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Abstract – Human activity recognition using depth information is an emerging and challenging 
technology in computer vision due to its considerable attention by many practical applications such as 
smart home/office system, personal health care and 3D video games. This paper presents a novel 
framework of 3D human body detection, tracking and recognition from depth video sequences using 
spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined 
to extract human silhouette by considering spatial continuity and constraints of human motion 
information. While, frame differentiation is used to track human movements. Features extraction 
mechanism consists of spatial depth shape features and temporal joints features are used to improve 
classification performance. Both of these features are fused together to recognize different activities 
using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two 
challenging depth video datasets. Moreover, our system has significant abilities to handle subject's 
body parts rotation and body parts missing which provide major contributions in human activity 
recognition. 
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1. Introduction 
 
Recognizing human activities from video has made 

greater attention by researchers and become fundamental 
topic in pattern recognition research areas, including human 
machine interaction. Usually, the analysis is carried out 
by efficient feature extraction, learning and classification 
in order to compute the input patterns for recognizing 
activities [1-4]. Despite of undertaking research efforts and 
achieving significant results in the past decade with respect 
to human tracking and recognizing activities, there are still 
remain some challenges due to self-occlusion of human 
body parts, hidden body parts and fast human movements 
in complex background scenes. In addition, several 
researchers faced other problems in the form of light 
sensitivity and motion ambiguities due to conventional 
cameras. 

To access high quality images and overcome the above 
mentioned problems, depth cameras [5-7] started new era 
for a variety of image recognition tasks including human 
activity recognition (HAR). These cameras facilitate to 
behave insensitive to lighting conditions, offering spatial 
characteristics and reducing body-occlusion. To review 
depth-based HAR research, Xia and Aggarwal [8] 
described an algorithm to extract interest points from 

depth videos and depth cuboid similarity feature (DCSF) 
to describe the local 3D depth cuboid for activity 
recognition. Jalal et al. [9] developed a novel life logging 
invariant features approach as 1D features profile to train 
and recognize different activities based on depth images. 
In [10], Oreifej and Liu proposed a new descriptor for 
activity recognition using a histogram capturing the 
distribution of the surface normal orientation in the 4D 
space of time and spatial coordinates. Also, combined 
features [11, 12] are used to analyze, train and recognize 
different activities. However, these methods either relied 
on the skeleton data or depth silhouettes data which causes 
low recognition accuracy especially in case of missing 
joint information, un-clear human silhouettes and large 
distance subjects. Therefore, we elaborate some novel 
features along with modified HMM to overcome the above 
mentioned problems and improve activity classification 
and accuracy.  

In this paper, we presented a robust method to detect, 
track and recognize activities using depth silhouettes and 
body joints information. Firstly, we extract human 
silhouette using noisy background subtraction and floor 
removal techniques. Secondly, these depth silhouettes are 
extracted as depth shape and body joints features. These 
features are further symbolized. Finally, we train/recognize 
two depth datasets using modified HMM.  

The outline of this paper is as follows: Section 2 
presents the system architecture and further details of the 
proposed method. In Section 3, we explain the 
experimental results. Conclusion of the paper is discussed 
in Section 4.   
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Fig. 1. System architecture of proposed activity recognition 

system 
 

    
Fig. 2. Human silhouette selection by considering back-

ground subtraction and temporal differentiation 
 
 

2. System Architecture and Methodology 
 
The proposed activity recognition system is comprised 

on the tasks such as noisy background removal from raw 
depth data, human identification, feature extraction 
techniques, clustering using Linde, Buzo, and Gray 
(LBG)'s algorithm and training/recognition using modified 
HMM. Fig. 1 shows the overall flow of the proposed HAR 
system. 

 
2.1 Depth image analysis 

 
For the human silhouettes selection in depth sequential 

data, background subtraction routine is applied using least 
squares method. However, the floor is removed by ignoring 
the depth value y in a spaced grid [13]. While, all objects 
are localized via modified connected component labeling 
(see Fig. 2) and moving silhouettes are obtained by 
considering temporal depth differentiation as  
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where depth silhouettes f deal with all three coordinates (x, 
y, z) with respect to successive frames i and i-1. t is the 
specific threshold to evaluate the depth intensity values. To 
track moving human silhouettes, we considered the 
average of the disparity values in the detected parts and 
compare neighboring pixels surrounded by the detected 
moving parts [14] to make separate rectangular box for 
human identification.  

 
2.2 Feature extraction using depth shape features 

 
In depth shape features, firstly, depth image history 

features are obtained by considering the overall pixel 
intensity information of human body shape in sequential 
activities (see Fig. 3(a)). Secondly, temporal motion features 
are extracted by capturing the intra/inter motion variation 
among different body parts (see Fig. 3(b)). Thirdly, optical 
flow features are examined by considering the directional 
angular values among consecutive [15-17] frames (see Fig. 
3(c)). All silhouettes are made more smoothen [18-20] for 
accurate results.  

 
2.3 Feature extraction using joints information 

features  
 
To analyze the joints information, we utilized our body 

part model that includes fifteen 3D body joints including 
head, neck, torso, shoulders, elbows, hands, hips, knees 
and feet as shown in Fig. 4. Hence, proposed real-time 
body parts tracking system [13] performed human pose 
estimation that utilize ridge body parts features to produce 
15 different joints locations. During initialization, we used 
Y-shape to fixed different body constraints. Then, each 
body part provided their extremes values to recognize final 
pose in each activity frames.  

