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Abstract

Background: The emerging of depth-camera technology is paving the way for variety

of new applications and it is believed that plane detection is one of them. In fact,

planes are common in man-made living structures, thus their accurate detection can

benefit many visual-based applications. The use of depth data allows detecting planes

characterized by complicated pattern and texture, where texture-based plane

detection algorithms usually fail. In this paper, we propose a robust Depth

Image-based Plane Detection (DIPD) algorithm. The proposed approach starts from the

highest planarity seed patch, and uses the estimated equation of the growing plane

and a dynamic threshold function to steer the growing process. Aided with this

mechanism, each seed patch can grow to its maximum extent, and then next seed

patch starts to grow. This process is iteratively repeated so as to detect all the planes.

Results: Validated by extensive experiments on three datasets, the proposed DIPD

algorithm can achieve 81% correct detection ratio which doubles the value compared

with the state-of-the-art algorithms. Meanwhile, the runtime of the proposed algorithm

is around 4 times of the fastest RANdom SAmple Consensus (RANSAC).

Conclusions: The proposed depth image-based plane detection algorithm can

achieve state-of-the-art performance. In terms of applications, it could be used as the

pre-processing step for planar object recognition, super-resolution of the intrinsically

low resolution Time-of-Flight (ToF) depth images, and variety of other applications.

Keywords: Plane detection, Depth image, Region growing, Dynamic threshold

function, ToF depth camera

Background

Man-made indoor and outdoor structures are generally dominated by different shapes

of planes. These planes carry orientation and size information of the 3D objects in the

scene. Therefore, 3D reconstruction can be simplified by detecting these planes and set-

ting up the piecewise planar model of the indoor and outdoor scenes [1–3]. Moreover,

plane detection technique has been widely used in robot navigation systems [4] and the

computer vision for object recognition [5].

At the early stage of the plane detection technique, texture information is mainly

adopted. However, this approach may fail when a plane has inconsistent color or texture.

As a remedy to this limitation, depth maps offer one clue and turns out to be effec-

tive in texture challenging situations. With the increasing availability of consumer depth

cameras, e.g., SwissRanger SR4000 [6] and Microsoft Kinect [7], the depth-based plane
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segmentation and plane detection become popular. Since depth map represents the spa-

tial information of each point in the scene, the points from the same plane will have

similar spatial features, such as gradients and normal vectors. Based on this, Holz et al. [8]

implemented the real-time plane detection by extracting three components of the normal

vector of each point and clustering the points with similar orientations. As parallel planes

have similar normals, all the extracted planes, later on, are refined by their distance to

the origin. Although, the depth-based plane detection approaches can be implemented in

real-time by checking the points’ normal vectors, they suffer from low accuracy and pre-

cision. Moreover, due to the fact that the local normal vector is obtained based on a fixed

number of neighboring points, if the number is small (e.g., 2), the normal vector is easily

affected by noise points. However, if the number is large, the normal vector for boundary

points is inaccurate. For robotic navigation system, the detection speed is more strictly

required than its accuracy. Hence, using normal vectors is sufficient, whereas for other

applications, for example, the human navigation system for guiding the visually impaired

person, the detection accuracy is more important. Therefore, in this work, we will target

on the accuracy and robustness of the proposed plane detection algorithm.

To satisfy this requirement, we present an unsupervised plane detection algorithm on

consumer Time-of-Flight (ToF) depth camera captured depthmaps, namedDepth Image-

based Plane Detection (DIPD). The proposed DIPD algorithm detects planes by adopting

a dynamic seed growing approach. The growing starts from the highest planarity seed

patch and is steered by the estimated equation of the current growing plane. Moreover,

the estimated equation is refined at each growing stage by taking the newly incorporated

pixels into account. The growing process is iteratively carried out until all the planes get

detected. More advanced than the previous work [9], in this work, a dynamic thresh-

old function which takes both the plane attributes and noise model of depth cameras

into account, is proposed to enhance the detection accuracy and robustness. These, later

on, have been validated by comprehensive and extensive experiments on three datasets.

The proposed plane detection process can be taken as a necessary step for further pla-

nar object recognition (floor, walls, table-tops, etc.) [10], indoor scene reconstruction [11]

and place recognition [12].

In short summary, the major contributions of this proposed work are as follows: (1) In

our algorithm, no RGB information is used and no per-pixel normal vector estimation is

required. (2) We proposed a patch-based seed selection approach rather than separated

or randomly selected seed points and the plane growing always starts from the seed patch

with the largest planarity. This can ensure the growing process starts from a small plane.

(3) We novelly proposed a dynamic threshold function in the growing process, which

takes both the process and ToF depth camera noise model into account. Therefore, in

contrast to existing algorithms, the proposed one can efficiently alleviate over-growing

and under-growing problem. (4) Extensive experiments are performed to validate the

proposed approach. Our results show a significant performance improvement for the

challenging indoor scene on different depth datasets.

