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Abstract

A depth-image-based rendering (DIBR) method with spatial and temporal texture synthesis is presented in this article.

Theoretically, the DIBR algorithm can be used to generate arbitrary virtual views of the same scene in a

three-dimensional television system. But the disoccluded area, which is occluded in the original views and becomes

visible in the virtual views, makes it very difficult to obtain high image quality in the extrapolated views. The proposed

view synthesis method combines the temporally stationary scene information extracted from the input video and

spatial texture in the current frame to fill the disoccluded areas in the virtual views. Firstly, the current texture image

and a stationary scene image, which is extracted from the input video, are warped to the same virtual perspective

position by the DIBR method. Then, the two virtual images are merged together to reduce the hole regions and

maintain the temporal consistency of these areas. Finally, an oriented exemplar-based inpainting method is utilized to

eliminate the remaining holes. Experimental results are shown to demonstrate the performance and advantage of the

proposed method compared with other view synthesis methods.

Keywords: Virtual view synthesis, Three-dimensional television (3DTV), Depth-Image-Based Rendering (DIBR),

Stationary scene extraction, Inpainting

1 Introduction
Year 2010 is considered to be the year of breakthrough for

3D video and 3D industry [1]. Numerous 3D films are pro-

duced and released to the market. Stereo movies provide

people stereo perceptions by showing two slightly differ-

ent images of the same scene. Consumers can have immer-

sive feelings by watching them in theaters with stereo

eyeglasses. Disks and players of 3D Blu-ray standard

have entered the home entertainment. The prosperity of

3D industry gives an important opportunity for three-

dimensional television (3DTV) system, which is believed

to be the next generation of television broadcasting after

high-definition television. The concept of 3DTV system is

defined by European project ATTEST [2] and developed

by Morvan et al. [3] and Kubota et al. [4]. To improve the

depth perception of users, autostereoscopic display tech-

nology without any need of additional glasses is preferred

in the display part of 3DTV. Autostereoscopic displays can
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provide comfortable stereo parallax and smooth motion

disparity by displayingmultiview images of the same scene

simultaneously. A simple approach is to capture, com-

press, and transmit multiple views directly. The current

multiview video coding standard [5,6] with high compres-

sion efficiency, which exploits the spatial correlations of

the neighboring views, is used to encode and decode the

multiple video streams, generally more than eight views.

But the transmission bandwidth cost remains a challeng-

ing and unresolved problem. Meanwhile, it is commonly

suggested that the future 3DTV systems should have com-

pletely decoupled capture and display operations [7]. A

proper abstract intermediate representation of the cap-

tured data, video plus depth format, is proposed by Fehn

[8] to achieve such a decoupled operation with an accept-

able increment of bandwidth. The depth-image-based

rendering (DIBR) [2] algorithm will be used to render

multiple perspective views from the video plus depth data

according to the requirement of autostereoscopic displays.

Thus, the DIBRmethod has attracted much attention, and

become a key technology of the 3DTV system [1].

The video plus depth data format consists of one texture

color image and its corresponding perpixel dense depth

© 2013 Xi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



Xi et al. EURASIP Journal on Image and Video Processing 2013, 2013:9 Page 2 of 18

http://jivp.eurasipjournals.com/content/2013/1/9

map. Theoretically, being provided with the intrinsic and

extrinsic parameters of the virtual views, the DIBR algo-

rithm can be used to synthesize any virtual perspective

views from the video plus depth data. But there exists

three problems [2], which are visibility, resampling, and

disocclusion. Multiple pixels of the reference viewmay fall

into the same position in the virtual image plane, which

will cause the visibility problem. A Z-buffer algorithm [9]

can solve this problem by recording the Z values and

choosing the nearest pixel to the virtual camera plane. The

phenomenon of an integer pixel position in the reference

view image being projected to a subpixel position in the

virtual view is called resampling problem, which can be

coped with upsampling procedure or backwards warping

with interpolation. The remaining disocclusion problem

is the fact that some parts of the captured scene, which

are occluded in the original views, become visible in the

virtual views. It is caused by the lack of scene informa-

tion occluded by the foreground objects in the original

view position. As the distance from virtual view to refer-

ence view increases, the disoccluded area becomes larger,

as shown in Figure 1.

The disocclusion problem is considered to be the most

significant and difficult one of the DIBR algorithm. It is

well handled in the interpolation operation [10-13], but

will become severe in the extrapolation situation, where

the missing image information needs to be reconstructed

by appropriate algorithms. Lots of algorithms have been

developed to solve this problem, which can be divided into

three categories.

The first is layered-depth-image (LDI) [14,15], which

can achieve excellent rendering results by providing suf-

ficient information of the scene. LDI data are composed

of a number of color layers and their corresponding depth

layers, which contain not only the texture and depth infor-

mation of visible scene from the front view, but also that

of the occluded regions. It is very simple to obtain high-

quality multiview images from LDI data. However, the

procedure of creating LDI is computationally complex

and quite time-consuming. The transmission bandwidth

of LDI data also increases drastically with the num-

ber of layers. A simplified data format of LDI, which is

called the “Declipse” format [16], is proposed by Philips

Corporation. The “Declipse” format data consist of fore-

ground layer and background layer. It presents the advan-

tage to improve the rendering quality with a quite small

overhead in terms of complexity and bitrate.

