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Abstract— Consumer depth cameras, such as the Microsoft
Kinect, are capable of providing frames of dense depth values at
real time. One fundamental question in utilizing depth cameras
is how to best extract features from depth frames. Motivated
by local descriptors on images, in particular kernel descriptors,
we develop a set of kernel features on depth images that
model size, 3D shape, and depth edges in a single framework.
Through extensive experiments on object recognition, we show
that (1) our local features capture different aspects of cues
from a depth frame/view that complement one another; (2)
our kernel features significantly outperform traditional 3D
features (e.g. Spin images); and (3) we significantly improve
the capabilities of depth and RGB-D (color+depth) recognition,
achieving 10−15% improvement in accuracy over the state of
the art.

I. INTRODUCTION

RGB-D cameras [20], [13] are an emerging trend of

technologies that provide high quality synchronized depth

and color data. Using active sensing techniques, robust

depth estimation has been achieved at real time. Microsoft

Kinect [13], a depth camera that has made it into consumer

applications, is a huge success with far-reaching implications

for real-world visual perception. One key area of depth

camera usage is in object recognition, a fundamental problem

in computer vision and robotics. Traditionally, the success

of visual recognition has been limited to specific cases,

such as handwritten digits and faces. The most recent trend

in computer vision is large-scale recognition (hundreds of

thousands of categories, as in ImageNet [7]). For real-world

object recognition, recent studies (e.g. [14]) have shown that

it is feasible to robustly recognize hundreds of household

objects. Kinect has adopted a recognition-based approach to

estimate human poses from depth images [23].

The core of a robust recognition system is to extract

meaningful representations (features) from high-dimensional

observations such as images, videos, 3D point clouds and

audio. Given the wide availability of depth cameras, it is an

open question what is the best way to extract features over a

depth map. There has been a lot of work in robotics on 3D

features from point clouds: Spin Images [12] is a classical

example of local 3D features analogous to SIFT [19]; the

Fast Point Feature Histogram [21] is another example of an

efficient 3D feature. These 3D features, developed on point
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Fig. 1. RGB image (left) and the corresponding depth map (right) captured
with a PrimeSense camera. The depth values go from small to large as the
color changes from red to blue.

clouds, do not always adapt well to depth images, where full

viewpoint independence may not be necessary.

In this work we propose and study a range of local features

over a depth image and show that for object recognition

they are superior to pose-invariant features like Spin Images.

Motivated by the latest developments on kernel based feature

learning [2], we present five depth kernel descriptors that

capture different recognition cues including size, shape and

edges (depth discontinuities). Extensive experiments sug-

gest that these novel features complement each other and

their combination significantly boosts the accuracy of object

recognition on an RGB-D object dataset [14] as compared

to state-of-the-art techniques.

This paper is organized as follows. After discussing related

work, we introduce kernel descriptors in Section III. A

pyramid object-level features are introduced in Section IV,

followed by experiments and conclusion.

II. RELATED WORK

This research focuses on developing good features for

depth maps and 3D point clouds for object recognition.

Recently, a lot of interest in object recognition has been

paid to learning features using machine learning approaches.

Deep belief nets [11] build a hierarchy of features by greedily

training each layer separately using a restricted Boltzmann

machine. To handle full-size images, Lee et al. [17] proposed

convolutional deep belief networks (CDBN) that use a small

receptive field and share the weights between the hidden and

visible layers among all locations in an image. Convolutional

Neural Networks [26] are a trainable hierarchical feed-

forward architecture that has been successfully applied to

character recognition, pose estimation, face detection, and

recently generic object recognition. Single layer sparse cod-

ing on top of SIFT features works surprisingly well [25], [6],

and is the best-performing approach on the first ImageNet

Large-scale Visual Recognition Challenge [18].

Spin images [12] are popular local shape descriptors over

3D point clouds, which have been widely applied to 3D ob-



ject recognition problems. Some variants of spin images [9],

[8] have been proposed to improve the discrimination of

the original spin images. Fast point feature histogram [21],

a related approach to spin images, has been shown to

outperform spin images in the context of registration. Normal

aligned radial features (NARF) [24] extract object boundary

cues for recognition. Though very successful, these features

fail to capture important cues for object recognition, such as

size and internal edges.