Iterative plane fitting methods

Iterative plane fitting or iterative initial estimates refining is a common approach used for

plane detection and its typical representative is RANdom SAmple Consensus (RANSAC)

algorithm [13]. RANSAC is an iteratively randomized model fitting process and the initial
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fitting model is obtained based on several randomly selected points. This method is effi-

cient in detecting large planes and robust to noisy data, however, it tends to over-simplify

complex planar structures. For example, the horizontal and vertical planes in a stair-step

structure are often detected as one plane aligned with the stair slope. Hence, in order to

tackle this problem, RANSAC is usually combined with other detection or refinement

methods, such as Minimum Description Length (MDL) [14], and Normal Coherence

Checking (NCC-RANSAC) [15].

Hough transform-basedmethods

The Hough Transform is well-known for parameterized objects detection, typically for

detecting lines and circles in 2D datasets [16]. Aiming to extend its usage to 3D space and

meanwhile, to reduce its computational cost, numerous variations have been proposed.

3D Hough Transform proposed by Hulik et al. [17] describes each plane by its slope along

x and y axes and the distance to the origin of the coordinate system. Although in contrast

to RANSAC, the formulation of Hough Transform-based methods is sound, the voting

process makes them suffer from high computational cost in finding the parameters of

one fitting model, especially when the input data is large or the accumulator is sensi-

tive. Randomized Hough Transform (RHT) [18] as an alternative approach avoids high

computational cost of the voting process. Instead, for every pixel, it calculates the model

parameters in a probabilistic way. Dube et al. [19] proposed a plane detection method

by applying RHT on Kinect generated depth map which allows detecting the planes in

real time. For a more comprehensive review of Hough-based methods on plane detection,

please refer to [18].

Region-growing-basedmethods

Compared with RANSAC and Hough Transformmethods, region-growing methods with

more straight-forward working principle exploit the points’ neighboring relationship.

Pathak et al. [20] proposed a plane detection algorithm relying on a two-point-seed grow-

ing approach. The growing process starts from a region G, which consists of a random

point p and its one nearest neighbor from the point cloud data, and then extends outwards

by adding its neighboring point pn according to some criteria until no more points can

be added to G. The plane parameters are incrementally updated by taking the centroid

and covariance matrix of previous growing region into account. Instead of incrementally

computing the covariance matrix to derive a plane normal vector, Holz et al. [21, 22]

used the average normal vector from the plane points as the approximate value of the

plane normal vector. Therefore, after every growth only the centroid of growing region

is updated and stored in normal vector space, which considerably reduces the number

of computations. Xiao et al. [23] proposed a Cached-Octree Region-Growing (CORG)

algorithm to segment the point cloud into planar segments. Since the method stops

growing merely based on distance information, over-growing may occur due to inter-

esting planes. Nurunnabi et al. [24] classified all the 3D points into border-line points,

edge/corner points and surfels (i.e., small surfaces) by Robust Principle Component Anal-

ysis (RPCA) algorithm. Then the region starts to grow from one surfel point by adding its

neighboring surfel point if the angle between the normal vector of the region’s seed point

and that of the surfel point is below a threshold. This method works well for two planes

having distinct edges between them, but may fail in the opposite situation.
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Scan line groupingmethods

For segmenting 3D laser range scans, scan line groupingmethods are widely adopted. The

basic idea behind this method is that 3D planes in a 3D scan are observed as 2D straight

lines and if two straight lines cut one another, they lie in one plane [25]. As a derivative of

region growingmethods, the growing primitives are scan lines instead of individual pixels.

In this regard, scan line grouping increases computational efficiency by first detecting

lines in planar cuts and thenmerging neighboring line segments to regions. Hemmat et al.

[26] realized the plane detection in three steps. Firstly, all 3D edges in a depth image were

searched and the lines between these edges were found. Then, all the points on each pair

of intersecting lines were merged into a plane and finally, filtering enhancements were

applied to improve the segmentation accuracy.

Methods

More advanced than the previous work [9], the working principles of seed genera-

tion and region growing are reformulated using clear mathematic expressions in this

section, respectively. Moreover, a novel dynamic growing threshold function is proposed

to increase the detection accuracy and robustness by considering the noise model of

consumer depth cameras and the characteristics of the region growing process.

Valid seed patches generation

Seed selection is a crucial step in region-growing methods. Indeed, the results of the

detection are highly dependent on the initial seeds from which regions are expanded.

Since some holes or anomalous points may exist in the hardware generated depth maps,

without checking the points’ validation, randomly picking up the seed points can easily

lead to the failure of the model fitting, which also increases the computational cost for

determining the optimal fitting plane.Moreover, by neglecting the neighbor relationships,

randomly selected seed points have high probability from different planes, which easily

cause the failure of finding the best fitting plane. Hence, in order to ensure that the grow-

ing process is established on reliable seed points, a sliding L× L square window moves in

raster-scan fashion by one pixel each time on the whole depth map, and at each position,

all the involved points will be checked. The patch, which is free from holes, is regarded as

one valid seed patch and denoted asψi with i being the seed generation index. The perfor-

mance differences caused by different seed patch sizes are discussed in the experimental

section.