The second approach is called depth image preprocess-

ing. To reduce the disoccluded areas in virtual views, low

pass filter is applied to smooth the depth image. Fehn

[2] uses a suitable Gaussian filter preprocessing the depth

image to eliminate the disocclusions with the cost of

slightly geometric distortions. An asymmetric smoothing

method is proposed by Zhang and Tam [17]. By enlarg-

ing the standard deviation and window size of Gaussian

filter in vertical direction, the vertical structure distortion

is reduced. The filtering effect is to smooth the sharp dis-

continuities in the depth image, thus reducing the hole

areas near object boundaries. A consequence of these

algorithms is that the whole depth map has been modi-

fied, which will severely blur the distance between scene

objects in different depth layers. To cope with depth loss,

different kinds of oriented filters [18-21] are designed with

the same principle, i.e., smoothing the sharp edge in the

depth image locally and keeping the depth of the other

regions unchanged. The oriented filters can improve the

image quality of the virtual views, but still induce geomet-

ric distortion. Although the depth image preprocessing

methods can be used to handle the disoccluded regions

in the virtual views of small baseline, obvious geometric

distortions will occur when the baseline is getting larger.

The third approach to filling the disoccluded areas is

image completing techniques. This approach can be fur-

ther classified into statistical-based methods, partial dif-

ferential equations (PDE)-based methods, and exemplar-

based methods. Statistical-based methods [22-25] have

good performance in pure texture synthesis applications,

but fail to complete natural images with complex struc-

ture. PDE-based methods [26-29], which are also called

image inpainting methods, propagate linear structures

into the disoccluded areas smoothly via diffusion. The dif-

fusion process is simulated by the PDE of physical heat

flow. Inpainting methods are suitable for removing small

image artifacts, such as speckles, scratches, and over-

laid texts. When the disocclusion is getting larger, the

diffusion process will over-smooth the image and cause

Figure 1 DIBR results for frame 0 of the “Breakdancers” sequence. (d) Reference view. (a, b, c) Virtual views on the left side. (e, f, g) Virtual

views on the right side. White color (R = 255, G = 255, B = 255) is used to represent the hole pixels. The larger the distance between the virtual view

and reference view is, the bigger the disoccluded area becomes.
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visible blurring artifacts. Exemplar-basedmethods [30,31]

fill the hole regions by copying patches with the simi-

lar texture from the known neighborhood of the image.

Criminisi et al. [30] use the exemplar-based method to

remove objects from images. Komodakis and Tziritas [31]

propose an efficient belief propagation method to obtain

global optimization. Exemplar-based methods have been

used for the case of video completion in [32,33]. Multi-

ple frames are provided as the searching source of best

match patch by Cheng et al. [34] to achieve temporal

continuity. Exemplar-based methods have been the most

powerful techniques for dealing with large disoccluded

regions. Schmeing and Jiang [35] first obtain the back-

ground information with a computed background model.

But their approach cannot handle the uncovered areas

caused by static foreground objects. For each virtual view,

Ndjiki-Nya et al. [36] use a background sprite to update

the texture and depth information of disoccluded areas.

There are two major drawbacks of this method. One is the

valuable background information of disocclusions, which

cannot be reused during the generation of other virtual

views. The other is the memory cost increases with the

number of virtual views.

In this article, a new virtual view generation method

with spatial and temporal texture synthesis is proposed.

The structure information of the captured scene in the

temporal domain is taken into account by maintaining

an accumulated sprite of stationary scene. An oriented

exemplar-based inpainting algorithm is applied to restore

the rest disoccluded areas with background texture.

The remainder of this article is organized as follows.

In Section 2, a brief description of the algorithm frame-

work is given. The details of each processing modules

are demonstrated in Sections 3, 4, 5, and 6. Experimen-

tal results are compared with state-of-the-art methods in

Section 7. The conclusions and future works can be found

in Section 8.

2 System overview
The framework of proposed DIBR method with spatial

and temporal texture synthesis is shown in Figure 2.

The proposed method is divided into four main stages,

i.e., stationary scene extraction, backward DIBR, merging

operation, and oriented exemplar-based inpainting.

In the first stage, a sprite of stationary scene is main-

tained throughout the view synthesis process, which

stores the temporally accumulated structure and depth

information of stationary image part. The Structural SIM-

ilarity index (SSIM) [37] is utilized to distinguish the

stationary scene from the moving foreground objects by

combining the input depth images. For stationary scene,

the SSIM index between adjacent frames is large, so the

image part, which is stationary in both adjacent frames,

can be extracted by using the SSIM index values. But

View N View N+1

Stationary 
Scene 

Extraction

Backward 

DIBR
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Exemplar-Based 

Inpainting
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Figure 2 Flow diagram of the proposed virtual view synthesis

method. First, the sprite of stationary scene is initialized with the first

image frame of the input data. Next, each frame is compared with the

sprite of stationary scene to extract more structure information. Then

both the current frame and sprite of stationary scene are rendered to

the same virtual view and merged together. Finally, the remaining

disoccluded areas are filled by proposed oriented exemplar-based

inpainting.

there still are some stationary scenes, which cannot be

distinguished due to the occlusions of moving foreground

objects. By considering the spatial relationship provided

by the input depth maps, the texture information of these

occluded stationary scenes can also be obtained. In the

demonstration of our algorithm, the camera of input

view is supposed to be still for simplicity. If the camera

is moving, an additional camera tracking module needs

to be inserted before stationary scene extraction stage

to compensate the global motions, which is beyond the

discussion in this article.

In the second stage, current frame and stationary scene

sprite are warped to the same virtual perspective view by

a backward DIBR method to tackle the visibility problem

and resampling problem.

The proposed algorithm merges these two virtual

images obtained from the second stage together with the

third stage. The merging operation needs to be done very

carefully, because the foreground objects in virtual views

may still exist inner hole pixels. The merging operation
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can take use of most of the scene information provided by

the sprite of stationary scene.

