the input

linear system, x(i) = A(i)\b(i) using an LDL decomposition.

1: d1 = A1,1

2: L1,2 = A1,2/d1
3: d2 = A2,2 − L1,2 ◦A1,2

4: L1,3 = A1,3/d1
5: L2,3 = (A2,3 − L1,3 ◦A1,2)/d2
6: d3 = A3,3 − L1,3 ◦A1,3 − L2,3 ◦ L2,3 ◦ d2
7: y1 = b1
8: y2 = b2 − L1,2 ◦ y1
9: y3 = b3 − L1,3 ◦ y1 − L2,3 ◦ y2
10: x3 = y3/d3
11: x2 = y2/d2 − L2,3 ◦ x3
12: x1 = y1/d1 − L1,2 ◦ x2 − L1,3 ◦ x3

Temporally consistency using a bilateral solver has been previ-

ously accomplished in [Anderson et al. 2016], who appended an

extra “temporal” dimension to a bilateral solver and solved for the

per-pixel depth labeling for an entire video sequence using one

instance of the solver. This method produces high-quality results,

but is not applicable to our real-time use-case where frames must

be processed as they are acquired. We therefore use a causal IIR-like

approach to temporal smoothness, in which we track a single bilat-

eral grid of estimated depths, and repeatedly update this bilateral

grid using the output of a single-image bilateral solver instance

on each incoming frame. This approach can run in real-time, and

allows us to use “late stage” slicing to produce extremely low la-

tency edge-aware output — a critical feature in augmented reality

applications.

As reviewed in Section 7, the baseline single-image bilateral solver

estimates a depthmap by implicitly constructing and solving a linear

system A−1b in bilateral space, and then using a “slice” matrix ST

to produce a per-pixel labeling x̂:

x̂← ST(A−1b) (13)

In our temporally consistent solution, we track an exponential mov-

ing average of a bilateral grid of depths ȳ, which we initialize to 0.

For each input image t , we solve for the current frame’s bilateral

grid of depths ŷt by solving a linear system A−1t bt , and then update

ȳ using exponential decay. We slice from that averaged bilateral

grid to produce a per-pixel depth estimate. The exact update applied

at frame t is:

ŷt ← A−1t bt

ȳ ← α blur (ȳ) + (1 − α)ŷt

x̂t ← STt

(ȳ

1 − α t

)
(14)

where α is a parameter that controls how much temporal smooth-

ness is encouraged, blur(·) applies a normalized [1, 4, 6, 4, 1] blur

along the three dimensions of the bilateral grid of ȳ, and the division

by (1 − α t) serves to “unbias” our moving average estimate of ȳ.

The blur(·) operator di�uses information spatially between frames,

which appears to help, and the linear interpolation according to α

di�uses that same information temporally.

Tracking a small bilateral grid of depths instead of a large per-

pixel depth map has an obvious speed advantage, as each frame’s

update requires signi�cantly less compute. However, tracking and

blurring a bilateral grid of depths in this manner instead of track-

ing a depth map also means that our temporal smoothing method

is invariant to small camera or scene motion, without the need

to explicitly estimate per-pixel motion between frames. Similarly,

tracking depth in bilateral-space allows for us to produce extremely

low-latency edge-aware depth estimates through a process we call

“late-stage slicing”: after updating ȳ, if the view�nder frame has

changed we use the new frame to construct STt and slice out a

per-pixel depth labeling. Since slicing is signi�cantly faster than

solving, this approach lets us produce per-pixel depth maps that are

exactly aligned to the current view�nder frame, thereby enabling

compelling and responsive visual e�ects. This late-stage slicing ap-

proach also allows our algorithm to degrade gracefully on low end

mobile devices where our per-frame depth estimation may take

longer than the 17 or 33 milliseconds between frames. This method

is similar in spirit to the “time warp” approach used in some VR

applications [Van Waveren 2016], though our technique uses just

raw pixel intensities instead of geometric tracking information.

Our temporal smoothing approach enables another acceleration,

in which we “warm start” each frame’s bilateral solver instance by

initializing the bilateral grid being solved for via gradient descent

using the previous frame’s solution. Since adjacent frames have

similar image content, except in the presence of extreme motion, so

this approach signi�cantly improves convergence and allows for

fewer gradient descent iterations in all but the �rst frame, as we

demonstrate in Section 9.3.

Our temporal consistency approach generalizes straightforwardly

from the regular bilateral solver to our planar bilateral solver. We

apply temporal consistency to the linear systems describing the

per-pixel plane �ts before the LDL solve step, which produces better

results than applying a temporal �lter to the estimated depth at each

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:12 • Valentin et al.

frame. Our late-stage slicing also includes a late-stage per-pixel LDL

solve, which increases runtimes slightly, but not enough to preclude

real-time performance.