In the 3D space, a plane can be represented by its normal vector n̂ and the distance

from the 3D space origin d. For an arbitrary point p = (x, y, z) on this plane, the Hessian

form of the plane can be written as n̂ · p+ d = 0 and the operation “·” stands for the dot-

product of two vectors. By applying the Linear Least Squares (LLS) plane fitting approach

to each valid seed patch, the best fitting plane si can be found to represent the seed

patch. The distance (or fitting error) between the best fitting plane and its point p can be

evaluated as:

e(p) =
∣

∣n̂i · p + di
∣

∣ (1)

Therefore, the root mean square fitting error of the seed patch points P with respect to

the corresponding seed patch plane si can be calculated by
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The root mean square fitting error indicates the planarity of the seed patch. Thus less

fitting error means higher planarity. These values later on are used to sort all the valid

seed patches.

Region growing process

This subsection explains the iterative growing process of a plane starting from a seed

patch. First of all, some notations that will be used throughout the article need to be intro-

duced. The index j is used as a superscript to indicate the iteration index of the growing

process. For example, a plane Si at j-th stage of the growing process will be represented

by S
j
i or S

j
i

(

f
j
i , δ

j
i

)

where f
j
i and δ

j
i are the estimated equation and root mean square fitting

error of the plane, respectively. Once the plane grows to its final stage, it will be repre-

sented hereinafter by Si or Si

(

f
ki
i , δ

ki
i

)

, where ki represents the index of the last growing

stage of this plane and f
ki
i is the final estimated plane equation.

Different from RANSAC-based methods [13, 15] whose seeds are selected randomly,

in the proposed growing stage, all the previously valid seed patches will be initially

arranged in ascending order of their fitting error in a growing seed list �1, thus

�1 = {∀ψn,ψm ∈ �1 : δn ≤ δm; n < m}. For the seed patches having the same fitting

error, the earlier generated one appears earlier in the seed list. The first seed patch appear-

ing in the list will be used to initiate the first plane. Once the first plane reaches its

maximum extent, it stops to grow and the seed list is updated to �2 by eliminating all the

seed patches that get englobed in the detected plane. This updating process will be car-

ried out at the end of the growing process of each plane to generate a new growing seed

list �i+1 = {∀ψm ∈ �i : ψm /∈ Si} where i is the detected plane index. This can ensure

that only the valid seed patch, which is non-incorporated in previously detected planes

and ranked as the first one in the new growing seed list, will be used in the subsequent

detection of other planes.

At the beginning of the growing process of plane Si, its initial representation equation

is merely defined by its seed patch. Thus, S0i
(

f 0i , δ
0
i

)

= sm, with sm being the best fit-

ting plane of the first seed patch in �i. Referring to Fig. 1 which shows an example of

the first two growing stages (i.e., j = 1 and j = 2) of the plane Si. At the first grow-

ing stage, all the 8-connected neighboring points N0
i [27] of seed patch are checked.

When no holes are found, meanwhile, no points belong to any previously detected plane,

N0
i = {p : p /∈ Sm,m < i}, the neighboring points are substituted into plane equation

Fig. 1 An example of the growing process of a plane. An example of the growing process of a plane; S
j
i is the

current plane and N
j
i is current neighboring points
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f 0i separately to get the corresponding fitting error by (1). If the fitting error is above a

threshold, T , the corresponding neighboring point is regarded as an outlier to this current

growing plane. Otherwise, this point is incorporated into this plane. After the first grow-

ing stage, the plane equation f 0i will be refined to f 1i using the LLS plane fitting approach

over the whole involved points and δ0i is updated to δ1i by (2). The similar process will be

repeated for the rest growing stages and it could be summarized by:

S
j+1
i \S

j
i =

{

∀ p ∈ N
j
i : e(p) ≤ T(d, j)

}

(3)

where T(d, j) is the threshold which is a function of depth value d and the number of

growth j.

Since the key to region growing-based plane detection is to accurately distinguish the

inliers and outliers of the current growing plane, the judgement which is conducted by the

distance thresholdT plays an important role. Formost of the region growing-basedmeth-

ods, fixed threshold is used in growing process. However, this easily causes over-growing

(the threshold is set large) or under-growing (the threshold is set small). Therefore, several

works begin to take the depth camera noise model into the design of threshold function.

As suggested in [28] that for consumer depth camera the noise in range sensors usually

increases quadratically with the measured distance, Holz et al. [21], Nguyen et al. [29]

and Smisek et al. [30] adopted a simple quadratic polynomial as a function of distance to

determine the threshold.

T(d) = αd2 + βd + γ (4)

where α, β and γ are three constants but with different values in the three works due to

different assumptions. Holzer et al. [31] andDeng et al.[10] in their works provided a noise

model solely based on the quantization effect induced by the measurement principle of

depth sensors. Therefore, the corresponding threshold is only proportional to the square

of depth.

T(d) = κd2 (5)

where κ is a constant. By conducting a set of experiments to evaluate the influence of

the threshold function for plane detection, it is found that although the final detection

performance does not considerably deviate for the different threshold functions, the best

results can be achieved with a combination of the quadratic polynomial models and the

depth square models [22]:

T(d) =

{

αd2 + βd + γ ; d ≤ d0

κd2 ; d > d0
(6)

where d0 is the depth value that makes αd2 + βd + γ = κd2.