After the merging operation, there still exists a few

blank regions without pixel values. In the final stage, ori-

ented exemplar-based inpainting approach is applied to

fill the remaining holes by searching best matching exem-

plar with background texture. Current virtual image is

used as the searching source of best matching patch. The

filling order of the inpainting method is steered from

background structures to foreground objects.

Note that the proposed method only uses the sequence

of color images and depth images from one captured view

as the input data. If image data of another view are also

provided, the switch in the framework can directly be

shifted from the extrapolation mode to the interpolation

mode without any changes of the framework.

3 Stationary scene extraction
The DIBR algorithm warps the original view to the vir-

tual view position by projecting current pixels to points

in real 3D space and re-projecting the 3D points to vir-

tual image plane. Large disocclusions will appear in the

discontinuous edges of depth map, which is the transi-

tion place between foreground and background in texture

image. The background image part occluded by fore-

ground objects should be visible in the virtual views. But

the occluded background information is lost during the

procedure of recording a 3D scene by a 2D image. To

solve this problem, the proposed stationary scene extrac-

tion module tries to recover the lost background structure

from video sequences. For a video captured by a fixed

camera or a short cut of video, the image consists of mov-

ing foreground objects and stationary background. The

occluded background information in current image frame

may appear in frames at other moments. If the informa-

tion can effectively be used, the filling effect of disoccluded

areas will be more convincing.

Stationary scene extraction algorithm keeps a global

sprite throughout the view generation process to accumu-

late structure and depth information of stationary scene in

temporal direction. The global sprite of stationary scene

is composed of two components: one is the texture image

of stationary scene, denoted as CSS, the other is the depth

map of stationary scene, denoted asMSS. CSS andMSS are,

respectively, initialized with the first frame of the texture

sequence and depth sequence of the original view. The

initialization step is expressed as follows:

{

CSS(p) = It(p)

MSS(p) = Dt(p)
, t = 0 (1)

where p : (i, j) corresponds to the pixel of column coordi-

nate i and row coordinate j. It and Dt represent the color

intensity frame and depth map frame of input original

view at time t, respectively. Dt is represented as an 8-bits

gray-scale image. The continuous depth range is quan-

tized to 255 discrete depth values. The nearest object to

the camera image sensor is assigned with 255 and the far-

thest object is assigned with 1. Pixels with depth value 0

are denoted as holes. The transform formula between dis-

crete depth level and actual distance in real scene can be

found in [12].

After the initialization, a temporary sprite of stationary

scene, denoted as TCSS and TMSS, is obtained between

each input image frame It and its previous frame It−1 to

extract the useful information of occluded background in

It . For stationary scene, the SSIM index [37] between adja-

cent frames is large, so the image part, which is stationary

in both adjacent frames, can be extracted by using the

SSIM index values. For each pixel p : (i, j), a structure sim-

ilarity index pSSIM defined in [37] is calculated between

the corresponding square areas�I
t and�I

t−1 of It and It−1,

which take p as the center pixel and L × L as the window

size. The SSIM pSSIM is calculated as follows

pSSIM =
(2μ�tμ�t−1 + K1)(2σ�t(t−1) + K2)

(μ2
�t

+ μ2
�t−1

+ K1)(σ
2
�t

+ σ 2
�t−1

+ K2)
(2)

where μ�t , μ�t−1 represent the luminance mean value of

�I
t and �I

t−1, respectively. σ�t and σ�t−1 represent the

luminance standard deviation of �I
t and �I

t−1. σ�t(t−1)

denotes the luminance correlation coefficient between �I
t

and �I
t−1. K1 and K2 are constants. The value of K1 and

K2 can be determined according to the research work in

[37]. The expressions of mean, standard deviation, and

correlation coefficient can also be found in [37].

Then an arbiter with threshold A is used to divide the

pixels of input image frame It into stationary part Is and

rest part Ir . The classifier can be expressed as follows:
{

p ∈ Is, pSSIM ≥ A

p ∈ Ir , pSSIM < A
, p : (i, j) ∈ It . (3)

Is contains the stationary pixels with high SSIM value,

which can directly be used to update the same pixel posi-

tions in TCSS. Ir are composed of three parts: the part

with changed luminance Plc, the relatively moving part

Prm, and the actually moving part Pam. Plc represents the

areas with similarly scene structure and different lumi-

nance which causes the decrease of SSIM value. Prm is the

region which is moving in It−1 and stationary in It . Pam
denotes the image part which is moving in It and station-

ary in It−1. As shown in Figure 3c, Is between Figure 3a,b

is marked as black, the actually moving part Pam is marked

as red, the region with changed luminance Plc is marked

as green, and the relatively moving area Prm is marked

as blue. The first two kinds Plc and Prm can be also

used to update TCSS directly, whereas the third kind Pam
needs to be excluded from It and the pixels in the same
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Figure 3 Stationary scene extraction result of the “Book arrival” sequence. (a) The 36th frame and (b) the 37th frame of “Book arrival”

sequence from the 8th camera position. (c) The segment map of (a). The stationary part Is between (a) and (b) is marked as black. The actually

moving part Pam is marked as red. The region with changed luminance Plc is marked as green. The relatively moving area Prm is marked as blue.

(d) The texture image of the temporary stationary scene sprite for the 37th frame. (e)Magnified subsection in (a). (f)Magnified subsection in (b).

