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ABSTRACT The early diagnoses of esophageal cancer are of great significance in the clinic because they

are critical for reducing mortality. At present, the diagnoses are mainly performed by artificial detection

and annotations based on gastroscopic images. However, these procedures are very challenging to clinicians

due to the large variability in the appearance of early cancer lesions. To reduce the subjectivity and fatigue

in manual annotations and to improve the efficiency of diagnoses, computer-aided annotation methods are

highly required. In this work, we proposed a novel method that utilized deep learning (DL) techniques to

realize the automatic annotation of early esophageal cancer (EEC) lesions in gastroscopic images. The depth

map of gastroscopic images was initially extracted by a DL network. Then, this additional depth information

was fused with the original RGB gastroscopic images, which were then sent to another DL network to obtain

precise annotations of EEC regions. In total, 4231 gastroscopic images of 732 patients were used to build

and validate the proposed method. A total of 3190 of those images were EEC images, and the remaining

1041 were non-EEC images. The experimental results show that the combination of depth information

and RGB information improved the annotation performance. The final EEC detection rate and mean Dice

Similarity Coefficient (DSC) of our method were 97.54% and 74.43%, respectively. Compared with other

state-of-the-art DL-based methods, the proposed method showed better annotation performances and fewer

false positive outputs. Therefore, our method offers a good prospect in aiding the clinical diagnoses of EEC.

INDEX TERMS Gastroscopic image, early esophageal cancer, lesion annotation, deep learning, depth map.

I. INTRODUCTION

Esophageal cancer (EC) is one of the most fatal cancer types;

it has a quickly rising incidence throughout the world and

accounts for more than 450,000 deaths each year [1]. Early-

stage EC is not very lethal; its five-year survival rate is over

95%. However, if EC lesions are diagnosed in advanced

stages, a poor prognosis may become inevitable; at this

stage, the five-year survival rate drops to only 5% [2], [3].

Therefore, diagnoses of EC in the early stage are of great sig-

nificance in the clinic. At present, conventional gastroscopy-

based artificial examination is the most common method for

The associate editor coordinating the review of this manuscript and

approving it for publication was Chaker Larabi .

the clinical diagnosis of EC, but this examination procedure

is susceptible to many negative factors for clinicians, such as

time limitations, fatigue and insufficient experience. More-

over, the appearances of some early esophageal cancer (EEC)

lesions are similar to those of benign inflammatory lesions,

which makes the diagnoses more difficult, even for expe-

rienced clinicians. As a result, misdiagnosis of EEC often

occurs in the clinic.

Recently, researchers have developed many computer-

aided diagnosis (CAD) methods to improve the accuracy

and efficiency of clinical endoscopic diagnoses [4]–[7].

In addition, deep learning (DL) techniques, especially con-

ventional neural network (CNN)-based techniques, have

made remarkable progress in recent years and have achieved
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state-of-the-art performances of image classification and

segmentation. Therefore, they have been applied in many

image-based CAD methods that aimed to automatically

detect and annotate cancer lesions [8]–[10]. For example,

Hirasawa et al. [11] designed a CNN-based method to auto-

matically detect and annotate gastric cancer regions in gastro-

scopic images. A total of 13,584 gastric cancer images were

utilized to train a CNN named Single ShotMultiBox Detector

(SSD), and 2296 test images were used to validate the per-

formance of the fully trained network. The results showed

that this method obtained a high sensitivity of 92.2%. Sim-

ilarly, Horie et al. [12] utilized the same SSD network to

realize the annotation of EC regions in gastroscopic images,

and they finally obtained a high sensitivity of 98%. However,

the outputs of SSD are always square regions, which means

the annotation results of this network cannot provide accurate

locations of the edges of cancer lesions. Groof et al. [13]–[15]

proposed an EEC annotationmethod based on high-definition

(HD) gastroscopic images in [15]. They initially applied a

traditional CNN, AlexNet, to extract deep features from local

image windows. Then, a support vector machine (SVM) clas-

sifier was applied to identify EEC windows according to the

extracted features. Finally, EECwindowswere fused together

and smoothed by bicubic interpolation to obtain the final

annotation results. Experimental results showed that the area

under the curve (AUC) of this method was 0.92, which was

higher than that of other comparison CNN-based networks.

Du et al. [16] put forward a CNN-based method to anno-

tate EEC lesions in chromoendoscopic images. The authors

applied the semantic segmentation network Deeplabv3+ as

an end-to-end system to directly realize the prediction of

EEC regions. This method finally obtained a high accuracy

of 97.31% and aMean Intersection-over-Union (MIoU) value

of 92.09%. However, the EEC lesions in the chromoendo-

scopic image data already had high visibility and definition,

which ultimately means that the clinical value of this method

is limited because it contributes little to the reduction of

misdiagnoses.

The above methods suggest the feasibility and effective-

ness of applications of DL techniques in lesion annotations

on gastroscopic images. However, most existing annotation

methods directly use a mature end-to-end DL network to per-

form prediction and annotation. Therefore, there is a room to

improve annotation performance with specific modifications

that are performedwith respect to the clinical properties of the

gastroscopic images and lesions, e.g., novel loss functions,

changes in the internal structure of the DL networks, etc.

In recent years, SegNet [17], U-Net [18], and

Deeplabv3+ [19] have become highly recognized in the

research field of image segmentation. Different from tra-

ditional CNN, these DL networks were designed with a

decoder module in which the image features are up-sampled

to reconstruct the large-sized feature maps. This property

makes the networks be competent to perform classifications

in pixel-level. Therefore, they were frequently used in the

works which focus on lesion detection and annotation in

medical images. For example, SegNet was employed in [20]

and [21] for the annotation of pulmonary nodule lesions

in CT images and polyp lesions in colonoscopic images,

respectively. U-Net was utilized in [9] to annotate breast

tumors in MRI images. Deeplabv3+ was applied in [16] and

[22] in the annotation of EEC lesions in chromoendoscopic

images and of brain tumors in MRI images, respectively.

