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DEPTH-GUIDED INPAINTING ALGORITHM FOR FREE-VIEWPOINT VIDEO

Lingni Ma, Luat Do and Peter H. N. de With

Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, the Netherlands

ABSTRACT

Free-Viewpoint Video (FVV) is a novel technique which creates vir-

tual images of multiple direction by view synthesis. In this paper,

an exemplar-based depth-guided inpainting algorithm is proposed to

fill disocclusions due to uncovered areas after projection. We de-

velop an improved priority function which uses the depth informa-

tion to impose a desirable inpainting order. We also propose an ef-

ficient background-foreground separation technique to enhance the

accuracy of hole filling. Furthermore, a gradient-based searching ap-

proach is developed to reduce the computational cost and the loca-

tion distance is incorporated into patch matching criteria to improve

the accuracy. The experimental results have shown that the gradient-

based search in our algorithm requires a much lower computational

cost (factor of 6 compared to global search), while producing signif-

icantly improved visual results.

Index Terms— Free-viewpoint video, depth image, inpainting,

exemplar-based algorithm, background-foreground separation

1. INTRODUCTION

Recently, substantial research has been devoted to the development

of advanced 3DTV technologies. One interesting field is view syn-

thesis, where multiple views are generated from existing cameras. A

popular technique in view synthesis is Depth Image Based Render-

ing (DIBR) which uses depth information to generate virtual views

by warping [1]. DIBR provides opportunities for new applications,

such as Free-Viewpoint Video (FVV), which allows users to view

a scene from multiple directions. However, DIBR also creates pro-

jection artifacts in virtual images. One major problem is holes or

disocclusions resulting from uncovered areas after projection. Im-

age inpainting [2] offers a promising solution to fill these holes.

In literature, there are mainly two types of inpainting algorithms.

One type is based on Partial Differential Equations (PDE), which

propagates structures into holes via diffusion [3]. The other type

is based on exemplars, which copies known pixels for hole filling.

Since the PDE-based approaches produce noticeable blurring for

large holes, the exemplar-based algorithms are more attractive for

our problem. A pioneering work for exemplar-based algorithms has

been developed by Criminisi et al. [4], where a priority function is

proposed to determine the inpainting order such that linear struc-

tures are propagated correctly to connect broken lines. To enhance

the speed and accuracy, this algorithm has been further developed

by other researchers [5–9]. However, these inpainting algorithms

are insufficient for FVV inpainting, because the disocclusions in

FVV usually reside in the background. To handle the depth ambi-

guities, the associated depth images can be used and this idea has

been employed by others. Oh et al. [10] attempted to replace the

foreground boundary of holes with the background one. Their in-

tention to inpaint with background is not completely achieved, since

foreground boundaries are not always well identified and properly

replaced. Daribo et al. [11] extended Criminisi’s algorithm by mod-

ifying the priority function and the patch matching criteria. Their re-

sults contain noticeable errors, since the assumption that patches of

low depth variance are equal to the background, is not always valid.

Gautier et al. [12] proposed prevention of foreground propagation

by inpainting warped images whose projection direction is known.

However, the foreground is still considered for hole filling, so that

background disocclusions are not inpainted correctly. Köppel and

Ndjiki-Nya et al. [13,14] exploit the temporal information by build-

ing a background map. In our case, we are limited by frame-based

processing to lower the complexity.

In this paper, we propose an improved exemplar-based algorithm

for FVV inpainting using four advanced techniques. First, an en-

hanced priority function is constructed such that holes are inpainted

from the background to the foreground. Second, a local foreground-

background separation method is proposed which efficiently pre-

vents the propagation of foreground. Third, a gradient-based search-

ing is developed to limit the search-window size to reduce the com-

putational cost. Last, the patch matching criterion is modified that

optimizes the inpainting accuracy. The experimental results show

that our algorithm significantly improves the FVV inpainting per-

formance. The sequel of this paper is organized as follows. Sec-

tion 2 gives background information for FVV inpainting and a brief

overview of Criminisi’s algorithm. Section 3 explains our proposed

algorithm in detail. Section 4 shows the experimental results and

evaluations. Section 5 presents the final conclusions.

2. BACKGROUND

In this section, we provide background information related to FVV

inpainting and Criminisi’s algorithm. The FVV inpainting problem

is illustrated in Fig. 1 with the synthesized image and its associated

depth image. We use synthesized images warped from two existing

cameras. FVV inpainting differs from image inpainting in two as-

pects. First, disocclusions in FVV are usually holes residing in the

background textures. Second, each FVV image is associated with a

depth image, which provides information about the relative distances

of the objects with respect to the camera.

Let us now briefly describe Criminisi’s method, which forms the

basis for our algorithm. Criminisi’s method is an iterative process,

which consists of three main steps. In the first step, a target patch

with the highest priority is located to ensure a desirable inpainting

order. The second step searches the entire image for a proper can-

didate that matches the target patch. This patch matching is deter-

mined by finding the smallest texture distance, which is the sum of

squared errors between the target patch and a candidate patch. The

third step updates the image by copying the candidate patch to fill

the target patch. Criminisi’s algorithm is limited to normal images,

since it does not distinguish background from foreground textures.