(g)Magnified subsection in (d). (h) The texture image of global stationary scene sprite for (a). (i) The depth map of global stationary scene sprite

for (a).
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regions of It−1 will be used to update TCSS. As shown in

Figure 3e–g, the poster occluded by the men’s hands in

Figure 3e and the white board behind the man in Figure 3f

are all preserved in Figure 3g. Provided with the cor-

responding depth map Dt and Dt−1, the three different

image parts are defined as follows.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p ∈ Plc,
∣

∣

∣
μD
t − μD

t−1

∣

∣

∣
≤ T

p ∈ Prm, μD
t − μD

t−1 < −T

p ∈ Pam, μD
t − μD

t−1 > T

, p : (i, j) ∈ Ir (4)

where μD
t and μD

t−1, respectively, represent the average

depth value of square areas in Dt and Dt−1. The square

neighborhoods have the same window size L × L with

SSIM computation in Equation (2) and take the coor-

dinates of pixel p as center position. T is a constant

threshold, which defines the acceptable range of depth

fluctuation. |·| is the absolute function.

Then the information of stationary scene between

two adjacent frames can be extracted by the following

equation:

TCSS(p) =

{

It(p), p : (i, j) ∈ Is ∪ Plc ∪ Prm

It−1(p), p : (i, j) ∈ Pam

TMSS(p) =

{

Dt(p), p : (i, j) ∈ Is ∪ Plc ∪ Prm

Dt−1(p), p : (i, j) ∈ Pam

(5)

Finally, the temporary sprite of stationary scene (TCSS

and TMSS) is used to update the global sprite (CSS and

MSS). The update operation is described as follows.

Css(p) =

{

TCSS(p),μ
p
TM − μ

p
M ≤ T

CSS(p), otherwise
p : (i, j) ∈ CSS

Mss(p) =

{

TMSS(p),μ
p
TM − μ

p
M ≤ T

MSS(p), otherwise
p : (i, j) ∈ MSS

(6)

where μ
p
TM and μ

p
M, respectively, represent the average

depth value of square areas in TMSS andMSS. The square

neighborhoods have the same window size L × L with

SSIM computation and take the coordinates of pixel p as

center position. T is the same constant threshold defined

in Equation (4). Figure 3d shows TCSS of Figure 3b.

Figure 3h,i are CSS and MSS of Figure 3b, respectively.

Almost all the texture and depth information of stationary

scene are restored in Figure 3h,i.

So far, the appeared background information in past

frames is stored in CSS and MSS, which can be used

to partly solve the disocclusion problem of virtual view

synthesis algorithm.

4 Backward DIBR
The backward DIBR method, which shares the same idea

with the inverse warping method in [13], can efficiently

eliminate the small cracks in virtual view caused by resam-

pling problem in traditional DIBR process [2]. In general,

the backward DIBRmethod can be divided into two steps:

warping the depth map of the reference view to the vir-

tual view position and generating the texture image of the

virtual view.

In the backward DIBR method, Dt , is warped to vir-

tual perspective position. A two-pixel-wide region around

background–foreground transitions is marked as unreli-

able pixels. During the rendering process of depth map,

the unreliable pixels will be skipped, because their depth

values are inaccurate. There are four registers in each pixel

q : (u, v) of virtual view, which are used to store the

depth and distance of four nearest pixels projected from

the reference image. The four registers of pixel q only store

rendered pixels from reference image whose distance to q

is less than one pixel either in horizontal or vertical direc-

tion. VDt , the depth map of virtual view, is calculated as

follows

VDt(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N(q)
∑

k=1

λkDk ,N(q) > 0 and N(q) ≤ 4

0, N(q) = 0

(7)

where N(q) denotes the numbers of pixels warped to

q, which satisfy the condition mentioned above. If N(q)

is larger than 4, we sort the warped pixels by its depth

value in large to small order and store the first four pix-

els with larger depth. Dk is the depth value of stored pixel.

N(q) = 0 means there is no pixel that is projected to

pixel q. λk represents the normalized weight factor with

the combination of distance and depth, which is defined as

λk =
ρkωk

∑N(q)
m=1 ρmωm

,

N(q)
∑

k=1

λk = 1 (8)

where the weight factor of distance ωk is expressed as

Equation (9). (Uk ,Vk) is the projected position of warped

pixel in virtual image plane.

ωk =
1

√

(Uk − u)2 + (Vk − v)2
(9)

The weight factor of depth ρk is expressed as

ρk =

{

1, Dk ≥ μND

0, Dk < μND

(10)

where μND is the average depth value of all the stored

warped pixels in pixel q.

The non-hole pixel (u, v) in VDt is reprojected to posi-

tion (Xuv,Yuv) in image plane of original view to get the
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texture image of virtual view by interpolation operation.

The texture image of virtual view VIt is calculated by

VIt(q) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

4
∑

n=1

θnIn

4
∑

n=1

θn

, VDt(q) > 0

hole, VDt(q) = 0

(11)

where ‘hole’ flag means there is no warped pixel from the

reference image. We set the hole pixels with a white color

(R = 255, G = 255, B = 255). In represents the color value

of pixel (xn, yn) whose distance to (Xuv,Yuv) is less than

one pixel either in horizontal or vertical direction. θn is the

weight factor of distance, which is expressed as

θn =
1

√

(Xuv − xn)
2 + (Yuv − yn)2

. (12)

The virtual depth map VMt projected from MSS and

the virtual texture image VCt projected from CSS can

be obtained by the same backward DIBR method. Two

results of our backward DIBR algorithm are given in

Figure 4e,f.

5 Merging operation
To efficiently use the structure information in CSS, the two

virtual texture images (VIt and VCt) need to be merged

together. The merged virtual image and its depth map are

denoted as MIt and MDt , respectively. The virtual view

image VIt is dominated in the merging process. Avail-

able background information in VCt is used to fill the

blank areas in VIt . There may be holes in both foreground

and background due to the inaccuracy of depth map, as

shown in Figure 4e. We do the merging operation care-

fully to avoid filling holes in foreground with background

structures.