Motivated by the methods above, we designed a novel

method on the basis of a semantic segmentation network:

Deeplabv3+, to realize the accurate annotation of EEC

lesions in gastroscopic images. In this method, a depth

map of a gastroscopic image was initially calculated by

a CNN named ‘‘High-Resolution Depth Estimation Net-

work’’ (HRDEN). Then, the original RGB gastroscopic

image and the corresponding depth map were sent to a

modified Deeplabv3+ network to obtain the final prediction

of EEC regions. We name the proposed method ‘‘Depth-

Deeplabv3+-Based Annotation’’ (DD-BA). Several experi-

ments were implemented on real clinical images to validate

the correctness and performances of the proposed method,

and we finally obtained satisfactory results compared with

other related methods.

The rest of the paper is organized as follows. Section II

introduces details of the used images and the proposed

EEC annotations method. The experiments and correspond-

ing results are reported in section III. We further analyze

the results and make the summary in section IV and draw

conclusion in section V.

II. MATERIALS AND METHODS

A. MATERIALS

In total, 4231 esophageal images of 732 patients were used

in this work, collected from the Digestive Endoscopy Center

of the West China Hospital in Sichuan, China. The gastro-

scopic image capture devices used were OLYMPUS GIF-

Q260 and Q290 gastroscopes. The collected original images

were obtained at three sizes: 1920 px × 1080 px, 768 px ×

576 px, and 480 px × 360 px, as shown in Fig. 1. Among the

4231 images, 3190were EEC images that recorded 4310 EEC

regions in total. If the lesions were diffuse over a large area

or there were several small lesions very close to each other,

we treated them as one integrated lesion [23]. The other

1041 images were non-EEC images that recorded normal

tissue or benign inflammatory mucosa in the esophagus.

Most of the 4310 EEC lesionswere accompanied by visible

coarse mucosa, and some were accompanied by bleeding,

edema, protuberances, or festering. All of these EEC lesions

were confirmed by biopsy, and the corresponding ground

truth (GT) annotations were made by two clinicians. Before

the experiments, we calculated the size distribution of the

EEC lesions and divided these EEC regions into ten size-

levels, as shown in Fig. 2. In this figure, APE denotes the

area ratio of each EEC region to the whole image area, which

reflects the size of each EEC lesion region. PE denotes the

quantity proportion of images with the corresponding-sized
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FIGURE 1. Original gastroscopic images at three different sizes. (a) 1920 px × 1080 px, (b) 768 px × 576 px, (c) 480 px × 360 px.

TABLE 1. Number of images, EEC lesion regions, and patients in the image groups used in this work.

FIGURE 2. Size distribution of the EEC regions in the gastroscopic images.

EEC regions to the whole image group. The navy-blue parts

of Fig. 2 show that, in 3190 EEC images, the higher the

APE level, the lower the corresponding PE value. Small EEC

regions (i.e., EEC regions with APE values of 0%-10%) occur

most frequently, whereas the EEC regions in the highest size-

level rarely appear. Therefore, to enhance the generalizabil-

ity and reliability of the DL model trained by gastroscopic

images, we took this size distribution into account. In this

work, three image groups were generated: a training group,

a validation group, and a test group. The training group was

used to train the parameters of theDL network. The validation

group was utilized in the training procedure to adjust the

hyper-parameters and reduce overfitting. The test group was

used for the evaluation of performances. During the genera-

tion of the three groups, EEC images were randomly chosen

at each size level according to the corresponding original

PE values for the three groups. Thus, a training EEC group

of 2190 images, a validation EEC group of 500 images, and

a test EEC group of 500 images were created, as summarized

in Table 1. Using our selection method for the EEC images,

the three image groups have similar EEC size distributions (as

shown in Fig. 2), but there was no overlap in patients’ names

among them, that is, the images associated with one patients

just appear in one group. Thus, the fully trained model could

be more stable, and the results calculated by our test group

could be more reliable.

The 1041 non-EEC images were also divided into training,

validation, and test groups, which consisted of 731 images,

155 images, and 155 images, respectively. The three non-

EEC groups were combined with the corresponding EEC

groups; thus, the numbers of images in the combined training

group, test group and validation group were 2921, 655, and

655 (approximately 70%, 15%, and 15% of all gastroscopic

images), respectively. In this work, the 173 patients in the

training non-EEC group were parts of the 525 patients in the

training EEC group; therefore, the total number of patients in

the whole training group remained 525. The validation group

and test group also had this property, as described in the last

row of Table 1.

At the start, the training group contained 2190 EEC

images, which was insufficient for training a DL net-

work. Therefore, the image augmentation procedure
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FIGURE 3. Main processes of our EEC annotation method.

became indispensable [24], [25]. In this work, the EEC

images in the training group were augmented in the following

ways: 1) clockwise rotation by 90 degrees; 2) clockwise

rotation by 180 degrees; 3) clockwise rotation by 270 degrees;

4) horizontal flipping; 5) brightness increase by 25%; and

6) brightness decrease by 25%. We randomly chose four of

the above six ways to perform the augmentation for each

training EEC image. After that, the amount of training EEC

images was expanded to 2190 × 5 = 10,950, which was

adequate for the training procedures. Thus, the stability of the

fully trained model was ameliorated, and the overfitting prob-

lem was prevented. It is worth indicating that the 731 non-

EEC images in the training group were not augmented in our

experiments because too many negative samples (i.e., non-

EEC images) in the training group will damage the model’s

sensitivity to positive samples (i.e., EEC images); this could

cause a sharp decrease in the EEC detection rate in the

validation and testing groups, which cannot be tolerated in

clinical use. Therefore, the number of training images was

finally fixed as 10,950 + 731 = 11,681.

