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Abstract. Most previous studies on visual saliency have only focused on
static or dynamic 2D scenes. Since the human visual system has evolved
predominantly in natural three dimensional environments, it is important
to study whether and how depth information influences visual saliency.
In this work, we first collect a large human eye fixation database com-
piled from a pool of 600 2D-vs-3D image pairs viewed by 80 subjects,
where the depth information is directly provided by the Kinect camera
and the eye tracking data are captured in both 2D and 3D free-viewing
experiments. We then analyze the major discrepancies between 2D and
3D human fixation data of the same scenes, which are further abstracted
and modeled as novel depth priors. Finally, we evaluate the performances
of state-of-the-art saliency detection models over 3D images, and propose
solutions to enhance their performances by integrating the depth priors.

1 Introduction

Human visual exploration and selection of specific regions for detailed process-
ing is permitted by the visual attention mechanism [1]. The eyes remain nearly
stationary during fixation events as humans look at details in selected locations,
which makes eye movements a valuable proxy to understand human attention.
Visual saliency refers to the preferential fixation on conspicuous or meaningful
regions in a scene [2] that have also been shown to correspond with important
objects and their relationships [5]. Visual saliency is thus crucial in determin-
ing human visual experience and also relevant to many applications, such as
automatic image collection browsing and image cropping.

Visual saliency has been extensively studied in signal processing, com-
puter vision, machine learning, psychology and vision research literatures (e.g.,
[6,7,1,8,9]). However, most saliency models disregard the fact that human visual
system operates in real 3D environments, while these models only investigate
the cues from 2D images and the eye fixation data are captured in a 2D scene.
However, stereoscopic contents provide additional depth cues that are used by
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Fig. 1. Flowchart on 2D-vs-3D fixation dataset NUS-3DSaliency construction. We col-
lect eye-tracking data on both 2D and 3D viewing settings and each 2D or 3D image was
viewed by at least 14 observers. Eye fixations are recorded for each observer. The final
fixation maps are generated by averaging locations across all the observers’ fixations.

humans in the understanding of their surrounding and play an important role in
visual attention [10]. Are the observer’s fixations different when viewing 3D im-
ages compared to 2D images? How do the current state-of-the-art saliency models
perform with additional depth cues? Not only are these questions interesting and
important, answering them can also significantly benefit areas in computer vi-
sion research, such as autonomous mobile systems, 3D content surveillance and
retrieval, advertising design, and adaptive image display on small devices.

In this paper, we conduct a comparative and systematic study of visual
saliency in 2D and 3D scenes. Whereas existing eye tracking datasets captured
for 2D images contain hundreds of images, the largest available eye tracking
dataset for 3D scenes contains only a limited size of 28 stereo images [11]. A
comprehensive eye tracking dataset for 3D scenes is yet to be developed. Moti-
vated by these limitations, we collect a larger eye fixation dataset for 2D-vs-3D
scenes. A 3D camera with active infra-red illumination (Microsoft “Kinect” [3])
offers the capability to easily extract scene depth information in order to extend
2D stimulus to 3D versions. Using an eye tracker, we collect eye fixation data
to create human fixation maps which represent where viewers actually look in
2D and 3D versions of each scene. This large eye fixation dataset will be re-
leased for public usage. Our work further aims at quantitatively assessing the
contribution of depth cues in visual attention in 3D scenes and proposing depth
priors to improve the performances of state-of-the-art saliency detection models.
In summary, the contributions of our work mainly include:

1. The eye-fixation dataset NUS-3DSaliency is collected from a pool of 600
images and 80 participants in both 2D and 3D scenes.

2. We analyze and quantify the difference between 2D and 3D eye fixation
data. Based on the observations, the novel depth priors are proposed and
integrated into saliency detection models.