First, an estimated depth value D
q
E is obtained for each

hole pixel q : (u, v) in VIt . As mentioned in Section 3,

the hole regions of virtual view are lacking of background

information. When q locates between background and

foreground, we choose the small depth value of back-

ground scene as estimation and the average depth other-

wise. The estimation is defined as

D
q
E =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

μ
qL
D + μ

qR
D

2
,
∣

∣μ
qL
D − μ

qR
D

∣

∣ ≤ T

μ
qR
D , μ

qL
D − μ

qR
D > T

μ
qL
D , μ

qL
D − μ

qR
D < −T

; q is hole

(13)

where qL and qR represent the first left and first right non-

hole pixel in horizontal column, respectively. μ
qL
D and μ

qR
D

represent the average depth of the K × K windows which

take qL and qR as the center pixels in VDt . T is the same

constant defined in Equation (4).

Then the merging operation is executed as follows.

MIt(q) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

VIt(q), VIt(q)is non-hole

VCt(q), VIt(q) is hole and VCt(q) is non-

hole and
∣

∣VMt(q) − D
q
E

∣

∣ ≤ F

hole, otherwise

(14)

where non-hole flagmeans there exists a meaningful value

in this pixel position. The second condition in Equation

(14) defines the situation, i.e., the pixel q is hole in VIt ,

but meaningful pixel with available background texture in

VCt . This condition ensures that the holes in foreground

objects will not be filled with the accumulated background

information in VCt . F represents the acceptable range

of depth fluctuation in merging operation. In Figure 4g,

the available texture of stationary background scene in

Figure 4f is merged with the virtual image (Figure 4e) ren-

dered from original view and the hole areas in foreground

objects are reserved. The corresponding depth value of

each non-hole pixel inmerged virtual viewMIt is stored in

MDt , and the depth value of each hole pixel is set to zero.

6 Oriented exemplar-based inpainting
The merging operation can solve the disocclusion prob-

lem partly, because the useful background information in

CSS and MSS is limited. There still exist hole areas in the

merged virtual viewMIt , which are divided into two kinds:

the foreground holes caused by inaccurate depth map and

the blank areas caused by occlusion in original view. The

image part with known pixels is defined by �, and the

remaining hole area is denoted as Ŵ. The border of hole

area Ŵ is defined as ∂Ŵ, as shown in Figure 5a.

To restore the missing information of the remain-

ing hole areas, we propose an oriented exemplar-based

inpainting algorithm based on the previous work of Cri-

minisi et al. [30]. They determine the filling order of hole

pixel h ∈ ∂Ŵ by assigning each hole pixel a priority P(h).

The hole pixel with the highest priority is first filled with

the best match patch in �. The priority is the product of

the confidence term C(h) and the data term D(h). The

confidence term enforces to fill hole with large support set

of known pixels first, while the data term ensures the con-

tinuous propagation of linear structure into hole regions.

Noticing the fact that most remaining holes are due to a

lack of scene information of the stationary background, we

improve their algorithm in twoways. One is filling the bor-

der pixel in ∂Ŵ which is adjacent to background area, first.

The other is choosing the texture of known background

area to restore the disoccluded regions. The improve-

ments are implemented by considering depth cue in the
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(a)                (b)

(c)             (d)

(e)               (f)

(g)
Figure 4 Backward DIBR results andmerged virtual image of “Book arrival” sequence. (a) The 50th frame of “Book arrival” sequence from the

8th camera position. (b) The corresponding depth map of (a). (c) The texture image of the global stationary scene sprite for (a). (d) The depth map

of the global stationary scene sprite for (a). Our backward DIBR method results from the 8th camera position to the 10th camera position with

disoccluded areas marked as white color: (e) generated from (a, b, f) generated from (c, d). (g) Proposed merging approach result of (e, f). The

blank areas in red color circles are inner holes in foreground objects. The hole regions in green circles are disocclusion caused by stationary

foreground objects. The hole regions in blue color circles are caused by the inaccuracy of depth map.
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(a)  (b)

(c)  (d)   (e)   (f)  (g)
Figure 5 Effect of proposed oriented exemplar-based inpainting algorithm on a synthetic image. (a) A synthetic image of virtual view with

disoccluded areas, which are represented by white color. (b) The corresponding depth map of (a). The black color indicates the hole areas in depth

map. (c–g) The magnified result of proposed oriented exemplar-based inpainting algorithm after N iterations: (c) N = 2, (d) N = 70, (e) N = 77, (f)

N = 145, and (g)N = 196. The patch size of the oriented exemplar-based inpainting algorithm is set to 15×15, and the search window size is 15×15.

calculation of the priority term and the energy function,

both of which are used for the best exemplar searching

procedure.

The modified priority term is defined as

P(h) = C(h)D(h) + de(h), h ∈ δŴ (15)

where de(h) represents the depth term. The definition of

C(h) and D(h) is the same as Criminisi’s approach, and

their expressions can be found in [30]. The depth term is

expressed as follows.

de(h) =

{

Q, h near to BG

0, h near to FG
, h ∈ δŴ (16)

where BG and FG represent the background areas and

foreground objects, respectively. Q is a constant, which

should be no less than the maximum of the product of

C(h) and D(h). We set Q = 256 in our framework. The

new priority term will steer the filling order from back-

ground to foreground and keep the advantage of linear

structure propagation.