B. METHODS

The proposed DD-BA consists of four steps, as shown

in Fig. 3. Step 1 is pre-processing, which removes the black

background regions and equalizes the sizes of the gastro-

scopic images. In Step 2, the pre-processed images are sent

to HRDEN to realize the prediction of depth maps. Then,

the RGB images and the corresponding depth maps are deliv-

ered to the 4-channel Deeplabv3+ network in Step 3 to

obtain the predictions of the EEC regions. Finally, a post-

processing step is performed on the EEC prediction results to

complete the final annotations. The details of the four steps

are systematically described as follows.

1) PRE-PROCESSING

The black background regions of gastroscopic image C

record some auxiliary text information such as time, sex,

and age. These regions do not contribute to the annotations,

so they are firstly removed by fixed windows [26]. The

original sizes among our gastroscopic images are different

(see Fig. 1); therefore, we subsequently resize the remaining

area of the gastroscopic images to 384 px × 384 px through

bilinear interpolation. In this way, the sizes of the images are

made identical, as shown in image C1 of Fig. 3.

2) BUILDING DEPTH MAPS OF GASTROSCOPIC

IMAGES BY HRDEN

The depth map records the 3D-shape information of the

objects. In recent years, depth information has been used in

the detection of lesions in which shape features contribute

a lot to the detection of lesions [27], [28], such as polyps.

Inspired by these efforts, this work presents to utilize the

depth information for improving the prediction performances

of the EEC regions since it can help the computer to better rec-

ognize the internal structure of the esophagus. The usefulness

of depth information will be further discussed and analyzed

in section IV.

The DL-based network described in [29] was applied in

this work. The network consists of 4 modules: an encoder,

a decoder, a multi-scale feature fusion (MFF) module, and

a refinement module, as shown in the step 2 of Fig. 3. The

first two modules are the basic parts that realize the pre-

liminary extraction of high-level depth feature (feature map

C2), and the latter two modules are used for the extraction

of multi-scale features (feature map C3) and high-resolution

reconstruction of the depth maps (C4), respectively. For ease

of description, the network in [29] is called ‘‘High Resolu-

tion Depth Estimation Network’’ (HRDEN). Compared with

traditional depth estimation networks, HRDEN made two

improvements. The first one is the extraction and fusion of

multi-scale features, which reduced The loss of spatial reso-

lution in the estimated depth maps; and the second one is the

modified loss function which further enhanced the accuracy

of reconstruction [29]. By virtue of the above improvements,

HRDEN achieved state-of-the-art performance in depth pre-

diction [29]. Therefore, HRDEN is utilized to calculate the

depth maps of the gastroscopic images here.

HRDEN effectively reduced the loss of spatial resolution

via the utilization and refinement of multi-scale features.

However, to simplify the decoding of high-level features,
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FIGURE 4. Main framework of the Deeplabv3+ network with 4 channels.

this DL network does not up-scale the feature maps to

the size of the original input. As a result, the size of the

estimated depth map is less than 1/2 of that of the input

image [29]. In this work, similarly, the size of C4 is only

152 px × 114 px. Therefore, we performed bilinear inter-

polation on C4 to increase the size of the depth maps back

to 384 px × 384 px, which is denoted by C5. The final

depth map C5 is used as the input of the 4th channel in the

subsequent DL network (Fig. 3).

3) PREDICTING EEC REGIONS BY DEEPLABV3+ WITH

4 CHANNELS

Deeplabv3+ [19] is a semantic segmentation network based

on a traditional encoder-decoder structure. This DL network

is famous for three unique points: 1) an improved Xception-

based deep CNN module, which utilizes depth-wise separa-

ble atrous convolutions to replace the max-pooling layers;

2) the Atrous Spatial Pyramid Pooling (ASPP)module, which

uses parallel atrous convolutions at different rates to capture

the multi-scale information; and 3) the fusion of low-level

features and multi-scale deep features, which leads to better

segmentation results. Deeplabv3+ has shown satisfactory

performance in similar lesion annotation works [16], [22],

therefore, it is applied here to predict the EEC regions in

the gastroscopic images. It is worth reminding that we made

some modifications to the input and output layers of this

network to achieve better EEC annotation performances.

The main framework of the modified Deeplabv3+ is shown

in Fig. 4.

The color images are initially processed by a deep CNN

module in the encoder of Deeplabv3+. However, the original

version of this module only supports 3 channels of inputs

(i.e., red, green, and blue channels). To utilize the additional

depth channel C5, the number of channels of the convolution

kernels in the first layer is modified from 3 to 4. The subse-

quent layers of this deep CNN module remain unchanged to

preserve its remarkable feature extraction performance. Next,

ASPP is performed. Features extracted by the 4-channel–

deep CNN are sent to parallel layers, the main contents of

which are atrous convolutions with different atrous rates.

After ASPP, the features from different scales are fused

through a 1 × 1 convolution. A feature map, C6, that records

the multi-scale information is obtained. In the decoder stage,

the low-level features extracted by the 4-channel–deep CNN

are simplified via a 1 × 1 convolution layer to obtain the

low-level feature map C7. After that, skip connection is per-

formed. The low-level features C7 and the high-level multi-

scale features up-sampled fromC6 are concatenated. Finally,

the fused features are processed by convolution, up-sampling

and activation layers. It should be mentioned that in the origi-

nal Deeplabv3+, the function used in the last activation layer

is Softmax because the original Deeplabv3+ was designed

for the segmentation of 21 different kinds of objects in natural

scenes [19]. However, our DD-BA only needs to distinguish

two objects, namely, EEC regions and non-EEC regions.