Kernel descriptors [2] provide a principled way to turn

any pixel attribute to patch-level features, and are able to

generate rich features from various recognition cues. Kernel

descriptors were initially proposed for RGB images, and have

not been used for depth maps and 3D point clouds yet. In

this work, we extend the ideas of kernel descriptors to depth

maps and 3D point clouds. Besides adapting gradient and

local binary pattern kernel descriptors over RGB images [2]

to depth maps, we have developed three novel depth kernel

descriptors: the size kernel descriptor, kernel PCA descriptor,

and spin kernel descriptor over 3D point clouds. These

features capture diverse yet complementary cues, and their

combination improves the accuracy of object recognition

significantly.

III. KERNEL DESCRIPTORS OVER DEPTH MAPS

A. Preliminaries

The standard approach to object recognition is to compute

pixel attributes in small windows around (a subset of) pixels.

For example, the well-known SIFT gradient orientation and

magnitude attributes are computed from 5× 5 image win-

dows. A key question for object recognition is then how

to measure the similarity of image patches based on the

attributes of pixels within them, because this similarity mea-

sure is used in a classifier such as a support vector machine

(SVM). Techniques based on histogram features such as

SIFT or HOG, discretize the individual pixel attribute values

into bins and then compute a histogram over the discrete

attribute values within a patch. The similarity between two

patches can then be computed based on their histograms.

Unfortunately, the binning introduces quantization errors,

which limit the accuracy of recognition.

Kernel descriptors [2] avoid the need for pixel attribute

discretization by adopting a kernel view of patch similarity.

Here, the similarity between two patches is based on a

kernel function, called match kernel, that averages over the

continuous similarities between all pairs of pixel attributes in

the two patches. Match kernels are extremely flexible, since

the distance function between pixel attributes can be any

positive definite kernel, such as the popular Gaussian kernel

function. In fact, Bo and colleagues showed that histogram

features such as SIFT are a special, rather restricted case of

match kernels [2].

While match kernels provide a natural similarity measure

for image patches, evaluating these kernels can be computa-

tionally expensive, in particular for large image patches. To

efficiently compute match kernels, one has to move to the

feature space forming the kernel function. Unfortunately, the

dimensionality of these feature vectors is high, even infinite

if for instance a Gaussian kernel is used. Thus, for compu-

tational efficiency and for representational convenience, we

reduce the dimensionality by projecting the high (infinite)

dimensional feature vector to a set of finite basis vectors

using kernel principal component analysis. This procedure

can approximate the original match kernels very well, as

empirically shown in [2].

To summarize, applying the match kernel framework to

object recognition involves the following steps: (1) define

pixel attributes; (2) design match kernels to measure the

similarities of image patches based on these pixel attributes;

(3) determine approximate, low dimensional match kernels.

While the third step is done automatically by learning low

dimensional representations and the defined kernels, the

first two steps make the approach applicable to a specific

recognition scenario. In the following sections, we show

how kernel descriptors can be applied to RGB-D object

recognition by deriving five local features over 3D point

clouds and depth maps.

B. Size Features over Point Clouds

The size features capture the physical size cue of objects.

The intuition for why physical size helps in object recogni-

tion is illustrated in Fig. 2. The physical sizes of objects are

important for instance recognition since a particular object

instance has a particular size. For category recognition,

though objects in the same category can have different sizes,

their sizes usually are constrained to some range, which

can be useful for recognition. For example, the physical

size feature can be expected to obtain perfect recognition

performance in distinguishing between the apple and cap

categories (see Fig. 2).

Fig. 2. Sampled objects from the RGB-D dataset that are sorted according
to their sizes. From left to right: apple, coffee mug, bowl, cap and keyboard.

To develop size features, we first convert depth images to

3D point clouds by mapping each pixel into its corresponding

3D coordinate vector. To capture the size cue of an object, we

compute the distance between each point and the reference

point of the point cloud (which is assumed to be cropped

around the object). Specifically, let P denote a point cloud

and p be the reference point of that cloud. Then the distance

attribute of a point p ∈ P is given by dp = ‖p− p‖2. To

compute the similarity between the distance attributes of two

point clouds P and Q, we introduce the match kernel

Ksize(P,Q) = ∑
p∈P

∑
q∈Q

ksize(dp,dq) , (1)



Fig. 3. Top 10 eigenvalues of kernel matrices formed by ball and plate.

where ksize(dp,dq) = exp(−γs‖dp −dq‖2) (γs > 0) is a Gaus-

sian kernel function. As can be seen, the match kernel

Ksize computes the similarity of the two sets P and Q by

aggregating all distance attribute pairs.