8 EVALUATION

In this section we perform exhaustive evaluations of the entire

pipeline. We stress the system in various scenarios, reporting quan-

titative comparisons on standard benchmarks as well as qualitative

comparisons with state of the art methods. We start the evaluation

by testing our framework on the Middlebury Stereo Dataset V3

[Scharstein et al. 2014], showing that our sparse matcher is among

the top performers on the benchmarks and the full system is on par

with fast real-time stereo matching approaches. We then compare

with deep learning based solutions on challenging scenes and �nally

show how the method performs favorably compared to the state of

the art in the mobile industry (iPhoneX).

8.1 Stereo-Matcher Evaluation on Middlebury Dataset

We here quantitatively compare our stereo matching approach to

other local state-of-the-art algorithms on the Middlebury Stereo

Dataset V3 [Scharstein et al. 2014]. We submitted the results on

the Middlebury benchmark1. Our proposed sparse stereo matching

with invalidation step (Section 6.2) is among the top performers on

the sparse benchmark for multiple reported metrics. The output

of the sparse matching is indeed accurate and could be potentially

used for reconstruction tasks.

On the dense benchmark, the proposed method performs very

well in comparison to other fast methods such as the Intel R200 algo-

rithm that requires a custom ASIC. Given computational constraints

available on mobile platforms, it is expected that o�ine techniques

such as [Taniai et al. 2018] are able to provide more accurate results.

However, we want to point out that the goal of the densi�cation step

is to produce edge aligned depth maps for occlusion handling rather

than minimizing average depth error. This means that, for the task

at hand, we can tolerate some imprecision in the predicted depth,

but we are sensitive to small edge misalignment. Therefore, these

standard metrics are not well suited to evaluate what our algorithm

is designed for.

In Table 1 we report the results using the bad 2.0 error, which is

the standard metric for this dataset and computes the percentage

of pixels with error greater than 2 disparities. As representative

competitors, we picked the Intel R200 algorithm, which is based also

on binary descriptors followed by a more sophisticated optimization

scheme that uses Semi-Global Matching (SGM) [Hirschmuller 2008];

and the current state-of-the-art on this dataset, LocalExp [Taniai

et al. 2018], which uses a combination of deep features together

with a PatchMatch-like scheme with 3D slanted support windows.

As shown in the table, our method beats the Intel R200 and as ex-

pected is far from the state-of-the-art given the strict computational

resources available on mobile platforms.

Table 1. �antitative results (bad 2.0) on Middlebury Dataset V3 (dense).

It is interesting to note that we get slightly be�er results than the fast

Intel R200 method which uses semi-global matching. The state-of-the-art,

LocalExp [Taniai et al. 2018], requires computational resources that are

significantly exceeding what is available on mobile platforms.

A
u
st
r

A
u
st
rP

B
ic
y
c2

C
la
ss

C
la
ss
E

C
o
m
p
u

C
ru
sa

C
ru
sa
P

D
je
m
b

D
je
m
b
L

H
o
o
p
s

L
iv
g
rm

N
k
u
b
a

P
la
n
ts

St
ai
rs

A
v
er
ag
e

Intel R200 70.5 14.4 21.3 37.7 72.2 38.1 53.2 31.4 18.3 52.4 52.6 44.1 45.4 50.7 66.5 40.9

LocalExp 3.65 2.87 2.98 1.99 5.59 3.37 3.48 3.35 2.05 10.3 9.75 8.57 14.4 5.4 9.55 5.43

Ours 67.6 25.0 29.2 40.9 57.3 35.5 57.5 40.4 19.9 42.8 52.6 39.8 37.1 51.7 34.9 40.4

Fig. 9. Comparison to deep neural networks. Even computationally expen-

sive networks fail to produce a valid temporally consistent depth map of

the scene. The monocular method of [Godard et al. 2017], for which they

o�er a version fine-tuned on indoor scenes from the NYU Depth dataset

[Silberman et al. 2012]. The line artifacts in [Kendall et al. 2017] are due to

the re-projection of disparity images to the un-rectified image. Note that

both baselines have not been fine-tuned on our data, hence we present them

here for illustration purposes.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:13

8.2 �alitative Comparisons with Deep Learning solutions

In this section we compare the method with deep learning based

state-of-the-art solutions. Recent work relies on complex deep ar-

chitectures to infer depth from single images [Eigen et al. 2014;

Godard et al. 2017; Laina et al. 2016] as well as stereo con�gurations

[Kendall et al. 2017; Khamis et al. 2018; Pang et al. 2017]. In Figure 9

we show the comparisons of our method with two recent methods

for monocular [Godard et al. 2017] and stereo [Kendall et al. 2017],

respectively. Notice that the monocular method of [Godard et al.

2017] is �ne-tuned on indoor scenes from the NYU Depth dataset

[Silberman et al. 2012]. Despite this, it su�ers from gross errors on

these challenging scenes. The two-view method of [Kendall et al.