Although these three kinds of threshold functions are elaborately designed based on

the camera noise model, they all lead to a monotonously increasing threshold with depth

values. This, however, does not fully align with the reality. Firstly, referring to the mea-

surement of ToF depth camera, the measured depth depends on both object distance and

object reflectivity. Hence, for some planes, although they are close to the camera due to



Jin et al. Big Data Analytics            (2018) 3:10 Page 7 of 18

their surfacematerials, theymay also contain large noise. Therefore, a small threshold eas-

ily causes under-growing in this case. Secondly, the planes far from the camera but with

small size are easily over-growing due to the large threshold. Thirdly, if the growing plane

is perpendicular to the camera plane, the threshold becomes a fixed number. However,

with more and more points get involved in the growing plane, noise is also accumulated.

In this case, the perpendicular plane trends to be under-growing.

In order to overcome above mentioned weaknesses, we propose a threshold function

that takes both the noise model and the plane size into consideration. Moreover, inspired

by (6), the proposed threshold function is in a combination format.

T(d, j) =

{

[

τ
(

1 − e−j/λ
)]2

; j ≤ H×W
κ2

αd2 ×
[

τ
(

1 − e−j/λ
)]2

; j > H×W
κ2

(7)

where τ is the maximum allowed “roughness” of the plane, λ decides the changing speed

of the threshold, H and W represent the size of the depth map and α and κ are two

constants. Hence, for each plane,T(d, j) is initialized by j = 1 and themaximum threshold

value is either determined by j if j ≤ H×W
κ2

or by the distance of points being checked. The

parameter τ can be tuned to suit different object reflectivities and to make the detection

of planes more robust to depth map noise. Meanwhile, the parameter λ allows to set the

increasing speed of the threshold at initial growing stages for different situations.

This kind of elaborate design can well tackle the mentioned problems met by noise-

model-based thresholds in literature. Since the number of growth can indirectly indicate

the plane size, within a certain range the threshold T(d, j) is dynamically updated only

based on the plane size. Specifically, when the growing plane is in its small or medium

size, the threshold negative exponentially increases with the growing number. It can lead

to two benefits. Firstly, by considering the plane size, even if for the small and far planes,

it could avoid the over-growing problem caused by a large threshold. Secondly, by consid-

ering the noise accumulation in growing process, even if the growing plane is parallel to

the camera plane, the threshold is not a fixed number. With continuously growing, both

plane size and the point distance have joint effects on the threshold. However, the impact

of plane size decreases while the growth number increases. Finally, the point distance will

be predominant to determine the threshold. Hence, for large planes, the threshold follows

the camera noise model that further planes suffer from more noise than the closer ones

and consequently, the corresponding threshold should be larger. In addition, the prob-

lems caused by planes with rough surfaces can be well handled by setting the maximum

allowed roughness τ to a relatively large value.

By adopting the proposed threshold function, the growing process for the plane Si will

be iteratively repeated until one of the following termination conditions is met: (a) the

neighboring set N
j
i is empty, (b) no point in N

j
i fits well into the current growing plane.

These two conditions indicate that the i-th plane grows to its maximum extent. As pre-

viously described at the end of the growing process of the i-th plane, a new growing seed

list, �i+1, will be generated and a new round of growing process will be initiated by the

first-ranked seed patch in the seed list. This plane detection process is repeated until the

updated seed list is empty.
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Computational complexity analysis

In order to clearly analyze the computational complexity of the proposed DIPD algorithm,

we decompose the whole algorithm into three main processes which are seed patches

generation, region growing and refinement. For a ToF depth camera generated depth

map, its size is W × H and contains n = W × H points. If the size of the sliding win-

dow that used to generate seed patch is L × L and each time the sliding window only

moves one pixel, the number of generated seed patch is m = (W − L + 1)(H − L + 1).

Since the optimal plane fitting for each seed patch needs constant time, the computa-

tional complexity for seed patches generation in total is O(m). However, this complexity

could be reduced by enlarging the sliding window step size, so that the seed patches are

generated right next to each other. In this case, the number of seed patches can drop

to m = W×H
L2

. Due to the adoption of point-based growing approach, the complexity of

region growing processes is O(n log n). The complexity O(m) compared with O(n log n)

can be neglected, and consequently, the overall computational complexity of the pro-

posed DIPD algorithm is O(n log n). Therefore, the proposed approach can increase

the accuracy and robustness of plane detection without increasing the computational

complexity.

Results

The proposed plane detection approach is validated through extensive experiments

on a number of depth maps. To this end, we perform experiments on three types

of depth which are generated by ToF depth camera SwissRanger SR4000, a struc-

tured light depth camera and computer graphics, respectively. All the types of depth

have the ground truth for objective assessment. Although in this work the proposed

plane detection algorithm is targeted at ToF camera generated depths which have

higher accuracy than the structured light camera generated ones, by testing on other

types of depths, the robustness of the proposed algorithm can be validated. In this

section, we first briefly introduce each of the adopted depth datasets. Then we evalu-

ate the proposed approach on these depths and present both subjective and objective

experimental results along with a comparison with the state-of-the-art approaches.