Let r denote the pixel withmaximum priority in ∂Ŵ. The

J × J samples patch, which takes r as center, is defined as

� . A square area around r withW ×W samples is defined

to be the searching area . Then the oriented exemplar-

based inpainting algorithm needs to search for the best

match patch S in , which has the most similar texture

with � . The center of S is denoted as s. The correspond-

ing depth areas of � and S are represented by � and O,

respectively.

The energy function combining the depth cue is

expressed as follows.

E =
∑

m∈�k

‖�(m) − S(m)‖2

+ β
∑

m∈�k

‖�(m) − O(m)‖2 + γ

∣

∣

∣
μk

� − μu
O

∣

∣

∣

2

(17)

where �k denotes the position set of known pixels in the

filling target patch� . The position set of hole pixels in� is

represented by�u : �u = � −�k .�(m) and S(m) denote

the pixel value of pixel positionm in � and S, respectively.

�(m) and O(m) represent the depth value of pixel posi-

tion m in � and O, respectively. β is a constant, which is

the weighting factor for the depth values of correspond-

ing pixels with �k in �. μk
� represents the average depth

value of the corresponding pixels with �k in �. μu
O repre-

sents the average depth value of the corresponding pixels

with �u in O. μk
� and μu

O are defined as

μk
� =

∑

m∈�k

�(m)/ |�k| , μu
O =

∑

m∈�u

O(m)/ |�u|

(18)
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where |�u| denotes the area of �u. γ is the penalizing fac-

tor for the candidate patches with foreground texture. γ is

an adaptive parameter related to the area of �k , denoted

as |�k|. Then γ is calculated as

γ =

{

0, μu
O − μk

� ≤ T

10 |�k| , otherwise
(19)

where T is a constant as defined in Equation (4).

The best match block in the searching area is obtained

by minimizing the energy cost function (17). The first

term in energy function (17) represents the texture differ-

ence between the known pixels in target patch � and the

corresponding pixels in match patch S. In our approach,

only the luminance component is considered. The sec-

ond term in (17) indicates the depth similarity, which has

lower importance than the first texture term. The third

term is a penalization term. If there exist pixels of fore-

ground objects in the corresponding area of �u in S, the

penalization term will become larger. The likelihood of

selecting patches with foreground pixels is greatly reduced

by adding the penalization term. According to the defini-

tion of the energy function, the patches of the background

scene, which contain similar texture and depth struc-

ture with the target block, will be selected to restore the

missing information of the disoccluded image areas. We

applied our oriented exemplar-based inpainting method

to synthesize the missing texture information of disoc-

cluded area in Figure 5a. The blank region is filled from

background scene to foreground objects, and the linear

structure is propagated into the hole in an appropriate way

(see Figure 5c–g).

7 Methods
To evaluate the performance of the proposed method, we

compare our approach with other methods, including the

MPEG view synthesis reference software (VSRS, version

3.5) [38], the depth-based inpainting method in [29], and

the Asymmetric Gaussian filtering method of Zhang and

Tam [17].

Our experiments are carried out on three test

sequences: “Book arrival”, “Breakdancers”, and “Ballet”.

These sequences have 100 frames and a resolution of

1024 × 768 samples. Multiple video plus depth data

from different camera views are available. “Book arrival”

sequence is captured by a parallel camera array and

the others are obtained by a toed-in camera array. The

baseline between two adjacent cameras is approximately

6.5 cm for “Book arrival” sequence and 20 cm for the other

two sequences.

The parameter values used in our proposed algorithm

is summarized in Table 1. The optimized parameters are

used for MEPG method (VSRS 3.5). For Asymmetric

Gaussian filtering method, we utilize strong smoothing

Table 1 Parameter values used in proposedmethod

Parameter L A T K F J W β

Value 19 0.7 3 5 8 9 15 0.5

parameters to eliminate the disoccluded areas caused by

large camera baseline. We set the horizontal and verti-

cal standard deviations of the Gaussian kernel to 20 and

60, respectively. The filter window sizes are set to 61

samples horizontally and 193 samples vertically. In the

experiments, the Asymmetric Gaussian filtering method

and the depth-based inpainting method employ the back-

ward DIBR approach proposed in Section 4 to handle the

visibility and resampling problems, just the same as our

proposed method.

7.1 Subjective evaluation

The view synthesis results of these three test video

sequences are shown in Figures 6, 7, and 8. All of the

four presented approaches can handle the visibility and

resampling problems and fill the disoccluded areas in vir-

tual view. Our proposed algorithm has the best subjective

effects compared to the others three methods.

The Asymmetric Gaussian filtering method causes

noticeable geometric distortions. The vertical structure

is curved in Figures 6c and 7c. The foreground objects

become fat, as shown in Figures 6k and 7g,k. This method

will slightly shift the object away from its correct position

(see Figure 6g), which will reduce the disparity between

reference image and virtual image and decrease the 3D

feelings. For the purpose of autostereoscopic display,

although the visual quality of Figure 6g is still pleasant,

the depth perception of the scene is distorted due to

these shifts. The distorted stereo display will make people

fill uncomfortable and arouse visual fatigues. The depth-

based inpainting method can restore the blank areas with

color of background pixels, but induce severe blurring

artifacts (see Figures 6l, 7h,l, and 8h) and some color

bleeding defects (see Figures 7h,l and 8h). The filling

results are very uncomfortable for visual experience. The

VSRS method will lead to significant horizontal structure

artifacts (as shown in Figures 6i,m, 7i,m, and 8i,m) and

decrease the visual quality greatly.