In the next section, we show that exemplar-based algorithms can be

improved using the available depth information.



(a) Texture image (b) Associate depth image

Fig. 1: FVV inpainting problem: synthesized texture from two cam-

eras and the associated depth image, with disocclusions denoted by

green and black (near the heads of the persons).

3. DEPTH-GUIDED INPAINTING ALGORITHM

In this section, we describe our proposed algorithm in detail. For

each stage of Criminisi’s algorithm, we have provided new tech-

niques for improvement. In particular, we have used the available

depth information to enhance the priority function. In addition, a

new step is inserted after the priority computation that separates the

background from the foreground. The complete diagram for our

algorithm is depicted in Fig. 2. In the following subsections, we

present the new techniques involved in the diagram, which are depth-

based priority computation, background-foreground segmentation,

gradient-based searching and distance-related patch matching.

Compute

priority

Locally separate

foreground and

background

Find

candidate

patch

Update

image

Fig. 2: Principal steps of our proposed algorithm for one iteration.

3.1. Depth-Based Priority Computation

Since Criminisi’s priority function does not distinguish the fore-

ground and background, it leads to the propagation of foreground

into background. To achieve a better inpainting order, the patch

of larger depth which represents the relative background should be

filled first. With this assumption, a new priority function is proposed

and specified by

P (p) = C(p)×D(p)× Z(p),

where the confidence term C(p) and data term D(p) are defined

according to Criminisi’s algorithm [4]. The new depth term Zp is

specified by

Z(p) = 1−
z̄p

zmax

,

where z̄p is the average depth of patch Ψp based on all known pixels,

while zmax denotes the maximum depth of the entire image. Since

the foreground usually contains a much higher depth value than the

background, this new definition of the priority function ensures a

correct inpainting from the background to the foreground as shown

in Fig. 3(b). In contrast to the technique in [12], we arrange the

proper inpainting order using the depth term without prior knowl-

edge about camera positions.

3.2. Background-Foreground Segmentation

A desirable inpainting order is not always sufficient to prevent fore-

ground propagation, as we have found that it is better to prevent

the use of these foreground pixels for hole filling. This is explains

why existing algorithms fail to produce satisfying results. To solve

this problem, we propose a method to exclude foreground objects in

the patch updating processing by background-foreground segmenta-

tion. From our experiments, we have observed that although both

foreground and background cover a wide range of depth values, the

high contrast in depth is still preserved when limited to a local re-

gion. This observation promotes a local segmentation technique by

thresholding using the Ostu’s method [15]. This is a nonparametric

and unsupervised algorithm to select an optimal threshold by max-

imizing the discriminant measure of separability, i.e. the between

class variance. Ostu’s method works especially well when the en-

tire distribution is a mixture of two distinguishable clusters, which

is usually the case when a local region is considered. Fig. 4 demon-

strates the efficiency of local segmentation for the image content, as

shown in Fig. 1.

It should be noted that we only exclude foreground pixels from

filling disocclusions. Patches containing foreground pixels are still

considered when searching for the optimal candidate, because these

patches are also very likely to contain desirable background infor-

mation. The difference between existing algorithms and ours is that

we only copy background pixels to fill holes, thereby effectively pre-

venting the propagation of foreground pixels.

3.3. Gradient-Based Searching

Most exemplar-based algorithms use a global search to find the op-

timal candidate. However, the global searching is not only compu-

tationally expensive, but it is also unnecessary in many situations.

Therefore, we have developed a method that adapts the search win-

dow size proportional to the gradient magnitude of the patch. We

observe that disocclusions surrounded by intricate details usually

need a large search window to match their variation, while holes

in smooth texture can be well inpainted with a neighboring patch.

Since the magnitude of image gradient serves as a good indication

for the texture variation, we set the radius r of the symmetric search

window as a function of the gradient magnitude g by specifying

r = R
αg+β

,

where R is the maximum search radius and g is measured as the

highest gradient magnitude of neighboring known pixels. The vari-

ables α and β are coefficients constrained by two conditions such

that RαGL+β = RL and RαGU+β = RU , where RL and RU are

the lower and upper bound for the search radius, respectively. Like-

wise, variables GL, GU are the lower and upper bound for gradient

magnitude, respectively. This mapping correlates the search-window

size with the texture variation, i.e. the higher the variation, the larger

(a) Criminisi’s algorithm (b) Our algorithm

Fig. 3: Inpainting direction determined by Criminisi’s priority func-

tion and our proposed priority function.



(a) Global threshold and segmentation result

(b) Local threshold and segmentation result

Fig. 4: Segmentation of foreground (white region) and background.

The global segmentation fails to extract the complete foreground ob-

ject, while the local segmentation overcomes this limitation.

the search window. From our experiments we have observed that

most holes in FVV are surrounded by low-frequency textures and

thus our modification highly reduces the computational cost without

sacrificing the performance.

3.4. Distance-Related Patch Matching

We have observed that a patch is more likely to resemble its neigh-

boring patches than its far away counterparts. This observation stim-

ulates the use of location distance as a penalty for the patch match-

ing. We propose the following procedure to select the optimal patch.