2017] is instead more robust and produces reasonable results even

in textureless regions. However both the competitors fail to produce

temporally consistent depth maps of the scene. In contrast, our algo-

rithm is more robust to temporal changes and does not completely

fail in textureless areas. We want to point out that our RGB data is

di�erent (e.g. resolution) compared to the RGB data these baselines

have been trained with. Fine-tuning these baselines on that data

could lead to some quality improvement, but is unlikely to address

gross errors and the temporal instability of predictions.

8.3 �alitative Comparisons with the iPhoneX

The iPhoneX is the latest generation of Apple smartphones. On the

back, the iPhoneX possesses two cameras that have di�erent focal

length. Using this stereo pair, the iPhoneX computes 320×240 depth

maps at 24Hz. In contrast to a wide range of mid-level smartphones

iPhoneX has access to far more powerful computational resources.

Given that the iPhoneX can leverage a rigid camera setup and at

least one zoomed camera, one would expect their results to be more

precise and more stable than ours. In general, the iPhoneX provides

good results on well-texture environments, but does not manage to

reasonably handle harder cases as can be observed in Figure 10. Side

by side video comparisons are available in the supplementary mate-

rials, in which one can observe that the proposed system provides

depth maps that are much more temporally stable.

9 ABLATION STUDY

In this section, we evaluate the contribution of each component of

the pipeline through quantitative and qualitative experiments.

9.1 Invalidation Experiments

To evaluate the accuracy of the invalidation reached by the pro-

posed machine learning solution, we acquired 10000 stereo frames

of indoor scenes: we use 8000 frames for training and 2000 frames

for testing. For each frame, we produce sparse disparity maps as

described in Section 6 and perform an initial invalidation using the

CRF cost as detailed in Section 6.2. We then generate ‘ground-truth’,

outlier-free disparity maps, running an o�ine connected component

analysis that removes regions smaller than 300 pixels. Examples of

input and generated groundtruth pairs can be observed in Figure 7.

We then train a decision tree using the procedure described in Sec-

tion 6.2. The proposed machine learning based invalidation scheme

reaches an accuracy of 93% for a tree of depth 7 compared to the

1See “MotionStereo” entry on the o�cial dataset website.

Fig. 10. �alitative comparison with the iPhoneX. For these experiments,

we placed the iPhoneX and a Pixel 2 closely together with the iPhoneX

on the right, and the Pixel 2 equipped with the proposed solution on the

le�. The iPhoneX struggles at providing useful data in low-textured regions.

Note that the Pixel 2 is less powerful compared to the iPhoneX.

‘ground-truth’ generated by a connected component analysis. As

shown in Figure 11, the accuracy rapidly improves until a tree depth

of 7, after which the gains become marginal. At this tree depth,

the proposed solution is 85% faster than the connected component

analysis. We note that the main di�erences between connected com-

ponent invalidation, and tree-based invalidation, appear when the

size of regions fall right below the hand-de�ned threshold (300), as

illustrated in Figure 12.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

http://vision.middlebury.edu/stereo/eval3/

193:14 • Valentin et al.

Fig. 11. Accuracy of the proposed machine learning invalidation. Notice

how the accuracy rapidly increases up until a tree depth of 7, a�er which

each level of the tree only marginally improves results.

Fig. 12. Largest di�erence (14%) between connected component based inval-

idation and the proposed tree-based invalidation in the test set. (a) rectified

image, (b) disparity a�er crf-cost invalidation, (c) connected component

based invalidation, (d) tree-based invalidation.

9.2 Planar Bilateral Solver Experiments

The standard bilateral solver can be thought of as ‘averaging’ depth

within cells of the grid leading to a fronto-parallel bias. This be-

haviour is particularly exacerbated in cases like in the top row of

Figure 8, where the input point cloud o�ers a decent initialization,

but where the bilateral solver provides a prediction for the �oor

that is o� by almost 90◦. Although the input point-cloud might be

noisy, the proposed planar bilateral solver estimates solutions that

are much closer to reality than those obtained by the bilateral solver.

To quantitatively evaluate the planar bilateral solver we present

an experiment using the Middlebury Stereo Dataset V3 [Scharstein

et al. 2014]. We simulated our own stereo task by randomly deleting

99.75% of each ground-truth depthmap’s pixels by setting their val-

ues and con�dences to zero, and then using these sparse depths as

input to a (planar) bilateral solver. Using the half-resolution training

images from the Middlebury dataset, we found the optimal parame-

ters for the baseline bilateral solver (our own implementation which

produces nearly identical performance to that of [Mazumdar et al.

2017]) by minimizing the geometric mean of the RMSEs for the 10

Table 2. Here we report RMSEs of our planar bilateral solver and the stan-

dard bilateral solver on a depth-inpainting task using the Middlebury Stereo

Dataset V3. On scenes containing foreshortened floors and walls the planar

solver produces a 7-15% reduction in RMSE, while performance on scenes

consisting of mostly fronto-parallel surfaces is largely una�ected.