Therefore, we changed the activation function from Softmax

to Sigmoid to allow the network to become more competent

to the binary classification task of EEC annotation. After the

classification is performed at the pixel level by the activa-

tion layer, a binary image C8 is obtained, the white regions

(i.e., the ‘‘1’’ regions) of which record the location of EEC

lesions.

4) POST-PROCESSING

The outputs of the 4-channel Deeplabv3+ are sufficient to

predict the location of EEC lesions in most cases, but the

visual accuracy of these predictions also deserves attention.

In the clinic, one of the purposes of EEC annotation is to

provide useful guidance for resections or dissections of lesion

regions. Obviously, annotations with poor appearances (e.g.,

jagged edges, a large number of small holes) are not wel-

comed because it is difficult for clinicians to resect the lesions

in jagged or perforated ways. However, the visual accu-

racy of the results predicted by Deeplabv3+ are sometimes

unsatisfactory. For example, the upper-left part of the white

region of image C8 shown in Fig. 4 is jagged. This is caused

by the side-effect of atrous convolutions in Deeplabv3+.

Generally, if the edges of the EEC lesions are not obvi-

ous enough in the gastroscopic images, the ‘‘holes’’ of the

atrous convolution kernels may lead to unstable predictions

in those edge areas. In most cases, these jagged edges do

not affect the accuracy of annotation too much, but they

reduce the visual accuracy of the annotation results. There-

fore, to make the annotation results more acceptable to clin-

icians, we proposed a post-processing step to smooth jagged

and perforated prediction results. The details are described as

follows.

For the binary image C8, we firstly filled the small holes

with ‘‘0’’ and ‘‘1’’ if their number of pixels are lower than the

threshold n1 and n2, respectively. After that, morphological

‘‘close’’ and ‘‘open’’ operations are performed sequentially.

For the operation of ‘‘close’’, the morphological ‘‘erosion’’

and ‘‘dilation’’ are implemented via a disk-shaped structuring

elements of radius r1. Similarly, themorphological ‘‘open’’ is

realized via a disk-shaped elements of radius r2. We repeat the

above hole-filling andmorphological operations until the ‘‘1’’
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FIGURE 5. Implementation details of our EEC annotation method. The units marked by blue color represent DL models, and those marked
by green color represent image data.

regions of C8 become constant. The constant binary image is

denoted by C9. As shown in Fig. 3, the edges of C9 have

become smooth, and the problem of the low visual accuracy

is solved. Finally, we obtain the final annotated imageC10 by

mapping C9 to the original RGB image C1. A complete flow

of DD-BA is finished.

It should be noted that in DD-BA, the two DL-networks,

HRDEN and 4-channel Deeplabv3+, were separately trained

because there was no GT for depth map available for our

gastroscopic images. For this reason, we utilized the indoor

image data described in [29] to train HRDEN. The details of

this training will be described in the next section. The imple-

mentation processes of the proposed method are summarized

in Fig. 5. This figure illustrates the details of ‘‘how the image

data is used’’ and ‘‘how the two DL networks are trained and

applied’’.

III. EXPERIMENTS AND RESULTS

Two experiments were conducted to verify the performances

of DD-BA. The first experiment was the validation of the

proposed idea, which utilized the depth maps as additional

depth information of the DL network. The second experiment

was the comparison between DD-BA and other state-of-the-

art DL-based methods. The performances of the methods

were evaluated in several ways. Recall (Rec), Precision (Pre),

and Dice Similarity Coefficients (DSC) [30] were firstly used

to evaluate annotation performances. Each index is expressed

by the mean value and standard deviation (SD). In our exper-

iment, positive pixels were defined as those in EEC regions,

whereas negative pixels were those outside EEC regions.

Thus, the Rec, Pre, and DSC were calculated using (1)-(3),

respectively:

Pre = TPp/(TPp + FPp) (1)

Rec = TPp/(TPp + FN p) (2)

DSC = 2×TPp/(2×TPp + FN p + FPp)

= 2×Pre×Rec/(Pre+ Rec) (3)

where TPp, FNp, and FPp denote the number of true positive

pixels, false negative pixels, and false positive pixels in an

EEC prediction, respectively. With these three indexes, DSC

is the most crucial composite index. It can reach 100% only

when an annotation region and the corresponding GT com-

pletely overlap with each other. Secondly, the EEC detection

rate (DR) was used to evaluate the performance of detecting

EEC lesions, and it was calculated by (4):

DR = Nd/Nt (4)

whereNd denotes the number of detected EEC regions andNt

denotes the total number of EEC regions (fixed at 692 in the

test group). An EEC region was considered to be detected

only when the DSC of the corresponding annotation was

higher than 20% [23].

In addition, False Positive Annotations (FPAs, i.e.,

the annotation regions with a DSC value of 0%) also deserve

attention. As we know, a qualified annotation method should

not only annotate lesions accurately but also produce fewer

and smaller FPAs [31]. Therefore, the mean values and SDs

of two indexes, NPFP and APFP [23], were used to mea-

sure FPA. NPFP is the ratio of the number of FPAs to the

number of gastroscopic images, which reflects the frequency

of occurrence of FPAs. APFP is the ratio of the number of

FPAs’ pixels to the total number of image pixels and reflects

the size and area ratios of the FPAs. We divided the test

image group into two parts: the EEC test group and the

non-EEC test group (as described in Table 1) to respectively

evaluate the FPA outputs, the NPFP and APFP of the EEC test

group are denoted by NPFP-E and APFP-E, respectively; and

those of the non-EEC test group are denoted by NPFP-N and

APFP-N, respectively.