Finally, the runtime analysis with respect to well acknowledged RANSCA approach is

discussed.

Testing images

The ToF depth camera generated depth images present typical indoor scenes, such as a

room with table and chairs, cabinet and stairs. They are in a resolution 176 × 144 and

without post-processing. Thus, for some captured scenes, geometric distortion is present.

The provided ground truth is obtained by manually labeling in pixel level. The structured

light camera generated depth maps are from SegComp ABW dataset [32] and all of the 30

images are in a resolution of 512 × 512 pixels. The dataset provides ground truth plane

segmentation in conjunction with an evaluation tool. The computer generated depth is

shown in Fig. 2 which is a 3D saw-tooth structure with each “tooth” having the same

width but different heights, so that their corresponding angle of each tooth is different

(shown on its top in Fig. 3). The resolution is 176 × 144, and without any noise, the gen-

erated depth is ground truth. The parameters adopted in all datasets are the same that

L = 3, τ = 3, λ = 1, α = 0.009 and κ = 20.
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Fig. 2 The test CG figure. The 3D saw-tooth structure, each “tooth” has different height

Evaluation of the proposed DIPD approach

In this subsection, the proposed approach, two state-of-the-art growing-based

approaches ([23, 24]) and two RANSAC-based approaches ([10, 33]) are tested on five

indoor scenes shown in Fig. 4. The depth map and associated ground truth are shown in

the first and second column in this figure, respectively. The rest five images are the testing

results of CORG method [23], RPCA-based hybrid method [24], CC-RANSAC method

[10, 33] method and the proposed DIPD method, respectively. In ground truth images,

all edges are in white and “uncertain” regions are in black. Whereas, in result images,

the black areas or points represent undetected parts. From Fig. 4 we can observe that

these five indoor scenes have various levels of depth complexity. For example, Scene 1 (the

first row) has a table and wall with uniform textures. Being more complex than Scene 1,

Fig. 3 The test CG figure. The profile of the saw-tooth structure with the angle of each tooth is shown on its top
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a b c d e f g

Fig. 4 Detection comparison. Detection comparison of the proposed DPSD method and the state-of-the-art

methods. For each row from left to right is: a depth map of the indoor scene, b corresponding ground truth,

testing result of c CORG [23], d RPCA [24], e CC-RANSAC [33], f Deng et al. [10] and g the proposed method

(in the red bounding box)

Scene 2 has some books on the table and a different kind of chair. The aim of this kind

of arrangement is to assess the ability of the proposed DIPD method to distinguish dif-

ferent planes forming complicated objects. Then, Scene 3 is a more challenging scenario,

due to the presence of many small objects, transparent glass and complex combinations

of vertical and horizontal planes. Finally, Scene 4 and Scene 5 are the front and side view

of a stair-step structure. The stairs scene is known to be challenging for the RANSAC and

growing-based plane detection methods.

In the obtained results, detected planes are randomly represented in different colors.

It can be noticed that the proposed method can detect the majority of planes. Almost

all the detected planes have smooth edges. Some small objects on the cabinet table in

Fig. 4 Scene 3 can be distinguished. RPCA-based method also can extract the majority

of planes, but due to its sensitivity to the angle of planes, it misses to detect the planes

around edges and noisy areas (the black areas in the results). CC-RANSAC and CORG

methods can well extract large planes, e.g. the wall, but fail in detecting some small or

complex planes (e.g. Scene 3). CORGmethod has the trend to over-segment planes, while,

the CC-RANSAC method has the trend to over-grow planes (e.g. Scene 4). The over-

growing problem affecting the results of CC-RANSAC is caused by the intrinsical feature

of RANSAC technique. However, in the same situation, the proposed method can dis-

tinguish most of the stair planes and has better performance than these two benchmark

methods, except some distorted planes (the wall surface and lower two stairs) are over-

growing. Compared with the proposed method, RPCA-based method is more robust to

intrinsically geometric distortion in this case. It is obvious that the method [10] is also

good at detecting large scale planes, e.g., the ground and wall, however, it suffers from

the missing detection of small planes. Referring to Scene 4, [10] has detected the parallel

horizontal stairs as one plane which is similar to CC-RANSAC. Similar results are also
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Fig. 5 Two typical cases of over-growing. lateral-OG

obtained in Scene 5 that the parallel vertical stairs is detected as one plane. The threshold

updating mechanism in the proposed method allows refining the estimated equations of

the detected planes, this can correctly detect curved surfaces with limited curvature, for

example, the top-board side surface of the table in Scene 1 and Scene 2. However, for the

chairs’ bases in Scene 1 with large curvature, they will be still detected as the combination

of multiple planes rather than one curved surface.

Failure cases analysis: Although the proposed method can correctly detect most of the

planes in the scenes, there are still some cases, e.g., intersected planes may make it fail.