3. We comprehensively evaluate the performances of state-of-the-art saliency
detection models augmented with proposed depth priors on 2D and 3D eye
fixation data.
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2 Related Work

In order to understand what human attend to and qualitatively evaluate computa-
tionalmodels, eye tracking data are used to create the human fixationmaps, which
will offer an excellent repository of ground truth for saliency model research.Most
eye tracking datasets [7,12,13,5] are constructed for 2D scenes and most saliency
models only investigate the cues from 2D images or videos. In contrast, relatively
few studies have investigated visual attention modeling on 3D contents. Recently,
several researchers have pioneered visual attention research on stereoscopic 3D
contents. Jansen et al. [11] examined the influence of disparity on human behav-
ior in visual inspection of 2D and 3D still images. They collected eye tracking data
from 14 participants across 28 stereo images in a free-viewing task on 2D and 3D
versions. A recent study [14] collected 21 video clips and the corresponding eye
gaze data in both versions. However, compared with 2D eye tracking datasets, a
comprehensive eye tracking dataset for 3D scenes is still absent. We believe that
the studies on a rich and comprehensive 3D eye tracking dataset can offer inter-
esting and important insights into how eye fixations are driven in real 3D envi-
ronment. Motivated by this requirement, we collect a large 3D image database in
this work, and then capture eye tracking data from an average of 14 participants
per image across both 2D and 3D versions of 600 images.

Depth cues provide additional important information about contents in the
visual field and can be regarded as relevant features for saliency detection [15]
and action recognition [29]. Stereoscopic contents bring important additional
binocular cues for enhancing human depth perception. Although there have been
several efforts [16,17,18,19] to include the depth channel into computational
attention models, a major problem in extracting depth from stereo input is
the computation time needed to process disparities. In this paper, we study
the discrepancies in human fixation data when viewing 2D and 3D scenes. The
influence of depth on visual saliency is then studied and serves as the basis for
learning depth priors to model 3D saliency.

3 Dataset Collection and Analysis

3.1 Dataset Collection

Our dataset aims to provide a comprehensive and diverse coverage of visual
scenes for eye tracking analysis. We choose indoor and outdoor scenes that have
natural co-occurrence of common objects. Furthermore, we systematically gen-
erate variants of scenes by varying parameters like depth ranges of different
objects, number and size of objects and degree of interaction or activity de-
picted in the scene. We use the Kinect camera, which consists of an infra-red
projector-camera pair as the depth camera that measures per pixel disparity,
to capture a 640 × 480 pixel color image and its corresponding depth image at
the same time. To the best of our knowledge, this is the largest 3D eye track-
ing dataset available to date for visual attention research, in terms of the total
number of images and size of subject pool.
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Fig. 2. The relationship between 2D and 3D fixations. The fixation location captured
from participant viewing at B is the same for both 2D and 3D experiment setups.
Screen depth W is the distance from the participant to the screen, while perceive
depth P is calculated based on the depth value.

Stereoscopic Image Pair Generation for 3D Display. Following the
collection of the color and depth image pair, the next step is to create 3D stimulus
which involves generating left and right images. Prior to generating left-right
image pair, some pre-processing on the captured images are required. We first
perform calibration on both depth and color cameras to find the transformation
between their images in a similar way as [4]. Next, we over-segment the color
image into superpixels [20]. Each pixel, whose original depth value equal to 0, is
assigned the average depth of the nearest neighbors in 8 directions in the same
superpixel. Finally, we apply a default Laplacian filter with a 3 × 3 kernel for
pixels whose depth values equal to 0 until all missing depth pixels are filled.

The stereoscopic image pair is produced by extracting parallax values from
the smoothed depth map D and applying them to the left image I l and right
image Ir. For each pixel of the input color image I, the value of the parallax is
obtained from its depth value. Figure 2 shows the relationship between 2D and
3D fixation. In both 2D and 3D viewing, for example, the fixation location for
viewing B is recorded as the same position by the eye tracker. Considering the
input image as a virtual central view, the left and right views are then obtained
by shifting the input image pixels by a value ρ , ρ = parallax/2. In particular,
the left image I l and right image Ir can be obtained as I l(xl

p) = Ir(xr
p) = I(xp),

where xp denotes the coordinate of the pixel in the color image I, the coordinate
of the pixel in each view is calculated as xl

p = xp + ρ, xr
p = xp − ρ. Following

Figure 2, the parallax is calculated as follows:

parallax = ζ × (1−
V

W
), (1)

where ζ is the interaxial gap between two eyes, averaged as 60mm, V is the
screen depth or the distance from eyes to the screen and fixed as 80cm in our
experiment setup, W is the vertex depth, equal to the summation of screen depth
V and perceived depth P . For each pixel x in the image I, the perceived depth
P (x) can be calculated as P (x) = D(x) × τ , where τ (τ = 39.2) is the ratio
between the maximum depth distance captured by Kinect (10,000mm) and the
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Fig. 3. Exemplar data in our eye fixation dataset NUS-3DSaliency. From left to right
columns: color image and raw depth map captured by Kinect camera, smoothed depth
map, 2D fixation map, and 3D fixation map.

maximum value in the depth image D (255). Since our dataset aims to provide
the comprehensive and diverse coverage of visual scenes for eye tracking analysis,
we reject images that are similar or have significantly overlapping content with
other images in the dataset. Furthermore, images with significant artifacts after
the smoothing process were rejected as an effort to minimize problematic images.