In our experiments, the basic settings and parameters were

optimized and fixed as follows: In HRDEN, the training

images were obtained from the NYU-Depth V2 database

[29], [32], which consists of a large amount of indoor images

and the corresponding GTs of depth. In the training process,
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the activation function used in this network was ReLU, and

the loss function L was the same as that of [29], as shown

in (5)-(8):

ldepth =
1

n

n
∑

i=1

F(ei) (5)

lgrad =
1

n

n
∑

i=1

(F(∇x(ei)) + F(∇y(ei))) (6)

lnormal =
1

n

n
∑

i=1

(1 −

√

〈ndi ,n
g
i 〉

√

〈ndi ,n
d
i 〉

√

〈n
g
i ,n

g
i 〉

) (7)

L = ldepth + lgrad + lnormal (8)

In (5)-(8), ldepth, lgrad, and lnormal measures the errors

in depth, gradients, and surface normals, respectively.

i = 1, 2, 3, . . . , n, where n is the total number of pixels

of an output depth map. The local error ei = ||d i − gi||1,

where di is the depth estimate at the ith pixel and gi is the

corresponding GT value. Function F(a) = ln(a+0.5).∇x(ei)

and ∇y(ei) are the spatial derivative of ei computed at the ith

pixel with respect to x direction and y direction, respectively.

n
d
i and n

g
i are the surface normals of the depth estimate and

GT, calculated by ndi ≡ [−∇x(di), −∇y(di), 1]
T and n

g
i ≡

[−∇x(gi), −∇y(gi), 1]
T, respectively. In (8), the operation

〈a, b〉 represent the inner product of the vectors a and b [29].

For the other parameters and hyper-parameters of HRDEN,

they are the same as those described in [29]. In 4-channel

Deeplabv3+, the parameters were pre-trained in the PASCAL

VOC2012 dataset [33]. However, the pre-trained parameters

in the first convolution layer were not applied because the

number of channels was changed in the first layer of DD-

BA. Therefore, the parameters in this layer were randomly

initialized. In the training procedure, the loss function used

was the Dice coefficient, and the optimizer was AdaDelta

with an initial learning rate of 1 and amean decay rate of 0.95.

The activation function used in the convolutional layers was

ReLU. The batch size was 6, and the number of epochs was

set to 50, which was sufficient for the network to converge in

most cases. Other hyper-parameters were the same as those

described in [19]. In post-processing, the thresholds n1 and

n2 for the ‘‘hole filling’’ operation were both 100; the radius

of the disk-shaped structuring elements were set to r1 = 7 px

and r2 = 4 px.

In this work, the programming platformswere Python 3.6.4

(for HRDEN and Deeplabv3+) and MATLAB 2016a (for the

other operations). Training procedures were implemented on

double same GPUs of NVIDIA GeForce RTX 2080Ti.

A. EFFECTIVENESS VERIFICATION OF DEPTH

INFORMATION USED IN DD-BA

To verify the utility of the 4th depth channel and evalu-

ate the improvements brought by the combination of depth

and RGB information, the first experiment was to com-

pare the performances of our DD-BA and the Deeplabv3+-

Based Annotation (D-BA). In D-BA, the pre-processing and

FIGURE 6. GTs, depth maps, and the corresponding annotation results of
DD-BA and D-BA. The depth maps in the 2nd column are calculated by
HRDEN. In the 3rd to 4th columns, the regions marked by blue circles are
correct annotations, and those marked by green circles represent FPAs.

post-processing steps were the same as those of DD-BA,

but the step of building depth maps by HRDEN was

removed. Therefore, the Deeplabv3+ network used in D-BA

only employed 3 input channels (i.e., RGB). Other basic

settings and hyper-parameters of Deeplabv3+ remained

unchanged from those of DD-BA. The detection and anno-

tation performances of the two methods are shown in Fig. 6

and Table 2.

As seen in the 3rd column of Table 2, the DR of D-BA is

95.95%, which reveals that the features of the original RGB

channels are a good foundation for EEC detection. How-

ever, DD-BA detected 11 more EEC regions, which led to a

higher DR of 97.54%. This result reflects that the additional

depth information improved the EEC detection performance.

Focusing on the annotation performances, as displayed in

the 4th to 6th columns of Table 2, D-BA achieved qualified

annotation performances using RGB images; the mean DSC,

Rec and Pre of this method are 72.95%, 74.06%, and 79.99%,

respectively. Moreover, the 2nd row of Table 2 reflects that

the addition of the depth channel does not affect the Pre

substantially. The Pre values of DD-BA and D-BA differ by

only 0.35%. However, the combination of depth and RGB

channels resulted in a remarkable improvement of 4.07%

in Rec. By virtue of this improvement, the mean DSC of

DD-BA finally reached 74.43%, which is 1.48 percentage

points greater than that of D-BA. Therefore, the addition of

a depth channel also contributed to improving the annota-

tion performance. Examples in Fig. 6 may be some good

explanations for this result. As shown in Fig. 6 (a), there

is a protruding EEC lesion which shows white and coarse

surface. When annotating this EEC region, both of the two

methods performed well. The DSC of them are both higher
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TABLE 2. EEC detection and annotation performances, and FPA outputs of DD-BA and D-BA.

than 90% and that of DD-BA is just 2.42% higher than that of

D-BA. This result reveals that depth information contributes

less to the enhancement of annotation performance when the

abnormal color and texture of EEC regions are clearly visible.