Refer to Fig. 4 Scene 5, due to the intersection between the horizontal stair planes and the

wall surface, the horizontal stair planes over-grow into the wall surface and cause the later

become under-growing. Since during the growing process one plane firstly reaches the

intersection line (the red line in Figs. 5 and 6), if the fitting errors of the neighboring points

of this intersection line are smaller than the current threshold, the current growing plane

will wrongly intrude into its intersecting plane. There are two kinds of over-growing: over-

growing along the lateral side of the intersection line (shown in Fig. 5) and over-growing

along the intersection line (shown in Fig. 6). In the case of Scene 5, the over-growing

is lateral over-growing. Another failure case is the under-growing of the wall surface in

Scene 4. This is caused by the geometric distortion of the depth map. Although, the pro-

posed plane detection algorithm can correctly detect the planes with limited curvature,

due to the geometric distortion the wall surface close to the lens part suffers from a large

curvature, which causes the failure of the proposed algorithm. Hence, these failure cases

limit the accuracy and robustness of the proposed algorithm. Further post-processing is

required to overcome the over-growing and under-growing problem.

The objective assessment of the proposedmethod is shown in Table 1 using the Receiver

Operating Characteristic (ROC) of labeled planes in ground truth. In this table, detection

sensitivity can be expressed as sensitivity = TP/(TP + FN); specificity can be expressed

as specificity = TN/(TN + FP); Correct Detection Ratio (CDR) counts for in each scene

how many labeled planes are correctly detected, and one plane that has over 80% over-

lap with the ground truth is regarded as a correctly detected plane. “TP” (True Positive)

Fig. 6 Two typical cases of over-growing. axial-OG
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Table 1 The ROC results on ToF camera generated depth maps (all results are in percentage)

Methods CORG [23] RPCA[24] CC-RANSAC[33] Deng et al. [10] Ours

Scene1 Sensitivity 51.62 66.72 71.40 23.57 95.21

Specificity 99.95 99.89 99.85 22.64 99.80

CDR 25.00 37.50 62.50 25.00 100.00

Scene2 Sensitivity 45.10 61.86 68.52 38.35 95.37

Specificity 99.78 99.96 99.85 36.01 99.55

CDR 20.00 20.00 40.00 40.00 100.00

Scene3 Sensitivity 35.64 55.10 43.88 38.84 91.31

Specificity 99.99 84.79 99.82 42.74 99.32

CDR 0.00 14.29 28.57 42.86 71.43

Scene4 Sensitivity 69.52 80.08 73.35 14.76 93.99

Specificity 99.76 99.98 99.25 16.26 99.53

CDR 50.00 83.33 66.67 16.67 83.33

Scene5 Sensitivity 44.64 57.15 35.63 9.92 66.92

Specificity 89.92 79.97 89.26 9.96 87.92

CDR 0.00 20.00 0.00 10.00 50.00

Average Sensitivity 49.30 64.18 58.56 25.09 88.56

Specificity 97.88 92.92 97.61 25.52 97.22

CDR 19.00 35.02 39.55 26.91 80.95

The best results are marked in bold

counts the points that have been successfully detected as inliers of the plane and “TN”

(True Negative) counts the non-belonging points that have been successfully detected as

outliers of the plane. Whereas, “FN” (False Negative) and “FP” (False Positive) counts the

points which were wrongly classified as not belonging and belonging to the plane, respec-

tively. The average values of detection sensitivity, specificity and CDR are also reported in

Table 1. From Table 1, the proposed method always has the highest sensitivity and CDR

than the benchmark methods. However, in terms of specificity, the proposed method is

slightly weaker than PRCA and CORG methods. This means our method has a slight

trend of over-growing, nevertheless, the benchmark methods have a clear trend of either

under-growing or over-growing. Since the missing detection of areas has huge negative

impacts on both the sensitivity and specificity values, the undetected areas and points

bring down these values of RPCA and [11] methods. While, the under-growing prob-

lem and over-growing problem bring down the sensitivity value of CORG method and

the specificity value of CC-RANSAC method, respectively. For the details of objective

assessment of each plane, please refer to the project website.

Table 2 shows the results of our approach on the SegComp ABW test images. Since our

approach employed the noise model in ToF depth camera, it is not specifically designed

for range images in ABW dataset. Furthermore, these range images contain system-

atic noise in the form of depth discretization effects, which are difficult to handle for

small segments composed of only a few points [34]. However, compared with the state-

of-the-art range image segmentation performance, our approach only using the depth

information still can make the plane detection quality, as well as plane fit accuracy, lay in

the upper range of results on this dataset. Note that, in [32] the USF algorithm is regarded

as a common approach to region segmentation by iteratively growing from seed regions,

the WSU algorithm uses a powerful clustering algorithm to drive its segmentation, and
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Table 2 Comparison with other plane segmentation approaches on the SegComp ABW dataset

Approach Regions
in Ground
truth

Correctly
detected

CDR (%) Over-
segmented

Under-
segmented

Missed
(not
detected)

Noise (not
detected)

SegComp ABW data set (30 test images) by Hoover et al. [32]