A
d
ir
o
n
d
ac
k

Ja
d
ep
la
n
t

M
o
to
rc
y
cl
e

P
ia
n
o

P
ip
es

P
la
y
ro
o
m

P
la
y
ta
b
le

R
ec
y
cl
e

Sh
el
v
es

V
in
ta
g
e

G
eo
.M

ea
n

Baseline Solver [2017] 11.48 35.97 16.05 9.09 16.83 13.10 10.06 8.01 8.13 16.70 13.07

Planar Bilateral Solver 11.14 34.92 15.59 8.38 16.41 12.67 8.54 8.03 8.15 14.46 12.39

Relative Improvement +2.9% +2.9% +2.8% +7.8% +2.5% +3.3% +15.1% -0.2% -0.3% +13.4% +5.2%

(a) Ground Truth Depth (b) Input Depth

(c) Baseline Solver [2017] Output (d) Planar Bilateral Solver Output

Fig. 13. A visualization of our depth-inpainting task for evaluating the

planar bilateral solver. A ground-truth depth map (a) is randomly decimated

to produce an input depth map (b) that is used as input to the standard

bilateral solver (c) and our planar bilateral solver (d). We see that the planar

solver recovers the foreshortened surfaces on the walls, floor, table, and

chair, while the baseline solver produces oversmoothed and fronto-parallel

surfaces. Depths in (a, c, d) are rendered as filled contour plots to be�er

emphasize gradients and level sets, and (b) is rendered by dilating the sparse

input depths for be�er visibility.

images (λ = 0.5, σxy = 8, σr = 4). We then evaluated this task

using a planar bilateral solver, with the same parameters as the

baseline solver and with the planar solver’s one additional param-

eter set to ϵ = 0.1 (performance was not sensitive to this value).

Results for this task can be seen in Table 2. On scenes containing

slanted ground planes and walls (e.g. ‘Piano’, ‘Playtable’) the planar

solver gives a signi�cant improvement of 7-15%. Scenes consisting

of mostly fronto-parallel surfaces (e.g. ‘Shelves’, ‘Recycling’) yield

no improvement as the baseline bilateral solver’s assumptions are

satis�ed, but do not exhibit any signi�cant loss in quality. A visual-

ization of the output of both solvers with respect to ground truth

for a scene containing slanted surfaces can be seen in Figure 13. As

illustrated in Figure 14, it is interesting to see that even for scenes

where planar assumptions are violated, the proposed solver is able

to recover solutions that can be superior to the baseline solver.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:15

(a) Ground Truth Depth (b) Input Depth

(c) Baseline Solver [2017] Output (d) Planar Bilateral Solver Output

Fig. 14. On scenes that violate the planar assumption of the planar bilateral

solver, the planar solver’s output closely resemble that of the baseline solver.

9.3 Temporal Consistency Evaluation

The proposed temporal �ltering approach leads to results that are

signi�cantly more temporally stable. Figure 15 shows that although

the raw depth maps might vary from one frame to the next, our

approach is capable of producing temporally stable results. Our tem-

poral consistency approach is very fast, using approximately 0.13%

of the total computation of the bilateral solver. We also compare to

computationally expensive deep neural network based approaches

that give temporally less stable results or su�er from gross errors.

In Figure 16, we evaluate the proposed warm-start strategy pre-

sented in Section 7.2. We compare warm-start initialization against

a baseline all-zero initialization and the heuristic initialization of

[Mazumdar et al. 2017], which our warm-start technique also uses

on the �rst frame. Not only does warm-start outperform the heuris-

tic initialization, but it requires no additional computation, thereby

letting us save 6.6% of total runtime of the solver that was previously

spent on heuristic initialization. Figure 16 shows 64 iterations of

gradient descent per frame for illustration’s sake. In practice, we

use 25 iterations per frame, which (when matching the �nal loss

of the solver) gives a 1.8 times speed-up compared to the baseline

solver and a 1.45 times speed-up compared to the initialization of

[Mazumdar et al. 2017], as illustrated in Figure 16 (a). The improve-

ment is even more pronounced for the planar solver, as depicted in

Figure 16 (b).

9.4 Late-stage Slicing Evaluation

In Figure 17, we show the impact of the late-stage slicing on the

resulting occlusions. Without the late-stage slicing the latency in the

depth computation becomes evident as the user moves the phone,

resulting in the occlusion boundary not aligning with the physical

Fig. 15. Temporal filtering significantly improves the stability of the pro-

duced results.

foreground object boundary. In contrast, our late-stage slicing miti-

gates this latency and produces visually pleasing occlusions where

the occlusion boundary correctly hugs the foreground object.

10 AR APPLICATIONS

In this section we demonstrate that the proposed system can e�ec-

tively enable occlusions for applications such as AR shopping, AR

photos as well as AR navigation. To this end, we blend a virtual AR

Asset, e.g. a virtual chair, into the RGB feed of the smartphone using

the computed depth map. In more detail, we create the composite

image C by applying a convex combination of the image I coming

from the camera feed and the virtual asset image A (created by

rendering the virtual asset from the current viewpoint). Naturally,

the weight associated to I can be set to 1 if the depth of the virtual

asset is greater then the computed depth map, and 0 otherwise.