The proposed approach utilizes the accumulated infor-

mation of stationary scene to fill the disoccluded areas

and achieves convincing effect, as shown in Figures 6n, 7j,

and 8j. The missing structure of blank regions is restored

with the true background structure. Even for the disoc-

cluded areas caused by stationary foreground objects, our

proposed method can obtain plausible filling results. As

shown in Figures 6j and 7n, the hole areas are filled with

the texture of background scene without losing the sharp-

ness compared to Figure 6h,l. Figure 8l gives better visual

effect than Figure 8n. Because the man’s leg is very close
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Figure 6 DIBR results for the “Book arrival” sequence from the 8th camera to the 10th camera. (a) Reference image, which is the 50th frame

of the 10th camera position. (b) Rendered image of backward DIBR approach with hole areas, which are marked as white color. (c) Result of

Asymmetric Gaussian filtering method. (d) Result of depth-based inpainting algorithm. (e) Result of VSRS. (f) Result of proposed approach.

(g, k)Magnified subsection in (c). (h, l)Magnified subsection in (d). (i, m)Magnified subsection in (e). (j, n)Magnified subsection in (f).
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Figure 7 DIBR results for the “Ballet” sequence from the 3rd camera to the 4th camera. (a) Reference image, which is the 4th frame of the 4th

camera position. (b) Rendered image of backward DIBR approach with hole areas, which are marked as white color. (c) Result of Asymmetric

Gaussian filtering method. (d) Result of depth-based inpainting algorithm. (e) Result of VSRS. (f) Result of proposed approach. (g, k)Magnified

subsection in (c). (h, l)Magnified subsection in (d). (i, m)Magnified subsection in (e). (j, n)Magnified subsection in (f).
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Figure 8 DIBR results for the “Breakdancers” sequence from the 5th camera to the 4th camera. (a) Reference image, which is the 69th frame

of the 4th camera position. (b) Rendered image of backward DIBR approach with hole areas, which are marked as white color. (c) Result of

Asymmetric Gaussian filtering method. (d) Result of depth-based inpainting algorithm. (e) Result of VSRS. (f) Result of proposed approach.

(g, k)Magnified subsection in (c). (h, l)Magnified subsection in (d). (i, m)Magnified subsection in (e). (j, n)Magnified subsection in (f).
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to the wall in Figure 8b, it is difficult to distinct the leg

from the wall. In Figure 8n, our approach wrongly fill the

hole with texture of the wall. Another important advan-

tage of our approach is the temporary texture consistency

of the filled disoccluded regions. For disoccluded areas

caused by moving foreground objects, the missing texture

is recovered from other frames. The true texture informa-

tion in other frames is extracted and used to restore the

hole areas. To demonstrate the consistency in temporal

direction, a series of magnified virtual image subsection

for “Ballet” sequence is shown in Figure 9. The disoc-

cluded regions around the woman of adjacent frames are

restored by the same true background structure, then the

texture of filled image areas maintains consistent in time

direction.

7.2 Objective comparison

We adopt peak-signal-to-noise ratio (PSNR) and SSIM

[37] to compare the performance of proposed approach

with the other three methods.

For every test case of each sequence, the PSNR and

SSIM values are calculated for the whole image region

of every virtual image frame. The mean values of PSNR

Figure 9 Temporal texture consistency in the disoccluded regions of the proposed algorithm. The DIBR results of our proposed approach for

“Ballet” sequence from the 5th camera to the 4th camera. The enlarged same image regions from (a) the 56th frame, (b) the 57th frame, (c) the 58th

frame, (d) the 59th frame, (e) the 60th frame, and (f) the 61st frame.
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Table 2 PSNR and SSIM results

Seq. Camera
PSNR (dB) SSIM

VSRS Depth-based Asym. VSRS Depth-based Asym.

Prop. 3.5 inpainting filter Prop. 3.5 inpainting filter

[38] [29] [17] [38] [29] [17]

Book arrival 8 → 9 32.91 32.85 32.69 28.85 0.9814 0.9803 0.9798 0.9500

10 → 9 32.12 31.55 32.03 28.24 0.9817 0.9766 0.9811 0.9465

8 → 10 29.74 29.50 29.53 28.85 0.9672 0.9647 0.9645 0.8876

10 → 8 28.92 28.57 28.79 25.00 0.9684 0.9628 0.9660 0.8909

Break dancers 4→3 31.91 30.13 31.45 26.56 0.9470 0.9323 0.9440 0.8832

3→4 31.94 29.67 31.78 26.70 0.9518 0.9357 0.9500 0.8848

5→4 32.58 28.74 32.06 27.16 0.9532 0.9340 0.9503 0.8867

5→6 32.47 31.51 32.12 26.59 0.9503 0.9441 0.9482 0.8876

Ballet 3→4 30.10 28.20 29.63 22.58 0.9388 0.9111 0.9288 0.8280

5→4 31.91 26.87 31.85 23.28 0.9436 0.9151 0.9403 0.8304

5→3 27.74 24.41 25.92 20.17 0.8884 0.8575 0.8820 0.7517

3→5 27.38 25.98 27.10 20.82 0.8799 0.8447 0.8683 0.7489

This table shows the PSNR and SSIM values of four view synthesis methods. The best results are highlighted with boldface type.

and SSIM for each test case are stored in Table 2 and the

best results are highlighted with boldface type. The “Cam-

era” column indicates camera configuration of virtual view

generation, i.e., “8→9” means synthesizing virtual view of

the 9th camera’s perspective position from the 8th camera.