Due to the introduction of the Gaussian kernel, the dimen-

sionality of the feature vector over P is infinite. Adapting the

ideas from [2], we project this infinite dimensional feature

vector to a set of finite basis vectors, which leads to the

finite-dimensional kernel descriptor:

Fe
size(P) =

bs

∑
t=1

αe
t ∑

p∈P

ksize(dp,ut) (2)

where ut are basis vectors drawn uniformly from the support

region of distance attributes, bs is the number of basis

vectors (set to be 50 in this paper), and {αe}E
e=1 are the top

E eigenvectors computed from kernel principal component

analysis (see [2] for more details).

C. Shape Features over Point Clouds

The 3D shape is a stable cue for both instance and category

recognition. We use shape features to capture the 3D shape

cue of objects. We consider two shape features over local

point clouds: kernel PCA features and spin kernel descriptor.

In Fig. 3, we show the intuition for why kernel PCA

can provide distinctive shape features. We evaluate kernel

matrices over 3D point clouds of a ball and a plate, and

then compute eigenvalues from the resulting kernel matrix,

respectively. As we expect, the distribution of eigenvalues

of ball and plate are very different, which suggests that the

eigenvalues are able to capture the 3D shape cue of objects.

By evaluating kernel matrix KP over the point cloud P and

computing its top L eigenvalues, we obtain the local kernel

PCA feature [λ 1
P , . . . ,λ ℓ

P, . . . ,λ L
P ] with

KPvℓ = λ ℓ
Pvℓ (3)

where vℓ are eigenvectors, L is the dimensionality of local

kernel PCA features, and KP[s, t] = exp(−γk‖s− t]‖2) with

γk > 0 and s, t ∈ P.

Spin images [12] are a popular local 3D shape descriptor

that has been widely applied to shape-based object recogni-

tion problems. In spin images, a reference point in a local

3D point cloud is represented as the pair (p,n) formed by

its 3D coordinate p and surface normal n. The spin image

attributes of a point p ∈ P represented by the pair (p,n) are

given by the triple [ηp,ζp,βp]:










ηp = n · (p− p)

ζp =
√

‖p− p‖2 −η2
p

βp = arccos(n ·n)

(4)

where the elevation coordinate ηp is the signed perpendicular

distance from the point p to the tangent plane defined by the

pair of the position and normal (p,n), the radial coordinate

ζp is the perpendicular distance from the point p to the

line through the normal n, and βp is the angle between the

normals n and n. We here have used a variant of the spin

image that considers the angle between the normals of the

reference point and its nearby points. This has been shown

to perform better than the standard spin image features [9].

We aggregate the point attributes [ηp,ζp,βp] into local

shape features by defining the following match kernel.

Kspin(P,Q) = ∑
p∈P

∑
q∈Q

ka(β̄p, β̄q)kspin([ηp,ζp], [ηq,ζq]) (5)

where β̄p = [sin(βp),cos(βp)], P is the set of nearby points

around the reference point p. Gaussian kernels ka and kspin

measure the similarities of attributes β , η , and ζ , respec-

tively. In a similar way as with the size kernel descriptor,

we extract the spin kernel descriptor from the spin match

kernel by projecting the infinite feature vector to a set of

finite basis vectors.

D. Edge Features over Depth Maps

To capture edge cues in depth maps, we treat depth images

as grayscale images, i.e. depth values are equivalent to

intensity values. Gradient and local binary pattern kernel

descriptors [2] can be directly applied to depth maps to

extract edge cues.

Fig. 4. Depth maps of bowl, cereal box and cap. These three objects
exhibit very different edge characteristics in similar spatial positions. The
blue pixels are background.