However, we found that results are more visually pleasing when

computing the weight of A based on the distance of the virtual

object to the computed depth map as 1/(1 + e−0.5·(D−D0)), where

D and D0 are the computed and virtual depth values respectively.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

193:16 • Valentin et al.

(a) Bilateral Solver

(b) Planar Bilateral Solver

Fig. 16. The (normalized, log) loss of a bilateral solver (a) and a planar

bilateral solver (b) on an 8-frame video sequence, with and without warm-

starting. Compared to the heuristic initialization of [Mazumdar et al. 2017],

initializing each frame’s solver to the previous solution hastens convergence,

particularly in the case of the planar solver.

Fig. 17. Impact of late-stage slicing. Le�: without late-stage slicing the

latency in the depth computation becomes visible because the occlusion

boundary is not aligned with the foreground object. Right: with our late-

stage slicing the latency is mitigated and the occlusion boundary nicely

hugs the object boundary.

This results in the object gradually fading in and out when temporal

depth inconsistencies are present.

Figure 20 shows qualitative results for a variety of challenging in-

door and outdoor scenes. Note that our approach generates visually

appealing results even for challenging occluders such as untextured

walls or complex shaped plants.

Table 3. Average timings (in ms) of the di�erent pipeline components onmid

and high end phones. These numbers were obtained by averaging run-times

over a few hundred calls while running the whole system on real data.

Stage Component A7 Pixel XL S7 S8 Pixel 2

Keyframe selection 2.6 2.3 2.0 1.7 1.3

Recti�cation 79.7 33.8 38.0 39.5 31.7

Dense CRF 60.0 23.7 27.1 26.2 27.2

depth map Invalidation 13.4 5.6 6.2 4.5 4.5

Triangulation 16.3 5.6 8.5 4.8 4.7

Bilateral solver 42.3 12.9 24.6 16.9 16.5

Planar solver 71.6 31.1 48.6 32.15 30.9

On-demand Late-stage slicing 5.0 1.7 2.7 2.1 1.8

rendering Rendering 0.3 0.4 0.4 0.2 0.4

10.1 Run-time breakdown

Table 3 shows the timings of the di�erent system components for a

variety of di�erent mid to high end phones. Note that we either use

the planar or the bilateral solver but not both. It is important to note

that although the run-time of components required for dense depth

estimation sum up to more than 33ms, the system latency is under

6ms on all devices. This latency corresponds to the run-time of the

late-stage slicing and rendering, which run independently to depth

estimation pipeline. This guarantees a smooth user experience at

30Hz across all tested smart-phones.

Fig. 18. Le� and right rectified image with an imprecise relative pose. In

this example, the correspondences are 14 lines apart.

11 LIMITATIONS

The proposed system su�ers from the usual limitations of monocular

depth estimation systems. A lot of components can be impacted

when the relative pose between the current frame and the selected

keyframe is imprecise. For instance, as illustrated in Figure 18, pose

imprecision can lead to correspondences that are several lines apart,

signi�cantly increasing the di�culty of stereo matching. Robust

stereo matching can sometimes still be performed although camera

poses are imprecise, but then triangulation leads to results that

exhibits visible scale change as can be observed in Figure 19. Another

limitation comes from hardware constraints that can for instance

manifest in the form of rolling-shutter artifact and motion blur.

Finally, as it is well known in the passive-stereo literature, low-

textured areas are particularly ambiguous and performing inference

over them often lead to incorrect results.

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:17

Fig. 19. Pose imprecision can lead to sudden scale change. The top row

shows how the sparse depth evolves between two successive time stamps.

The bo�om row depicts how the imprecise live poses can lead to rapid scale

changes between time t − 1 and time t despite disparities being predicted

correctly.

12 CONCLUSIONS

In this article we have presented several technical contributions that

for the �rst time allow predicting low-latency, edge aligned, and

dense depth-maps on a single CPU core of a mobile phone. We have

demonstrated that this method is e�ective in occlusion handling,

creating a plausible illusion that real and virtual objects exist in

the same environments. Directions for future work include using

deep-reinforcement learning for directly predicting occlusion masks

and working on reducing the computational requirements of such

architectures.

REFERENCES
Robert Anderson, David Gallup, Jonathan T Barron, Janne Kontkanen, Noah Snavely,

Carlos Hernández, Sameer Agarwal, and Steven M Seitz. 2016. Jump: Virtual Reality
Video. SIGGRAPH Asia 35, 6 (2016), 198.

Apple. 2018. ARKit | Apple Developer Documentation. (2018). https://developer.apple.
com/documentation/arkit

Christian Bailer, Manuel Finckh, and Hendrik PA Lensch. 2012. Scale robust multi view
stereo. In European Conference on Computer Vision. Springer, 398–411.