In joint information features, firstly, angular joints 
features are measured by the difference of body parts 
angles among similar joints of consecutive frames as  

 

 ( )1 1arccos t t t t
j j j jC C C Cq - -= -         (2) 

 
Secondly, body parts velocity features are captured by 

the movement of each joint in the direction of the normal 
vector of the plane from starting frame till ending frame 
[21, 22]. It is defined as 

    
(a)             (b)             (c) 

Fig. 3. (a) Depth image history; (b) temporal motion and 
(c) optical flow features applied over depth human 
silhouettes 

 

 
Fig. 4. Human body joints information 
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Fig. 5. 2D plot for joint information features 

 
Table 1. Comparison of recognition accuracies using 

different codebook sizes of VQ and without VQ 
dataset. 

Codebook sizes  Dataset 
128 256 

Without VQ 

IM-DailyDepthActivity 68.3 63.9 66.1 
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where, tS and tE are the starting and ending frames of 
sequential activity. However, the total feature dimensions 
obtained from the joints information features and body 
parts velocity features are 1x30 as shown in Fig. 5.   

 
2.4 Sequence generation using vector quantization  

 
Now, these depth and joint features vectors are further 

symbolized based on vector quantization (VQ) technique 
known as Linde, Buzo, and Gray (LBG)'s clustering 
algorithm [23]. We used the optimal codebook size of 128 
after experimenting over different depth datasets. However, 
sequence of trained data get generated and maintained by 
buffer strategy [24, 25]. Table 1 shows comparison of 
different sizes of VQ and without VQ (i.e., actual 
dimensions) using our proposed dataset.  

 
2.5 Modified Hidden Markov Model (M-HMM)  

 
To train and recognize different activities, we applied the 

code vectors to the modified Hidden Markov models (M-
HMM) having spatial and temporal variabilities. However, 
conventional HMMs include redundant information in the 
form of static body regions. Therefore, M-HMM is applied 
which mainly focused on active areas of human body 
characteristics such as moving feet and hips along with 
spatial/temporal properties of full-body shape of human 
silhouettes. During recognition phase of M-HMM, 
maximum likelihood value of specific sequential data is 
chosen to recognize distinct activity.  

 

 ( ){ }arg max |M l
l

H P O h=  (4) 

 
where, P(O | hl) denoted the probability of likelihood of the 

h activity HMM among different number of activities [26-
28]. Fig. 6 shows the internal structure of M-HMM.  

 
 

3. Experimental Results and Analysis 
 
In this section, we explain the interface of our proposed 

human activity recognition system and evaluate the 
proposed spatiotemporal features method over two 
challenging depth datasets.  

 
3.1 Interface of proposed activity recognition system  

 
During training/testing interface, we collected the raw 

depth data, extracted human silhouettes and manipulated 
the joints information. Then, random input activities were 
trained and recognized using modified HMM. Fig. 7 shows 
the overall concept of proposed HAR system.  

 
3.2 Experiment I: MSRDailyActivity3D dataset 

 
MSRDailyActivity3D dataset [29] is developed by 

Microsoft Research captured by a Kinect camera. This 
dataset includes 16 categories: drink, eat, read book, call 
cellphone, write on a paper, use laptop, use vacuum cleaner, 
cheer up, sit still, toss paper, play game, lay down on sofa, 

 
Fig. 6. Structural view of modified hidden Markov model 

 

 
Fig. 7. Proposed activity recognition system interface 
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walk, play guitar, stand up and sit down. The dataset 
consists of 320 video sequences which are performed by 10 
subjects. Fig. 8 shows some depth images of MSRDaily 
Activity3D dataset. 

To examine the recognition performance, we used cross 
subject validation process. In addition, we compared the 
experimental results of the proposed method with the 
algorithm defined as state of the art methods and the results 
are shown in Table 2.   

 
3.3 Experiment II: IM-DailyDepthActivity dataset 

 
To evaluate the online depth activity recognition 

scenarios, we build a new online activity dataset known as 
IM-DailyDepthActivity dataset [37] captured by depth 
camera. The dataset includes 15 different activities as: sit 
down, both hands waving, bending, stand up, eating, 
boxing, phone conversation, clapping, right hand waving, 
exercise, cleaning, kicking, throwing, take an object and 
reading an article performed by 15 subjects. The dataset is 
quite challenging due to similar postures of different 
activities. The total videos are 705, while 675 are training 
and 30 are testing. Fig. 9 shows some depth images of 
different activities used in IM-DailyDepthActivity dataset.   

Table 3 summarizes the recognition accuracies of the 
proposed method along with state of the art methods. It is 

clearly analyzed that the proposed method achieved 
superior recognition accuracy than the existing methods. 

Table 4 shows the computation time in terms of a speed 
of frames per second. It is clearly observed that the 
proposed method achieves the fast computation time and 
compared to well-known conventional method.  

 
 

4. Conclusion 
 
In this work, we proposed a novel methodology for 

activity recognition using spatiotemporal features and 
modified HMM via depth camera. The proposed system 
employed the depth body shape and joint information 
features, which are used to extract valuable feature vectors. 
These features are symbolized and trained/recognized 
using modified HMM. Experimental results showed that 
the proposed method using two depth activity datasets is 
superior in enhancing the recognition accuracy than other 
recommended approaches.  
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