The gradient match kernel, Kgrad, is constructed from the

pixel gradient attribute

Kgrad(P,Q) = ∑
p∈P

∑
q∈Q

m̃pm̃qko(θ̃p, θ̃q)ks(p,q) (6)

where P and Q are image patches from different images,

and p ∈ P are the 2D position of a pixel in a depth

patch (normalized to [0,1]). θp, mp are the orientation and

magnitude of the depth gradient at a pixel p. The normalized

linear kernel m̃pm̃q weighs the contribution of each gradient

where m̃p = mp/
√

∑p∈P m2
p + εg and εg is a small positive

constant to ensure that the denominator is larger than 0;



the position Gaussian kernel ks(p,q) = exp(−γs‖p − q‖2)
measures how close two pixels are spatially; the orientation

kernel ko(θ̃p, θ̃q) = exp(−γo‖θ̃p − θ̃q‖
2) computes the simi-

larity of gradient orientations where θ̃p = [sin(θp),cos(θp)].
The local binary kernel descriptor, Klbp, is developed from

the local binary pattern attribute:

Klbp(P,Q) = ∑
p∈P

∑
q∈Q

s̃ps̃qkb(bp,bq)ks(p,q) (7)

where s̃p = sp/
√

∑p∈P s2
p + εlbp, sp is the standard deviation

of pixel values in the 3× 3 neighborhood around the point

p, εlbp a small constant to ensure that the denominator is

larger than 0, bp is a binary column vector that binarizes the

pixel value differences in a local window around the point

p, and kb(bp,bq) = exp(−γb‖bp−bq‖
2) is a Gaussian kernel

that measures similarities between local binary patterns. The

corresponding kernel descriptors can be extracted from these

two match kernels by projecting the infinite-dimensional

feature vector to a set of finite basis vectors, which are the

edge features we use in the experiments.

IV. PYRAMID EFFICIENT MATCH KERNELS OVER

KERNEL DESCRIPTORS

We model objects as a set of local kernel descriptors. We

use pyramid efficient match kernels (EMK) [3] to aggregate

local kernel descriptors into object-level features. Pyramid

efficient match kernel combines the strengths of both bag

of words and set kernels. It maps local kernel descriptors to

a low dimensional feature space and constructs object-level

features by averaging the resulting feature vectors. Efficient

match kernels over local kernel descriptors is defined as [3]:

Kemk(P,Q) = ∑
p∈P

∑
q∈Q

kf(p,q) = φ emk(P)⊤φ emk(Q) (8)

where P and Q are sets of local kernel descriptors represent-

ing depth maps/images of objects, φ emk(P) is the feature

vector over the depth map/image of an object. We derive

the finite dimensional kernel kf from the Gaussian kernel in

two steps: (1) learn a set of basis vectors by performing k-

means over a large set of local kernel descriptors; (2) design

the finite dimensional kernel from projections of the infinite

dimensional feature induced by the Gaussian kernel using

constrained kernel singular value decomposition [3].

Spatial information is incorporated into efficient match

kernels in a similar way with spatial pyramid matching [16].

Concatenating EMK features from different spatial regions,

we have the pyramid efficient match kernel feature

φ pemk(P) = [φ emk(P
(1,1)), . . . ,φ emk(P

(R,TR))] (9)

where R is the number of pyramid levels, Tr is the number of

spatial cells in the r-th pyramid level, φemk(P
(r,t)) are efficient

match kernel features falling within the spatial region P(r,t).

We apply the pyramid feature map φ pemk over objects to

obtain our final object-level features. The dimensionality of

pyramid EMK features follows as the product of the number

of basis vectors and the number of subregions formed by

pyramid decomposition (the same across different objects).

Fig. 5. Illustration of the spatial pyramid representation. A spatial EMK
is the concatenation of EMK features computed over regions defined by a
multi-level image decomposition. From left to right: 1×1, 2×2 and 3×3
decompositions.

Pyramid EMK is a highly nonlinear transformation over

local kernel descriptors, which enables linear classifiers to

match the performance of nonlinear classifiers [3]. Since

linear support vector machines can be trained in linear

complexity [22], our system can work with large datasets

such as the multi-view object dataset collected by [14].