Participants. The participants (students and staff members of a university)
ranged from 20 to 33 years old (µ=24.3, σ=3.1), among them 26 females and
54 males with normal or corrected-to-normal vision. All participants are naive
to the purpose of the study and sign consent forms for public distribution of
recorded eye-fixation data.

Data Collection Procedure. We use a block based design and free viewing
paradigm. The subject views two blocks of 100 images that are unique and
randomly chosen from the pool of 600 images, one of the blocks is entirely 2D
and the other one entirely 3D. 3D images were viewed by using active shutter
glasses on a 3D LCD display and 2D images were shown on the same screen in
2D display mode and the active shutter glasses switched off. In order to record
subject eye gaze data, we used an infra-red illumination based remote eye-tracker
from SensoMotoric Instruments Gmbh. The eye-tracker gives less than 1o error
on successful calibration. The eye tracker was calibrated for each participant
using a 9-point calibration and validation method. Then images were presented
in random order for 6 seconds followed by a gray mask for 3 seconds.

Human Fixation Maps. Human fixation maps are constructed from the
fixations of viewers for 2D and 3D images to globally represent the spatial dis-
tribution of human fixations. Similar to [21], in order to produce a continuous
fixation map of an image, we convolve a Gaussian filter across all corresponding
viewers’s fixation locations. Six examples of 2D and 3D fixation maps are shown
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(a) (b)

Fig. 4. (a) The correlation coefficients between 2D and 3D fixations in different depth
ranges. We observe lower correlation coefficients for farther depth ranges.(b) Saliency
ratio in different depth ranges for 2D and 3D scenes respectively. The participants show
to fix at closer depth ranges more often than farther depth ranges.

in Figure 3, the brighter pixels on the fixation maps denote the higher salience
values.

3.2 Observations and Statistics

Using the recorded eye tracker data, we mainly investigate whether spatial distri-
butions of fixations are different when human subjects view 3D images compared
to 2D version. The interrelated observations are summarized as follows.

Observation 1: Depth cues modulate visual saliency to a greater extent at

farther depth ranges. Furthermore, humans fixate preferentially at closer depth

ranges.

In order to study the difference between 2D and 3D versions with respect to
different depth range, fixation data for each 2D image I and its corresponding
3D image I ′, are divided into n (n = 8) depth ranges. Then for each depth range
rb, b ∈ {1, · · · , n}, we compute the similarity between the 2D and 3D fixation
distributions. We use the correlation coefficients (CC)[22] as similarity measure
between two fixation maps. Figure 4(a) shows lower correlation coefficients for
farther depth ranges.

Furthermore, in order to create a quantitative statistic of the relationship
between the fixation distributions and depth ranges, we define saliency ratio
as the description of fixation distribution. For the image I, we first compute
saliency ratio γ(rb) as a function of the depth range, γ(rb) =

∑
x S(x)δ(D(x) ∈

rb)/
∑

x S(x), where δ(D(x) ∈ rb) is set to 1 if x is in the depth range rb. Fig-
ure 4(b) shows the saliency ratio vs. the depth range for 2D and 3D fixation data
respectively. Looking at the data from the entire fixation dataset, the saliency
ratio systematically decreases with the increase in depth range. A linear-best-fit
of 2D(3D) saliency ratio with depth planes yields negative slopes −0.045(−0.047)
and indicates a statistically decreasing trend with increasing depth planes. From
our analysis of fixation distribution and 2D-vs-3D correlation statistics over the
entire dataset, we observe, (a) the larger discrepancy between 2D and 3D fixation
data at further depth planes and, (b) the greater attenuation of visual attention
at farther depth planes.
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Fig. 5. We examine the ability of 2D/3D fixation map to predict the labeled inter-
esting objects and histogram of the AUC values for 2D and 3D fixation dataset are
comparatively shown is blue and red colors, respectively.