From Table 2, we can observe that among these four

methods the proposed framework has the best PSNR

and SSIM performance for both the parallel and toed-in

camera configuration. The Asymmetric Gaussian filter-

ing method gets the lowest PSNR and SSIM values due

to the geometric distortion. For the four test cases of

“Book arrival” sequence, the baselines between the virtual

view and reference view are small (6.5–13 cm). Because

the holes around image boundary occupy great percent-

age of the whole disocclusions (see Figure 6b), the PSNR

and SSIM gains of our proposed framework are small,

i.e., 0.09–0.22 dB for PSNR and 0.0006–0.0027 for SSIM

compared to depth-based inpainting method. For the

test cases of “Breakdancers” and “Ballet” with large base-

line (20–40 cm), our proposed approach obtains larger

PSNR and SSIM gains compared to depth-based inpaint-

ing method, i.e., 0.16–1.82 dB for PSNR and 0.0018–

0.0116 for SSIM. There are two important reasons for

the improvements of PSNR and SSIM in our proposed

framework. One is the available structure information

from the stationary scene sprite; the other is the oriented

exemplar-based inpainting process with reasonable filling

orders. Figure 10 shows the PSNR and SSIM curves for

two test cases. One is the virtual view of “Ballet” sequence,

which is generated from the 3nd camera to the 4th

camera. The other is the virtual view of “Breakdancers”

sequence, which is generated from the 5th camera to the

4th camera.

Figure 11 gives the PSNR curves for a local area of

“Book arrival” sequence. The concerned local area is the

same subsection shown in Figure 6n. From the 1st frame

to the 31st frame, the local area only covers background

objects, so the performance is very close for these three

algorithms. From the 32nd frame to the 99th frame, the

local area contains not only background objects but also

foreground objects. Then the disoccluded regions appear

in the concerned local area due to the discontinuity of

the depth. With the proposed stationary scene extraction

algorithm, the true texture information of the background

objects is utilized to recover the disoccluded regions. The

temporal consistency of texture and structure is main-

tained for these frames using our algorithm. Compared to

the VSRS and the depth-based inpainting algorithm, the

fluctuation of the PSNR values is much smaller for the

proposed method (as shown in Figure 11), which means

that the temporal consistency of the rendered sequence is

improved. It is obvious that the PSNR value drops at the

32nd frame and the 51st frame due to the sudden depth

change in the input sequence. To obtain a more consistent

rendered sequence, a temporal filtering procedure for the

input depth sequence is beneficial.
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Figure 10 PSNR and SSIM curves for “Ballet” and “Breakdancers” sequences. (a) PSNR curve of “Ballet” from the 3rd camera to the 4th camera.

(b) PSNR curve of “Breakdancers” from the 5th camera to the 4th camera. (c) SSIM curve of “Ballet” from the 3rd camera to the 4th camera. (d) SSIM

curve of “Breakdancers” from the 5th camera to the 4th camera.

Figure 11 The PSNR curves for a local area of “Book arrival”

sequence. The concerned local area is the same subsection shown in

Figure 6n. The virtual view is the 10th camera position generated

from the 8th camera position.

7.3 Execution time

We implement these four algorithms in C language on a

workstation of DELL Corporation and evaluate the run-

time costs, as summarized in Table 3. The execution time

of each step in proposed framework is given in Table 4.

Table 3 Execution time comparison

Seq.
Runtime (s/frame)

Prop. VSRS 3.5 Depth-based Asym. filter

[38] inpainting [29] [17]

Book arrival 12.53 1.50 136.93 2.11

Break dancers 11.89 3.92 138.74 1.65

Ballet 31.02 5.32 190.78 3.00

Table 4 Execution time of proposed framework

Seq.
Runtime (s/frame)

BG extraction Backward
DIBR +
Merge

Oriented
inpainting

Total

Book arrival 3.01 3.50 5.85 12.53

Break dancers 3.01 2.89 5.99 11.89

Ballet 2.84 3.99 24.19 31.02
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The workstation is equipped with an Intel 2.93-GHz Xeon

quad-core CPU and 4-GB DDR2 RAM.

The runtime costs of Asymmetric Gaussian filtering

and MPEG method are within 10 seconds per frame. The

depth-based inpainting algorithm spendsmore than 2min

due to the time-consuming iteration operation. The pro-

posed approach takes about 20 s to generate virtual view

for each frame. The oriented exemplar-based inpainting

process takes most of the time cost for our approach,

about 50–80%, as shown in Table 4. The execution time

of the oriented exemplar-based inpainting algorithm is

depended on the size of disoccluded areas, the image

patch size, and the size of searching window. For “Bal-

let” sequence, because the area of hole regions is larger

than the other two test sequences (cf. Figures 7b, 6b, and

8b), the runtime cost increases about 2 times. The addi-

tional time cost is acceptable for the improvement in the

objective and subjective qualities of virtual view image.

8 Conclusion and future work
This article presents a novel DIBRmethod combined with

spatial and temporal texture synthesis. By maintaining a

sprite of stationary scene of the original sequence, the use-

ful structure information can be adopted to restore the

missing texture of disocclusions in virtual view images.

The remaining disoccluded areas are restored by pro-

posed oriented exemplar-based inpainting approach. The

oriented exemplar-based inpainting method fills the rest

hole areas from background to foreground and propa-

gates the structure and texture into the blank regions in

an appropriate way. Combining these two algorithms, the

proposed DIBR method solved the disocclusion problem

well and achieved the spatial and temporal consistency.

These features make the proposed approach very suitable

for extrapolation of virtual view synthesis. Meanwhile,

the proposed framework has the flexibility of shifting

to the interpolation operation. Theoretical analysis and

experimental results show that the proposed method out-

performs state-of-the-art view synthesis methods. The

increase of runtime cost is moderate and acceptable. Our

future work will focus on the research of camera track-

ing and motion compensation to extend our proposed

method to the situation with moving cameras.
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