V. EXPERIMENTS

We distinguish between two types of object recogni-

tion: instance recognition and category recognition. Instance

recognition recognizes distinct object instances. For example,

a coffee mug instance is one coffee mug with a particular

appearance and shape. Category recognition determines the

category name of an object. One category usually contains

many different objects. While instance recognition assumes

that the query object has been observed before, category

recognition typically applies to cases in which the observed

test object is not in the training set. Our experiments aim to:

1) verify whether the proposed depth kernel descriptors out-

perform current state of the art features, such as spin images;

2) test whether combining depth kernel descriptors and image

kernel descriptors can improve view-based object recognition

significantly. We measure classification performance in terms

of accuracy. In all experiments, we use linear SVM classifier

for efficiency.

A. Dataset

We evaluate depth kernel descriptors on a large-scale

multi-view object dataset collected using an RGB-D cam-

era [14] (http://www.cs.washington.edu/rgbd-dataset). This

dataset contains color and depth images of 300 physically

distinct everyday objects taken from different viewpoints.

The objects belong to one of 51 categories. Video sequences

of each object were recorded at 20 Hz. We subsample each

sequence by taking every fifth frame, resulting in 41,877

RGB and depth images. The objects in the dataset are already

segmented from the background [14]. Multiple views of bok

choy are sampled from this dataset are shown in Fig. 6.

B. Feature Extraction

For each object, we compute depth kernel descriptors on

dense regular grids with spacing of 8 pixels. For size kernel

descriptors, we subsample the number of 3D points to be

no larger than 200 for each interest point. For kernel PCA

and spin kernel descriptors, we set the radius of the local

region around interest points to be 4cm and again subsample

the number of neighboring points to be no larger than 200.



Fig. 6. Multiple views of bok choy sampled from the RGB-D object
dataset [14]

We optimize kernel parameters in size, kernel PCA, and

spin kernel descriptors using a subset of the training set.

We extract gradient and local binary pattern depth kernel

descriptors with 16× 16 depth/image patches with spacing

of 8 pixels. For our gradient kernel descriptors we use the

same gradient computation as used for SIFT descriptors. We

set the dimensionality of the kernel PCA descriptor to be 50

and others to 200.

We consider 1× 1, 2× 2 and 3× 3 pyramid sub-regions

as shown in Fig. 5, and form object-level features using

500 basis vectors learned by K-means on about 400,000

sample kernel descriptors from training RGB-D images. The

dimensionality per depth kernel descriptor is (1 + 4 + 9)×
500= 7000. We further run principal component analysis

(PCA) to reduce the dimensionality to 1000. The total feature

extraction time per kernel descriptor is around 0.2 seconds

on unoptimized Matlab code. Kernel parameters of kernel

descriptors and the regularization parameter of the linear

SVM are optimized by performing cross validation on a

subset of the training data.

C. Instance Recognition

Following the experimental setting suggested by [14], we

train models on the video sequences of each object where

the viewing angles are 30◦ and 60◦ with the horizon and test

them on the 45◦ video sequence.

In the second column of Fig. 7, we report the accuracy of

different depth kernel descriptors for instance recognition.

The combination of five depth kernel descriptors is much

better (15 absolute percent) than any single descriptor. The

main reason is that each depth descriptor captures different

information about the objects, and the weights learned by the

linear SVM using supervised information can automatically

balance the importance of each descriptor across objects.

In the second column of Fig. 8, we compare our depth

kernel descriptors with the combination of spin images and

3D bounding boxes used in [14], [15]. As we can see,

our depth features are more than 20 percent better than

the combination of spin images and 3D bounding boxes

trained with linear SVMs, and 8 percent better than those

trained with a much less efficient nonlinear classifier, kernel

SVMs. We also compute our kernel descriptors over the 2D

RGB images, consisting of color, gradient, and local binary

Features Instance Category

Size KDES 32.0 60.0±3.3

KPCA 29.5 50.2±2.9

Spin KDES 28.8 64.4±3.1

Gradient KDES 39.8 69.0±2.3

LBP KDES 36.1 66.3±1.3

Combination 54.3 78.8±2.7

Fig. 7. Accuracies of depth kernel descriptors on the RGB-D object dataset
(in percentage). Size KDES means size kernel descriptors; KPCA means
kernel PCA based shape features; Spin KDES means spin kernel descriptors;
gradient KDES means gradient kernel descriptors; LBP KDES means local
binary pattern kernel descriptors. ± means standard deviation.