Observation 2: A few interesting objects account for majority of the fixations

and this behavior is consistent across both 2D and 3D.

Such interesting objects such as human faces, body parts, text, cars and other
conspicuous objects are discussed in [12]. Other studies such as [23] have shown
that the eye fixations are correlated to the locations of such objects. In order
to analyze this relationship, we follow the method in [12] by manually labeling
objects of interest. To form more object-like contours, annotation of such regions
is done by over-segmentation using superpixels [20] for each color image in our
dataset. Despite occupying only 7.6% of the image area on average, the area
corresponding to interesting objects account for 54.2% and 51.2% of the fixation
points for 3D and 2D respectively. To quantitatively measure how well a 2D/3D
fixation map predicts interesting objects on a given 2D/3D image, we compute
the AUC value [8], the area under receiver operating characteristic (ROC) curve
for each image. We use the labeled objects of interest as ground truth along
with the fixation map as the predicted map of the image, this method effectively
marginalizes out the influence of depth planes and helps to understand the role

Original

images
Interesting

objects

2D Fixation

maps
3D Fixation

maps

Fig. 6. Exemplar interesting objects manually labeled and fixation maps for 2D and
3D images. It indicates that the participants frequently fixed on such areas.
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Fig. 7. Examples with low and high depth-of-field values

Fig. 8. Saliency ratio as a function of depth range. The saliency ratio distribution for
200 lowest depth-of-field images and for 200 highest depth-of-field images calculated on
(a) 3D and (b) 2D fixation dataset respectively. The plot indicates that depth-of-field
has influence on the allocation of attention in both 2D and 3D images.

of objects in isolation. Figure 5 shows the distribution of the AUC value for 600
labeled images. The average AUC for the entire 3D fixation dataset is 0.7399
and 0.7046 for 2D fixation dataset. Figure 6 gives examples of interesting objects
along with corresponding fixation maps. These results suggest that the 2D and
3D fixation points show good correspondence with a few interesting objects.

Observation 3: The relationship between depth and saliency is non-linear

and characteristic for low and high depth-of-field scenes.

Importantly, we observe that strong correlation exists between the depth-of-
field (DOF) of the image and the fixation distribution. The DOF value ℓ of the
image I is inferred from the distance between farthest and nearest depth values.
In this experiment, we assign depth values into n (n = 21) depth ranges. The
ℓ is defined as ℓ = |hs − ht| , where hs and ht denotes the mean of the depth
value for the pixels in the nearest and farthest depth ranges. Figure 7 shows
some examples corresponding to the different DOF values. To demonstrate the
influence of DOF, we analyze the saliency ratio defined in Observation 2 on two
subsets of 200 images each selected from our dataset, one low-DOF subset and
one high-DOF subset.The low DOF and high DOF partitions have a significant
overlap of object types and this effectively marginalizes out the influence of
objects. Similar to the statistic described in Observation 2, we create the statistic
of the relationship between saliency ratio γ and the depth range for these two
image subsets respectively. As shown in Figure 8, the saliency ratio distribution
on different depth ranges have noticeable discrepancies between low DOF and
high DOF images, as well as the distribution is non-linear. We find that 2D(3D)
low DOF and corresponding 2D(3D) high DOF saliency ratio distributions in
Figure 8 are dissimilar at p = 0.05 using a non parametric Kolmogorov-Smirnov
test, on the other hand, saliency ratio distribution for 2D low(high) DOF shows
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Table 1. The CC (correlation coefficient) comparison of fixation distribution on the
2D and 3D fixation data

DOF 0-0.25 0.25-0.5 0.5-0.75 0.75-1 Avg.

CC 0.8066 0.5495 0.2721 0.3057 0.4835

similarity to 3D low(high) DOF at p = 0.05. Motivated by this observation, we
use the Gaussian Mixture Models (GMM) to model the distribution and the
further implementation will be described in the next section.

Observation 4: The additional depth information led to an increased differ-

ence of fixation distribution between 2D and 3D version, especially, when there

are multiple salient stimuli located in different depth planes.

In order to study the difference between 2D and 3D versions, we divide the
image dataset into four groups according the DOF values and compute the cor-
relation coefficients between two fixation maps for the four groups respectively.
Table 1 shows lower correlation coefficients for high DOF image groups. Figure 9
shows the fixation maps from the lower and higher depth-of-field images in 2D
and 3D versions respectively.