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. Patch-
Match: A randomized correspondence algorithm for structural image editing. ACM
TOG 28, 24 (2009).

Jonathan T Barron, Andrew Adams, YiChang Shih, and Carlos Hernández. 2015. Fast
Bilateral-Space Stereo for Synthetic Defocus. CVPR (2015).

Jonathan T Barron and Ben Poole. 2016. The Fast Bilateral Solver. ECCV (2016).
Michael Bleyer, Christoph Rhemann, and Carsten Rother. 2011. PatchMatch Stereo-

Stereo Matching with Slanted Support Windows. BMVC (2011).
Yuri Boykov, Olga Veksler, and Ramin Zabih. 2001. Fast approximate energy minimiza-

tion via graph cuts. TPAMI (2001).
Gary Bradski and Adrian Kaehler. 2000. OpenCV. Dr. Dobbs journal of software tools 3

(2000).
Prasun Choudhury and Jack Tumblin. 2005. The trilateral �lter for high contrast images

and meshes. SIGGRAPH Courses (2005).
Antonio Criminisi, Jamie Shotton, Ender Konukoglu, et al. 2012. Decision forests:

A uni�ed framework for classi�cation, regression, density estimation, manifold
learning and semi-supervised learning. Foundations and Trends® in Computer
Graphics and Vision (2012).

David Eigen, Christian Puhrsch, and Rob Fergus. 2014. Depth map prediction from a
single image using a multi-scale deep network. NIPS (2014).

Daniel Evangelakos andMichaelMara. 2016. Extended TimeWarp latency compensation
for virtual reality. Interactive 3D Graphics and Games (2016).

Sean Ryan Fanello, Julien Valentin, Adarsh Kowdle, Christoph Rhemann, Vladimir
Tankovich, Carlo Ciliberto, Philip Davidson, and Shahram Izadi. 2017a. Low Com-
pute and Fully Parallel Computer Vision with HashMatch. ICCV (2017).

Sean Ryan Fanello, Julien Valentin, Christoph Rhemann, Adarsh Kowdle, Vladimir
Tankovich, Philip Davidson, and Shahram Izadi. 2017b. UltraStereo: E�cient
Learning-based Matching for Active Stereo Systems. CVPR (2017).

Olivier Faugeras, Quang-Tuan Luong, and T. Papadopoulou. 2001. The Geometry of
Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some
of Their Applications. MIT Press.

Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and Richard Szeliski. 2009.
Manhattan-World Stereo. CVPR (2009).

Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. 2016. Unsupervised cnn
for single view depth estimation: Geometry to the rescue. ECCV (2016).

Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. 2017. Unsupervised monoc-
ular depth estimation with left-right consistency. CVPR (2017).

Google. 2018. ARCore - Google Developers Documentation. (2018). https://developers.
google.com/ar

Rostam A�endi Hamzah and Haidi Ibrahim. 2016. Literature survey on stereo vision
disparity map algorithms. Journal of Sensors (2016).

Richard Hartley and Andrew Zisserman. 2003. Multiple view geometry in computer
vision. Cambridge university press.

Richard I Hartley and Peter Sturm. 1997. Triangulation. Computer vision and image
understanding (1997).

Heiko Hirschmuller. 2008. Stereo processing by semiglobal matching and mutual
information. TPAMI (2008).

Asmaa Hosni, Christoph Rhemann, Michael Bleyer, and Margrit Gelautz. 2011. Tem-
porally consistent disparity and optical �ow via e�cient spatio-temporal �ltering.
Paci�c-Rim Symposium on Image and Video Technology (2011).

Ramesh Jain, Sandra L Bartlett, and Nancy O’Brien. 1987. Motion stereo using ego-
motion complex logarithmic mapping. IEEE Transactions on Pattern Analysis and
Machine Intelligence 3 (1987), 356–369.

Olaf Kähler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin Sun, Philip Torr, and David
Murray. 2015. Very high frame rate volumetric integration of depth images on
mobile devices. IEEE Transactions on Visualization and Computer Graphics (2015).

Kevin Karsch, Ce Liu, and Sing Bing Kang. 2016. Depth Transfer: Depth Extraction from
Videos Using Nonparametric Sampling. Dense Image Correspondences for Computer
Vision (2016).

Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy,
Abraham Bachrach, and Adam Bry. 2017. End-to-end learning of geometry and
context for deep stereo regression. ICCV (2017).

Sameh Khamis, Sean Fanello, Christoph Rhemann, Julien Valentin, Adarsh Kowdle, and
Shahram Izadi. 2018. StereoNet: Guided Hierarchical Re�nement for Edge-Aware
Depth Prediction. In ECCV.

Hanme Kim, Stefan Leutenegger, and Andrew J Davison. 2016. Real-time 3D recon-
struction and 6-DoF tracking with an event camera. ECCV (2016).

K. Klasing, D. Altho�, D. Wollherr, and M. Buss. 2009. Comparison of surface normal
estimation methods for range sensing applications. ICRA (2009).