Approaches Depth RGB Depth+RGB

LinSVM [14] 32.3 59.3 73.9

kSVM [14] 46.2 60.7 74.8

RF [14] 45.5 59.9 73.1

This work 54.3 78.6 84.5

Fig. 8. Comparisons to existing instance recognition approaches using
depth features, image features, and their combinations. Accuracy is in
percentage. Depth features in [14] are combination of spin images and
3D bounding boxes. LinSVM means linear support vector machine [10];
kSVM means nonlinear support vector machines with Gaussian kernels [5];
RF means random forest [4].

pattern descriptors. As can be seen in the third column of

Fig. 8, the resulting descriptors significantly outperform the

combination of three image features used in [14], which are

color histograms, texton histograms, and SIFT. Combining

depth and image kernel descriptors achieves 84.5% accuracy,

substantially better than the best result (74.8%) reported

in [14]. In addition, the combination of depth and image

features is far better than depth only (54.3%) or image only

(78.6%). We also notice that depth features are much worse

than image features in the context of instance recognition.

This is not very surprising since the different instances in

the same category can have very similar shape.

D. Category Recognition

To test the generalization ability of our features, we test

category recognition on objects that were not present in the

training set. Our experimental setting is the same as in [14].

At each trial, we randomly choose one test object from each

category and train classifiers on the remaining 300 - 51 =

249 objects.

The average accuracy over 10 random train/test splits is

reported in the third column of Fig. 7. As we can see,

size, shape and edge depth kernel descriptors are strong in

their own right and complement one another so that their

combination (78.7%) turns out to be much better (9 absolute

percent) than the best single descriptor.

In the second column of Fig. 9, we compare our depth

kernel descriptors with the combination of spin images and

bounding boxes for category recognition. As can be seen,

our depth features significantly outperform these features.

Again, our RGB image kernel descriptors are slightly better

than those used in [14]. Combining depth and image kernel

descriptors achieves 86.2% accuracy, superior to the 81.9%



Approaches Depth RGB Depth+RGB

LinSVM [14] 53.1±1.7 74.3±3.3 81.9±2.8

kSVM [14] 64.7±2.2 74.5±3.1 83.8±3.5

RF [14] 66.8±2.5 74.7±3.6 79.6±4.0

This work 78.8±2.7 77.7±1.9 86.2±2.1

Fig. 9. Comparisons to existing category recognition approaches using
depth features, image features, and their combinations. Accuracy is in
percentage. ± means standard deviation.

Fig. 10. Recognition accuracy as we greedily add depth kernel descrip-
tors into the system, showing that depth image and point cloud features
complement each other. (See text for details on the order of descriptors.)

of linear SVMs and the 83.8% of kernel SVMs reported

in [14]. We observe that the performance of depth kernel

descriptors is comparable with image kernel descriptors,

which indicates that depth information is as important as

visual information for category recognition.

E. Analysis of Depth Kernel Descriptors

We have presented five depth kernel descriptors; an impor-

tant question to evaluate is whether they each add something

new, and whether they are all required for object recognition.

To answer this, we use a greedy strategy that incrementally

adds descriptors into our system, starting with the best depth

descriptor.

In Fig. 10, we show the accuracy as the number of depth

kernel descriptors increases in our greedy procedure. For

instance recognition, the order of selected depth features are

gradient, kernel PCA, size, spin and local binary pattern

kernel descriptors. For category recognition, the selected

depth features are gradient, spin, size, kernel PCA and

local binary pattern kernel descriptors in turn. Combining

all five features yields the best recognition performance.

As expected, features over 3D point cloud and depth maps

complement each other.

VI. CONCLUSION

We have presented five depth kernel descriptors to capture

different object cues including size, shape and edges. We

have compared depth kernel descriptors to well known shape

features, spin images, and other state-of-the-art algorithms

that combine different types of features for recognition. An

extensive experimental evaluation shows that our depth ker-

nel descriptors outperform existing approaches significantly.

In future work, it would be interesting to investigate whether

hierarchical kernel descriptors [1] can boost the performance

further.
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