USF[35] 15.2 12.7 83.5 0.2 0.1 2.1 1.2

WSU[35] 15.2 9.7 63.8 0.5 0.2 4.5 2.2

UB[35] 15.2 12.8 84.2 0.5 0.1 1.7 2.1

UE[35] 15.2 13.4 88.1 0.4 0.2 1.1 0.8

OU[35] 15.2 9.8 64.4 0.2 0.4 4.4 3.2

PPU [35] 15.2 6.8 44.7 0.1 2.1 3.4 2.0

UA[35] 15.2 4.9 32.2 0.3 2.2 3.6 3.2

UFPR[35] 15.2 13.0 85.5 0.5 0.1 1.6 1.4

Trevor
et al. [37]

15.2 9.7 63.8 0.8 0.4 3.9 2.8

Georgiev
et al. [36]

15.2 6.9 45.4 0.6 1.9 3.6 2.1

Holz et al.
[38]

15.2 8.4 55.1 1.2 0.5 4.2 2.3

Oehler
et al. [34]

15.2 11.1 73.0 0.2 0.7 2.2 0.8

Ours 15.2 11.3 74.6 0.4 0.4 1.7 1.5

the UB algorithm uses a novel approach that exploits the scan line structure of the image.

The parameters in these three methods are obtained by training other range images in

ABW databset, hence, they can obtain good segmentation results. In UFPR [35], there are

7 parameters needs to determine for each dataset. One problem faced by this approach is

that the locally estimated normal vectors are very imprecise when calculated near object

vertices or over small, narrow regions. Hence, it easily leads to miss detection and under-

segmentation in these regions. The approach of Georgiev et al. [36] considerably has the

trend to over-grow planes meeting at obtuse angles, while, the approach of Trevor et al.

[37] is weak at detecting smaller planar patches. The approach of Holz et al. [38] suffers

from inconsistent normal orientations in this dataset and tends to over-segment the range

images. Since only point normal vector at different resolution was used in clustering plane

elements in [34], it suffers in the noisy data.

To validate the detection accuracy and robustness of the proposed DIPD method, we

test the method on a computer generated depth map (Fig. 2). By ordering the 18 planes

in Figs. 2 and 3 from left to right, the corresponding outcomes of measured angle, sen-

sitivity and specificity for Plane 1, 5, 7, 13 and 17 are listed in Table 3. In the table, “�”

indicates the angle difference between measure tooth angle and ground truth value, “CG”

represents the original computer generated depth map. The value following “SNR” repre-

sents the noise level and larger number represents less noise contained. The ground truth

angles for Plane 1, 5, 7, 13, 17 are 10◦, 30◦, 50◦, 70◦ and 90◦, respectively. The equation

arccos
(

n̂
ki
i · n̂

ku
u

)

is used to measure the angle of a tooth where n̂
ki
i and n̂

ku
u are the esti-

mated norms of the two planes defining that tooth. From this table, we could notice that,

in terms of angle measurement, the proposed method has better outcomes and is more

robust to noise on the tooth planes with a large slope (Plane 1 and Plane 5) than the ones

with a small slope (Plane 13 and Plane 17). Besides some missing detections of planes, the

detection sensitivity decreases with the increasing noise which has the opposite trend of
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Table 3 Plane detection performance against different levels of Gaussian noise in terms of

“Measured angle”(in degree), “Sensitivity”(in percentage) and “Specificity”(in percentage)

Measured angle � Sensitivity Specificity

Plane 1 CG 9.95 -0.05 100.00 98.53

SNR_40 9.95 -0.05 100.00 98.53

SNR_30 9.96 -0.04 100.00 98.53

SNR_20 11.37 1.37 87.00 100.00

Plane 5 CG 29.65 -0.35 100.00 97.79

SNR_40 29.65 -0.35 100.00 97.79

SNR_30 30.00 0.00 100.00 97.89

SNR_20 35.45 5.45 100.00 97.55

Plane 9 CG 54.88 4.88 100.00 97.79

SNR_40 54.89 4.89 100.00 97.80

SNR_30 48.61 -1.39 100.00 97.94

SNR_20 69.10 19.10 38.21 100.00

Plane 13 CG 86.23 16.23 62.50 97.79

SNR_40 86.09 16.09 62.57 97.79

SNR_30 80.06 10.06 34.94 100.00

SNR_20 — — — —

Plane 17 CG 109.24 19.24 100.00 95.59

SNR_40 109.35 19.35 100.00 95.57

SNR_30 — — — —

SNR_20 — — — —

specificity. For specificity, lower the value is, severer the over-growing problem is. Hence,

the added noise stops the plane to over-grow to some extent and increase the detection

accuracy. Compared with sensitivity, the specificity maintains good performance regard-

less of the noise, whichmeans the proposedmethod is better at distinguishing the outliers

than the inliers.