Kalin Kolev, Petri Tanskanen, Pablo Speciale, and Marc Pollefeys. 2014. Turning mobile
phones into 3D scanners. CVPR (2014).

Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir
Navab. 2016. Deeper Depth Prediction with Fully Convolutional Residual Networks.
CoRR (2016). http://arxiv.org/abs/1606.00373

Ping Li, Dirk Farin, Rene Klein Gunnewiek, et al. 2006. On creating depth maps
from monoscopic video using structure from motion. IEEE Workshop on Content
Generation and Coding for 3D-Television (2006).

Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. 2016. Learning depth from
single monocular images using deep convolutional neural �elds. IEEE transactions
on pattern analysis and machine intelligence 38, 10 (2016), 2024–2039.

Charles Loop and Zhengyou Zhang. 1999. Computing rectifying homographies for
stereo vision. CVPR (1999).

Amrita Mazumdar, Armin Alaghi, Jonathan T. Barron, David Gallup, Luis Ceze, Mark
Oskin, and Steven M. Seitz. 2017. A Hardware-friendly Bilateral Solver for Real-time
Virtual Reality Video. High Performance Graphics (2017).

Mark Mine and Gary Bishop. 1993. Just-in-time pixels. University of North Carolina at
Chapel Hill Technical Report TR93-005 (1993).

Karsten Mühlmann, Dennis Maier, Jürgen Hesser, and Reinhard Männer. 2002. Calcu-
lating dense disparity maps from color stereo images, an e�cient implementation.
IJCV (2002).

Ramakant Nevatia. 1976. Depth measurement by motion stereo. CGIP (1976).
R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. 2011. DTAM: Dense tracking and

mapping in real-time. In 2011 International Conference on Computer Vision.
Manuel M. Oliveira, Brian Bowen, Richard Mckenna, and Yu sung Chang. 2001. Fast

digital image inpainting. (2001).

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/arkit
https://developers.google.com/ar
https://developers.google.com/ar
http://arxiv.org/abs/1606.00373

193:18 • Valentin et al.

Peter Ondrúška, Pushmeet Kohli, and Shahram Izadi. 2015. Mobilefusion: Real-time
volumetric surface reconstruction and dense tracking on mobile phones. IEEE
Transactions on Visualization and Computer Graphics (2015).

Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and
Koray Kavukcuoglu. 2016. Conditional image generation with pixelcnn decoders.
In Proceedings of the 30th International Conference on Neural Information Processing
Systems. Curran Associates Inc., 4797–4805.

Liyuan Pan, Yuchao Dai, Miaomiao Liu, and Fatih Porikli. 2018. Depth Map Completion
by Jointly Exploiting Blurry Color Images and Sparse Depth Maps. WACV (2018).

Jiahao Pang, Wenxiu Sun, JS Ren, Chengxi Yang, and Qiong Yan. 2017. Cascade residual
learning: A two-stage convolutional neural network for stereo matching. (2017).

Jaesik Park, Hyeongwoo Kim, Yu-Wing Tai, Michael S Brown, and In So Kweon. 2014.
High-quality depth map upsampling and completion for RGB-D cameras. IEEE TIP
(2014).

Deepak Pathak, Philipp Krahenbuhl, Je� Donahue, Trevor Darrell, and Alexei A Efros.
2016. Context encoders: Feature learning by inpainting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2536–2544.

Marc Pollefeys, Reinhard Koch, and Luc Van Gool. 1999. A simple and e�cient recti�-
cation method for general motion. ICCV (1999).

Vivek Pradeep, Christoph Rhemann, Shahram Izadi, Christopher Zach, Michael Bleyer,
and Steven Bathiche. 2013. MonoFusion: Real-time 3D Reconstruction of Small
Scenes with a Single Web Camera. ISMAR (2013).

Malcolm Reynolds, Jozef Doboš, Leto Peel, Tim Weyrich, and Gabriel J Brostow. 2011.
Capturing time-of-�ight data with con�dence. CVPR.

Christian Richardt, Douglas Orr, Ian Davies, Antonio Criminisi, and Neil A. Dodgson.
2010. Real-time Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral
Grid. ECCV (2010).

Christian Richardt, Carsten Stoll, Neil A Dodgson, Hans-Peter Seidel, and Christian
Theobalt. 2012. Coherent spatiotemporal �ltering, upsampling and rendering of
RGBZ videos. Computer Graphics Forum (2012).

Daniel Scharstein, Heiko Hirschmuller, York Kitajima, Greg Krathwohl, Nera Nesic, Xi
Wang, and Porter Westling. 2014. High-Resolution Stereo Datasets with Subpixel-
Accurate Ground Truth. GCPR (2014).

Daniel Scharstein and Richard Szeliski. 2002. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. IJCV (2002).

Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. 2016.
Pixelwise view selection for unstructured multi-view stereo. In European Conference
on Computer Vision. Springer, 501–518.