First, we rank the patches according to their texture distance as de-

fined in Criminisi’s algorithm. Second, we select the first n patches

with the shortest texture distance. Third, the location distance is

added as the penalty to the texture distance and these patches are

re-ranked. The patch with the shortest distance is selected as a can-

didate. We define the location distance penalty by

D(Ψp,Ψq) = γ · (|xp − xq|+ |yp − yq|),

where γ is the weight and (xp, yp), (xq, yq) are the centers of patch

Ψp and Ψq , respectively. To prevent propagation of inpainting er-

rors, we do not reuse partially inpainted patches. The modified patch

matching produces better results in two situations. First, when sev-

eral candidates have the same texture distance, the location distance

helps to select the correct patch. Moreover, when a candidate with

minimum texture distance is further away from the target, the higher

penalty reduces the risk to include undesired details.

3.5. Preprocessing Step for Implementation

In our implementation, we have observed that using the depth in-

formation to guide the filling process is not always necessary. For

example, small holes (containing pixels less than half of the patch

size) and boundary holes can be sufficiently inpainted with their

neighboring pixels. In addition, small holes do not demand a critical

inpainting order. Therefore, we classify the disocclusions into reg-

ular holes, small holes and boundary holes. Since the background-

foreground separation requires more computation, we only apply it

to regular holes to achieve a better efficiency. The classification of

holes also plays a crucial role in producing accurate results.

4. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of our proposed algorithm, two series

of experiments have been carried out in MatLab. In the first series of

experiments, the visual quality is assessed by using the well-known

3D video sequence “Ballet”. We take a patch size of 15× 15 pixels

and limit the maximum and minimum search window to 151× 151
pixels and 15 × 15 pixels, respectively. For comparison, we have

also implemented the Criminisi’s and Daribo’s algorithms. The for-

mer algorithm offers the reference for patch-based inpainting with-

out using depth, while the latter does. The results in Fig. 5 show that

in a worst-case scenario, our algorithm clearly outperforms the other

algorithms, because the propagation of foreground objects into back-

ground texture is prevented. The average PSNR of 100 frames in the

disoccluded areas for Criminisi’s, Daribo’s and our algorithm are

28.5, 28.7 and 28.8 dB, respectively. Generally, our system shows

quality improvements in two situations. First, the contours of fore-

ground objects are well preserved, while the shape of foreground ob-

jects in both Criminisi’s and Daribo’s algorithm are deformed. Sec-

ond, our algorithm produces improved perceptual results for holes

that are completely surrounded by foreground objects. While the

Criminisi’s and Daribo’s algorithms introduce artifacts, our algo-

rithm fills the disocclusions with desirable information.

In the second series of experiments, we compare the execu-

tion time of inpainting with global searching and our gradient-based

searching for images of various size. The test set consists of images

with sizes varying from 320×240, 640×320, 768×576, 800×600
to 1024 × 768 pixels. For each size, 10 images are tested and the

average iteration cycle time is given in Table 1. It can be observed

that the gradient-based searching speeds up the inpainting process

drastically, especially for images with high resolution. In particular,

for images with 1024 × 768 pixels, the gradient-based searching is

almost 6 times faster than the global searching.

Image Size

(pixels)

Patch Size

(pixels)

GS per

iteration (ms)

GBS per

iteration (ms)

320× 240 09× 09 34.2 11.6

640× 480 11× 11 86.6 24.4

768× 576 11× 11 123.3 29.9

800× 600 13× 13 129.0 30.5

1024× 768 15× 15 200.7 34.8

Table 1: Comparison of computational cost between Global Search-

ing (GS) and Gradient-Based Searching (GBS).

5. CONCLUSIONS

In this paper, we have proposed a depth-guided inpainting algo-

rithm for Free-Viewpoint Video. Four new techniques have been de-

veloped to improve existing exemplar-based inpainting algorithms.

First, the depth information is added to the priority function, which

helps to impose the desirable inpainting order. Second, an efficient

local segmentation approach is proposed to prevent the propagation

of foreground objects into background texture. Third, a gradient-

based searching is developed to lower the computational cost by



(a) Zoomed in image with

holes

(b) Our implementation of Cri-

minisi’s algorithm

(c) Our implementation of

Daribo’s algorithm

(d) Our proposed algorithm

Fig. 5: Experimental results of our proposed algorithm, compared to our implementation of Criminisi’s and Daribo’s algorithms.

adapting the search window size. Fourth, the accuracy of patch

matching is improved by using the location distance as a penalty.

Experiments have shown that better perceptual results are produced

with a good preservation of object contours and accurate filling of

disocclusions in the foreground. The objective results measured in

PSNR appear to be comparable to the existing algorithms, but our

algorithm is more efficient, since it speeds up the inpainting process

substantially. The speed enhancement is especially noticeable for

larger images.

Despite the good performance of our algorithm in general, in-

painting artifacts occur when segmentation fails to properly sepa-

rate the background from the foreground. In future studies, better

segmentation algorithms can be developed to reduce classification

errors in order to further improve the quality of FVV inpainting.
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