Runtime analysis

In order to allow other plane detection or segmentationmethods to directly compare with

our method, the runtime comparison is carried out between the proposed method and

the well acknowledged RANSAC method. Specifically, the default settings of RANSAC

are adopted, i.e., the minimum iteration times for detecting each plane is 0, the maximum

iteration times is set to infinite, the threshold is 11.35, and the maximum plane number is

40. In this case, RANSAC will stop when the first comparative optimal plane for most of

the non-involved points is found, and then the next plane searching process starts. There-

fore, the default RANSAC is in its fastest mode. In the proposed DIPD approach, there is a

trade-off between the detection accuracy and efficiency. To balance them, a large seed size

is adopted (i.e., 11× 11) with no seed patch overlap, while a minimal performance degra-

dation of the proposed algorithm is guaranteed. All the rest parameters for the proposed

method are kept unchanged, and both algorithms are implemented with Matlab on a PC

with Intel i7 CPU, 3.30GHz. Corresponding results are shown in Table 4 (time unit: sec-

ond). The corresponding results are reported in Table 4. From Table 4, we notice that the

proposed algorithm is more time consuming compared to the fastest RANSAC, however,

our algorithm achieves obvious higher performance in terms of sensitivity, specificity and

CDR, which are around 1.9, 1.5 and 3 times higher than that of RANSAC. Furthermore,
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Table 4 Runtime (in seconds) comparison between the proposed algorithm and RANSAC

Methods Total_Time Sensitivity Specificity CDR

Scene1 RANSAC 5.3 49.41 71.66 25.00

Proposed 18.4 95.00 99.78 100.00

Scene2 RANSAC 4.3 57.04 73.60 60.00

Proposed 14.7 95.57 99.42 100.00

Scene3 RANSAC 9.9 36.62 54.75 14.29

Proposed 16.7 59.62 70.51 57.14

Scene4 RANSAC 2.6 29.97 59.94 0.00

Proposed 26.5 78.95 98.71 66.67

Scene5 RANSAC 2.3 27.46 36.17 20.00

Proposed 16.8 49.79 78.00 40.00

Average RANSAC 4.9 40.10 59.22 23.86

Proposed 18.6 75.78 89.28 72.76

with respect to sensitivity and CDR, the performance of our algorithm is still better than

that of CORG, RPCA and CC-RANSAC even a large seed size is adopted. It is important

to note that when design the whole DIPD algorithm, detection accuracy and the code flex-

ibility and re-usability are predominant with respect to the speed, hence, with the gain in

performance of the proposed algorithm, it does not sacrifice much more time.

Discussion

In this section, we discuss the effects of different components in the proposed DIPD on

the final performance. Table 5 summarizes the results achieved on the consumer depth

camera generated depth dataset when different components are replaced or removed

from the final framework.

In Table 5, the effects of different seed sizes are tested first. By comparing the detection

results obtained from different seed patch sizes, it can be noticed that employing smaller

seed patch initially can achieve more accurate detection result and this will be more supe-

rior for complex scenes (e.g. Scene3). In the same scene, it easily causes over-growing by

adopting large seed size. Due to the superior performance of using small seed patch size,

Table 5 Component analysis on ToF depth camera dataset

Variants of our approach Sensitivity Specificity CDR

Seed size 3 × 3 88.56 97.22 80.95

4 × 4 83.11 94.38 73.60

5 × 5 84.64 96.55 75.60

Seed order Highest planarity 83.11 94.38 73.60

Lowest planarity 65.41 80.70 46.07

Random1 77.20 90.74 68.55

Random2 77.24 97.11 64.50

Random3 81.85 99.45 63.02

Threshold [21] 80.51 94.49 67.10

[29] 76.49 92.22 67.10

[31] 67.22 80.79 57.26

[30] 83.68 99.78 71.45

Proposed threshold 83.11 94.38 73.60

The best results are marked in bold
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in our experiment, all the datasets adopt 3 × 3 seed patch. In terms of different grow-

ing seed orders, the plane grows from the seed with the highest planarity gives the best

performance than the other two growing orders which is as expected. Since the growth

starts from the seed with highest planarity, through each time the plane fitness checking,

it has the trend to maintain this planarity during the following growing. On the contrary,

if the growth starts from the seed with the lowest planarity, which means it grows from

an unperfect fitting plane. Therefore, the fitness error accumulates after each iteration. It

is easy to result in under-growing and the growing process becomes sensitive to the depth

noise. For each growing starts from randomly selected seed, its performance, as expected,

is between the two situations mentioned before. Moreover, since the growing seed patch

is randomly selected, it can not guarantee the stableness of plane detection performance.

Compared with different threshold functions, we find that the threshold in [31] increases

the fastest along with depth values which makes it easily face over-growing problem,

so that its detection performance is the worst. Although the threshold function in [30]

has highest values in sensitivity and specificity, the proposed threshold function can lead

to the highest CDR which means the proposed method can have more planes correctly

detected.

Conclusions

In this paper, we proposed a dynamic seed growing mechanism to detect indoor planes

using depth maps. The growing starts from the most planar seed patch and grows to its

largest extent. Then, next unincorporated most planar seed patch is used, until all the

planes are detected. A dynamic threshold function which takes both the plane attributes

and noise model of depth cameras into account is adopted in the growing process. The

performance of the proposed method has been assessed by comparing with other state-

of-the-art methods on the typical indoor scenes and public dataset. The reported results

indicate the proposed Depth Image-based Plane Detection (DIPD) method can detect

planes with high sensitivity and are robust with respect to various indoor scenes, the

chosen parameters and depth noise. As for future work, we aim to exploit the proposed

approach for more applications, e.g., depth map up-sampling and depth map coding.
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