Thomas Schöps, Jakob Engel, and Daniel Cremers. 2014. Semi-dense visual odometry
for AR on a smartphone. ISMAR (2014).

Thomas Schöps, Martin R Oswald, Pablo Speciale, Shuoran Yang, and Marc Polle-
feys. 2017a. Real-Time View Correction for Mobile Devices. IEEE Transactions on
Visualization and Computer Graphics (2017).

Thomas Schöps, Torsten Sattler, Christian Häne, and Marc Pollefeys. 2017b. Large-
scale outdoor 3D reconstruction on a mobile device. Computer Vision and Image
Understanding (2017).

Jianhong Shen and Tony F Chan. 2002. Mathematical models for local nontexture
inpaintings. SIAM J. Appl. Math. (2002).

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. 2012. Indoor
segmentation and support inference from rgbd images. In European Conference on
Computer Vision. Springer, 746–760.

Supasorn Suwajanakorn, Carlos Hernandez, and Steven M Seitz. 2015. Depth from
focus with your mobile phone. CVPR (2015).

T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura. 2018. Continuous 3D Label Stereo
Matching using Local Expansion Moves. PAMI (2018).

Petri Tanskanen, Kalin Kolev, Lorenz Meier, Federico Camposeco, Olivier Saurer, and
Marc Pollefeys. 2013. Live metric 3d reconstruction on mobile phones. ICCV (2013).

JMP Van Waveren. 2016. The asynchronous time warp for virtual reality on consumer
hardware. VRST (2016).

Neal Wadhwa, Rahul Garg, David E. Jacobs, Bryan E. Feldman, Nori Kanazawa, Robert
Carroll, Yair Movshovitz-Attias, Jonathan T. Barron, Yael Pritch, and Marc Levoy.
2018. Synthetic Depth-of-Field with a Single-Camera Mobile Phone. SIGGRAPH
(2018).

Caihua Wang, H. Tanahashi, H. Hirayu, Y. Niwa, and K. Yamamoto. 2001. Comparison
of local plane �tting methods for range data. CVPR (2001).

Chamara Saroj Weerasekera, Thanuja Dharmasiri, Ravi Garg, Tom Drummond, and
Ian Reid. 2018. Just-in-Time Reconstruction: Inpainting Sparse Maps using Single
View Depth Predictors as Priors. arXiv preprint arXiv:1805.04239 (2018).

O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. 2009. Global Stereo Reconstruction
under Second-Order Smoothness Priors. TPAMI (2009).

Chi Zhang, Zhiwei Li, Rui Cai, Hongyang Chao, and Yong Rui. 2014. As-Rigid-As-
Possible Stereo under Second Order Smoothness Priors. ECCV (2014).

Dandan Zhang and Yuejia Luo. 2012. Single-trial ERPs elicited by visual stimuli at two
contrast levels: Analysis of ongoing EEG and latency/amplitude jitters. ISRA (2012).

Yinda Zhang and Thomas Funkhouser. 2018. Deep Depth Completion of a Single RGB-D
Image. CVPR.

Enliang Zheng, Enrique Dunn, Vladimir Jojic, and Jan-Michael Frahm. 2014. Patchmatch
based joint view selection and depthmap estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1510–1517.

Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. 2017. Unsupervised
learning of depth and ego-motion from video. CVPR (2017).

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

Depth from Motion for Smartphone AR • 193:19
C

a
m

e
ra

 f
e
e
d

C
o
m

p
u
te

d
 D

e
p
th

A
R

 A
s
s
e
t

C
a
m

e
ra

 f
e
e
d

C
o
m

p
u
te

d
 D

e
p
th

A
R

 A
s
s
e
t

C
a
m

e
ra

 f
e
e
d

C
o
m

p
u
te

d
 D

e
p
th

A
R

 A
s
s
e
t

Fig. 20. Occlusion results. We show results for occlusion handling on a variety of challenging scenes for three di�erent scenarios: online shopping (first row),

fun photos/videos (second row) and navigation last row).

ACM Trans. Graph., Vol. 37, No. 6, Article 193. Publication date: November 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Keyframe selection
	5 Stereo rectification
	5.1 Using polar rectified images for stereo matching.

	6 Stereo-matching
	6.1 Vectorized Inference
	6.2 Invalidation
	6.3 Disparity to depth

	7 Bilateral Solver Extensions
	7.1 Planar Bilateral Solver
	7.2 Temporal Smoothness, Warm-Start Initialization, and Late-Stage Slicing

	8 Evaluation
	8.1 Stereo-Matcher Evaluation on Middlebury Dataset
	8.2 Qualitative Comparisons with Deep Learning solutions
	8.3 Qualitative Comparisons with the iPhoneX

	9 Ablation Study
	9.1 Invalidation Experiments
	9.2 Planar Bilateral Solver Experiments
	9.3 Temporal Consistency Evaluation
	9.4 Late-stage Slicing Evaluation

	10 AR Applications
	10.1 Run-time breakdown

	11 Limitations
	12 Conclusions
	References