However, when the irregular color and texture of EEC regions

are not salient enough, the addition of depth information may

greatly improve the annotation performance. For example,

the EEC region in Fig. 6 (e) is inflammatory tissue, but it is

without visible bleeding or festering. As a result, this EEC

tissue does not appear very coarse. In this case, D-BA only

annotated the left part of this EEC region, and the flat part

to the right was omitted. It is evident that this annotation is

with low Rec value (50.11%), and the DSC becomes lower

accordingly (merely 65.09%). By contrast, DD-BA utilized

the depth map in Fig. 6 (f). Although this estimated depth

map is not 100% accurate, it clearly indicates the integrity

of the tissue in the upper-right part of the image. Therefore,

the annotation result of DD-BA recalled the vast majority of

this EEC region and achieved a satisfactory DSC of 86.77%.

For FPA outputs, as described in the 7th to 10th columns

of Table 2, the NPFP-E and APFP-E values of DD-BA are

0.1380 and 0.27%, respectively, which are only approxi-

mately 60% of those of D-BA. These results indicate that

using depth and RGB information at the same time can help

to reduce the FPAs in EEC images. The reason for this is that

EEC lesions often appear together with benign inflammatory

mucosa or lesions, which sometimes show irregular color

and texture that are similar to those of EEC lesions. In these

cases, the additional depth information can help themethod to

better recognize them. An example is shown in Figs. 6(i)-(l).

In Fig. 6 (i), there is a large EEC region in the center, sur-

rounded by benign coarse mucosa from the upper-left part.

The coarse mucosa shows irregular texture and a dark red

color, similar to some of the EEC lesions. However, the depth

map in Fig. 6 (j) clarifies that this region of coarse mucosa is

far from the camera. Therefore, its dark appearance is caused

by a relative lack of illumination. As a result, the subsequent

4-channel Deeplabv3+ refuses to hastily annotate it as a EEC

lesion and FPAs are avoided. By contrast, D-BA without

using depth input channel produced the FPAs, as shown in

the right part of Fig. 6 (l). In addition, the 3rd and 5th rows of

Table 2 show that the SDs of the indexes of the two methods

are similar, except for the SD of APFP-E. The SD of APFP-E

of DD-BA is 0.0171, which is 22% lower than that of D-BA.

This suggests that utilizing depth information also enhanced

the stability of the method in constraining FPAs in EEC

images. However, this improvement is not found in non-

EEC test group. The APFP-N of the two methods are both

close to 1%. This means the depth information does not

contribute very much to the reduction of FPAs in non-EEC

images. It could be explained by the fact that most of the non-

EEC images used in this work were normal images which

showed no coarse mucosa. The irregular texture of benign

inflammatory mucosa or lesions did not appear very often.

Thus, the improvement in FPA was restricted.

In summary, the above experimental results reveal the

superiority brought by utilizing additional depth information.

It can not only bring extra enhancements to the EEC detec-

tion and annotation performances but also limit the num-

ber and size of FPAs annotated in EEC images. Therefore,

the combination of depth features and RGB information is

demonstrated to be a feasible and effective strategy for EEC

annotation.

B. COMPARISONS BETWEEN DD-BA AND OTHER

STATE-OF-THE-ART DL-BASED METHODS

SegNet [17], U-Net [18], and Deeplabv3+ [19] are three

state-of-the-art DL networks used for semantic segmentation.

All three networks are based on the traditional encoder-

decoder structure. SegNet is an improved fully convolutional

network (FCN) that utilizes max-pooling indices to replace

deconvolution operations in the decoder. This operation sim-

plifies the up-sampling procedures and allows the network

to retain more high frequency details. Thus, the segmen-

tation results become more precise. U-Net is famous of

its special structure, which applies multiple skip connec-

tions to combine the outputs in decoding layers and the

high-resolution features in encoding layers. Compared with

traditional DL-based segmentation networks, U-Net effec-

tively reduced the loss of features in down-sampling layers.

Therefore it achieved remarkable segmentation performance.

Deeplabv3+ was already fully introduced in section II B,

part 3). In recent years, the three networks have become

highly recognized in the research field of image segmenta-

tion, and they are frequently used in lesion detection and

annotation in medical images as well. Therefore, the three

state-of-the-art networks deserve comparison with the pro-

posed DD-BA. In the first experiment, we demonstrated
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TABLE 3. EEC detection and annotation performances and FPA outputs of the three methods.

that DD-BA is superior to the traditional Deeplabv3+-based

annotation method. In this experiment, we mainly analyzed

the performances of SegNet-based annotation and U-Net-

based annotation and compared the proposed DD-BA with

these two methods. In addition, the experimental results

recorded in Section III A have shown the utility of DD-

BA’s 4th depth channel. Therefore, we added the same depth

channel to the first layer of SegNet and U-Net, to ensure the

fairness of comparison. Thus, the two comparison methods

were named Depth-SegNet-Based Annotation (DS-BA) and

Depth-U-Net-Based Annotation (DU-BA), respectively.

For these two comparison methods, we only switched the

DL step of DD-BA fromDeeplabv3+ to SegNet (for DS-BA)

and U-Net (for DU-BA). The remaining pre-processing and

post-processing procedures remained unchanged from those

of DD-BA to avoid differences in the performances caused

by the changes in these steps. In the 4-channel SegNet of

DS-BA and 4-channel U-net of DU-BA, the network structure

and number of layers were the same as those described in

[17] and [18], respectively (except the number of channels

of the first layer). To obtain better binary prediction results,

the activation function of the last layer was set to Sigmoid

for both networks. When training the two networks, the basic

settings, i.e., batch size, optimizer, learning rate, activation

function of convolution layers, and loss function, were all

the same as those of 4-channel Deeplabv3+ in DD-BA. The

two networks were both trained with 50 epochs without using

transfer-learning. The performances of DD-BA, DS-BA and

DU-BA are shown in Table 3 and Fig. 7.

As illustrated in the 3rd column of Table 3, all three

methods show qualified DRs higher than 95%, which means

that the three methods performed well in the detection of

EEC lesions. However, the best DR is achieved by DD-BA,

with a value higher than 97.5%. Therefore, DD-BA has the

best capability of EEC detection. The annotation perfor-

mances are summarized in the 4th to 6th columns of Table 3.

As seen in these columns, the Rec and Pre of DD-BA reached

78.13% and 79.64%, respectively, which are both higher

than the respective values from DS-BA and DU-BA. More-

over, the DSC of DD-BA is 74.43%, which is 1.27% and

3.56% higher than that of DS-BA and DU-BA, respectively.

In particular, the Pre of DD-BA is 7.68% higher than that

of DU-BA, which is the largest margin observed in these

FIGURE 7. GTs and the corresponding annotation results for DD-BA,
DS-BA and DU-BA. The regions marked by blue circles are correct
annotations, and those marked by green circles represent FPAs.

performance indexes. These results fully prove that the

proposed DD-BA comprehensively outperforms the two

state-of-the-art, DL-based methods in terms of annotation

performances. In addition, it also indicates that even depth

and RGB information has both been utilized, the 4-channel

SegNet and 4-channel U-Net cannot achieve the best per-

formances for some special cases, which are illustrated in

Fig. 7. In Fig. 7(a), there is a small EEC lesion with

only a small amplitude of depth variation, and its irregu-

lar texture is very salient. In this case, all three methods

performed well, and their DSCs are all higher than 80%.

However, if the irregular color and texture of the EEC

regions are not obvious, 4-channel SegNet and U-Net are
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not sensitive enough to them. An examples of this is shown

in Figs. 7(e)-(h). In Fig. 7(e), there is a large EEC lesion

and its mucosa is not quite coarse. DS-BA and DU-BA just

annotated a part of this lesion. However, DD-BA avoided

this shortcoming and recalled the vast majority of this EEC

region; thus, it obtained a high DSC of 72.10%. In Fig. 7(i),

the coarse texture and white color of the EEC lesion are

visible, but the edges of this EEC region are not clear. In this

case, DD-BA successfully located those edges, whereas both

DS-BA and DU-BA misjudged some of them. As a result,

the DSCs of the two comparison methods were unsatisfac-

tory. In addition, the cases shown in Figs. 7(d), (l), and (p)

reflect that U-Net is more inclined to broadly annotate the

EEC lesions, which is the reason why DU-BA obtained the

lowest mean Pre value (71.96%).

In terms of FPAs, as depicted in the 7th to 10th columns of

Table 3, the NPFP-E, APFP-E, NPFP-N, and APFP-N values of

DD-BA are all lower than those of DS-BA and DU-BA, and

the corresponding SDs of these indexes in DD-BA are also

the lowest among those of the three methods. These results

suggest that DD-BA has the best performance in constrain-

ing FPAs. Obviously, the Deeplabv3+ network contributed

greatly to this performance, because the results in Table 2 and

Table 3 have both shown that the additional depth information

cannot effectively inhibit the output of FPAs in the non-EEC

image group. Therefore, the advantage of using Deeplabv3+

as a segmentation network, with respect to constraining FPAs,

is significant. In summary, whether for EEC annotation or

constraining FPAs, DD-BA is superior to the two comparison

methods.

IV. DISCUSSION

This study proposed an annotation method based on DL

networks named DD-BA, which outperforms other state-of-

the-art DL-based annotation methods. The most important

innovation of DD-BA is the utilization of additional depth

information. The result in section III A have shown that

the use of depth information can help the computer better

recognize the internal structure of the esophagus. In clinic,

actually, the patterns of the tissues’ depth variation also

have impacts on the judgments of clinicians. An example

is shown in Fig. 8. Fig. 8 (a) is an EEC image in which

there is an EEC region annotated by the clinician. As seen

in this figure, the EEC lesion shows visible coarse mucosa

with irregular texture. In another image shown in Fig. 8 (c),

the region annotated by the blue circle also shows coarse

texture, which looks like that of the EEC region in Fig. 8(a).

However, Fig. 8(c) is a non-EEC image which is without any

lesion. Figs. 8(b) and (d) are the corresponding depth maps of

Figs. 8(a) and (c), respectively. When we compare the

two depth maps, we can find that the marked region

in Fig. 8(d) has an amplitude of depth variation larger than

that of Fig. 8(b). In other words, the depth information of the

marked regions in Fig. 8 (a) and (c) are distinct. In most cases,

the large amplitude of depth variation will make the object

look more compact, and a reflection can be found in Fig. 9.

FIGURE 8. Gastroscopic images and their corresponding depth maps.
(a) an EEC image, (b) the depth map of (a), (c) a non-EEC image, (d) the
depth map of (c).

FIGURE 9. An example of the changes in the object’s appearance caused
by depth variation. (a) a mesh graph located in the y-z plane; (b) The
appearance of the mesh graph to the observer’s eyes; (c) rotated mesh
graph; (d) The appearance of the rotated mesh graph to the observer’s
eyes.

Fig. 9 (a) shows a mesh graph located in y-z plane. If we

assume that the x-axis represents depth, this mesh graph

will be with no depth variation because x = 0 is hold

for this graph. Here, we observe this mesh graph from the

direction opposite to the x-axis, we can see the rectangular

pattern in Fig. 9 (b). Next, we rotate the mesh graph by

60 degrees in the x-y plane, as shown in Fig. 9 (c). This oper-

ation brings a large depth variation (variation in the x-axis)

to the mesh graph. After that, we observe this object from

the direction same as that of Fig. 9 (a), we will see the
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pattern shown in Fig. 9 (d). If we compare the appearances

of the mesh graph in Figs. 9 (b) and (d), we can find that

the grid pattern in Fig. 9 (d) is severely compressed on the

y-axis. This example vividly shows that a large amplitude of

depth variation will make an object’s appearance denser in

the observer’s eyes. This is the reason why the phenomenon

in Fig. 8 appears. In the gastroscopic images, the appearance

of esophageal tissues will seem to be compressed in regions

with a large amplitude of depth variation. Therefore, the irreg-

ular texture of the marked region in Fig. 8 (c) is caused

by the large variation of depth, not by the coarse mucosa.

In most cases, this kind of irregular texture will disappear

from gastroscopic frames in few seconds if the camera keeps

going ahead, but the textures of EEC lesion regions do not

have this property. Even if the camera get closer to the lesion

tissue, these irregular textures will not disappear. Taking

the above analysis into account, the clinician finally made

different judgements on the two coarse regions in Fig. 8.

Inspired by this phenomenon, we proposed to combine the

depth information and RGB information of gastroscopic

images to improve the EEC annotation performance. The

experimental results finally confirmed the effectiveness of

this strategy and proved that it brought two advantages to the

proposedmethod. First, it enhanced themethod’s adaptability

to EEC regions which lack substantial irregularities in color

and texture. When these EEC lesions appear, the utilization

of the additional depth information enhanced the detection

performances and preserved the integrity of the annotated

results (e.g., Fig. 6 (g) and Fig. 7 (f)). Second, it reduced the

number and size of FPAs in EEC images (e.g., Fig. 6(k)).

Owing to these two advantages, DD-BA achieved the best

performances compared with two comparison methods.

Although the comparison methods are sufficiently sensitive

to the coarse regions that appeared in most EEC cases,

they sometimes show unsatisfactory annotation performances

and FPA outputs because coarse regions are not always

equivalent to EEC lesions. However, the combination of

depth features and RGB information in DD-BA success-

fully alleviated the negative effects caused by this problem.

In addition, the 4-channel Deeplabv3+ network used in DD-

BA also made great contributions to its superior perfor-

mance. The unique atrous convolution operations and ASPP

module in Deeplabv3+ are effective ways to probe multi-

scale features because they realize flexible control of the

filters’ receptive fields. This property further reduced the

loss of multi-scale information and led to fewer FPAs in

non-EEC images. Although the atrous convolutions caused

jagged predictions in some cases, they were easily repaired

by the brief post-processing procedure. Ultimately, DD-

BA is a good example of a DL-based CAD method, and

it is also a successful application of the depth-prediction

algorithm.

However, there is still room for improvement of this work.

The first potential area for improvement concerns the pre-

diction of depth maps. In the first experiment, we confirmed

the utility of the depth information, and the results showed

that the depth maps produced by HRDEN are qualified to

predict the depth variations in key positions of gastroscopic

images. However, if we observe the predicted depth maps

carefully, we can find that they are still not 100% accurate

(e.g., the upper-left part in Fig 5 (f) and the lower-left corner

in Fig. 9 (j)). The main reason for this is that the images

used to train HRDEN are all indoor images. The objects in

this kind of images are often neat and have clear edges and

visible corners, but these properties cannot be obtained in

gastroscopic images because the esophagus is a soft tubular

organ. Indeed, it is almost impossible to obtain the GTs of

depth for gastroscopic images at present because there is no

depth camera available for clinical diagnosis. For this reason,

we did not utilize gastroscopic image data to train HRDEN.

However, if the GTs of depth become available for gastro-

scopic images in the future, we believe that the performances

of DD-BA could be further enhanced. The second possible

improvement could lie in the annotation accuracy. In this

work, DD-BA utilized state-of-the-art DL techniques and

showed better annotation performances than the comparison

methods, but the mean DSC of DD-BA is still lower than

80%. There are two reasons for this imperfect performance.

One is the diversity of the appearance of EEC lesions, and

the other is the frequently appearing benign lesions in the

EEC images that disrupted the annotations. If these factors

could be considered in the segmentation networks, the anno-

tation performances would be further improved. In future

works, we will try to build synthetic image data that record

esophagus-like tubular structures to further train the depth-

estimation networks for improving the accuracy of the depth

prediction results. At the same time, we will keep modifying

the internal structure of the semantic segmentation networks

based on the clinical properties of EEC to further improve

the annotation performances and enhance the robustness of

our method.

V. CONCLUSIONS

In this study, we designed a novel framework to annotate EEC

lesions in gastroscopic images. Different from the existing

DL-based annotation frameworks, the proposed framework

utilized depth and RGB information simultaneously. In the

depth prediction network HRDEN, the depth maps of gastro-

scopic images were calculated; in the semantic segmentation

network Deeplabv3+, the first layer was modified into a

4-channel form, and the additional depth information was

absorbed into this network to enhance EEC prediction perfor-

mance. On this basis, we developed a novel EEC annotation

method named DD-BA. Experimental results confirmed the

correctness and necessity of the utilization of additional depth

information and proved that the proposed DD-BA outper-

forms other state-of-the-art DL-based annotation methods.

Whether for EEC detection, EEC annotation or FPA out-

puts, DD-BA showed the most satisfactory performances.

In summary, our method has good potential for clinical use

and could be helpful in enhancing the accuracy of EEC

diagnoses.
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APPENDIX

The abbreviations and the corresponding full names used in

this paper are summarized in Table 4.

TABLE 4. Summary of abbreviations and the corresponding full names.
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