Fig. 9. Fixation maps and fixation distributions for 2D and 3D images. The results
indicate a clear difference between 2D and 3D fixation maps with the increased Depth-
of-field of the images.

4 Saliency Detection with Depth Priors

Based upon the above observations, we seek the global-context depth priors
in order to improve the performance of the state-of-the-art saliency detection
models. In this section, we propose to model the relationship between depth and
saliency by approximating the joint density with a Mixture of Gaussians.
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4.1 Learning Depth Priors

Formally, let D and S represent the depth image and fixation map of the image
I, respectively. And d and s denote N -dimensional vector formed by orderly
concatenating the patches from a regular partition of the image D and S re-
spectively, N is the number of patches in the image. For the vector s, larger
(smaller) magnitude implies that the patch is more salient (less salient). ℓ is the
depth-of-field value introduced in the Section 3.2. The joint density between
saliency response and depth distribution is written as

p(s, d|ℓ) =
K∑

k=1

p(k)p(s|ℓ, k)p(d|ℓ, k), (2)

where k indicates the kth component of the GMM. From the joint distribution
we calculate the conditional density required for the depth modulated saliency:

p(s|d, ℓ) =
p(s, d|ℓ)

∑K

k=1 p(k)p(d|ℓ, k)
(3)

∝
C∑

c=1

qc(ℓ)

K∑

k=1

πkN (s;µc
k, Λ

c
k)N (d; νck, Υ

c
k ),

where qc(·) is a quantization function for the depth-of-field. We compute a C-
bins histogram of depth-of-field on the whole dataset. If ℓ falls into the cth bin,
qc(ℓ) = 1, otherwise, qc(ℓ) = 0. Finally, the conditional expected saliency of the
test image It, with the depth vector dt and depth-of-field ℓt, is the weighted sum
of K linear regressors:

st =

C∑

c=1

qc(ℓt)

∑K

k=1 µ
c
k ∗ w

c
k∑K

k=1 w
c
k

, (4)

wc
k = πkN (dt; ν

c
k, Υ

c
k ).

The model parameters are obtained from the training dataset and the EM algo-
rithm is applied for fitting Gaussian mixtures. For the image It, its corresponding
depth saliency map can be defined as the predicted saliency st. Note that st has
a non-linear dependency with respect to the image depth distribution dt.

4.2 Saliency Detection Augmented with Depth Priors

In order to investigate whether the depth priors are helpful for determining
saliency, we extend seven existing methods to include the learned depth priors:
Itti model (IT) [1], graph based visual saliency (GBVS) [8], frequency-tuned
model (FT) [24], self-information (AIM) [7], incremental coding length (ICL)
[25], local steering kernel (LSK) [26] and low-rank representation based model
(LRR) [27]. The bottom-up saliency value predicted by the original models is
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denoted as ψ(x). The final saliency can be achieved1 by simply using summation
⊕ or point-wise multiplication ⊗ as the fusion of two components. The final
saliency is described by the equation:

S(x) = ψ(x)(⊕/⊗)p(s(x)|d(x), ℓ). (5)

5 Experiments and Results

In this section, we evaluate the saliency detection performance of the state-of-
the-art models on our 2D and 3D fixation of NUS-3DSaliency dataset. Further-
more, we quantitatively assess the effectiveness of the depth priors improving
the performances of saliency prediction algorithms.
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(a) 2D fixation dataset (b) 3D fixation dataset

Fig. 10. ROC curves of different models. The results are from seven bottom-up saliency
detection models by integrating depth priors to predict 2D and 3D fixation individually.

All saliency models use default parameter settings given by the corresponding
authors. In order to learn depth priors, each image is resized to 200× 200 pixels
and regularly partitioned into 15×15 patches for training Gaussian models. The
entire dataset is divided into four groups (C = 4) according to the depth-of-field
value of each image. Depth saliency prediction is satisfactory with K = 5 as the
number of the Gaussian components. For each image group, we randomly sepa-
rate into 5 subsets, 4 subsets as the training set to learn the parameters of GMM
and the remaining subset for testing. All the selected models are evaluated based
on the following widely-used ROC and AUC. We also compute the correlation
coefficients (CC) [22] between the fixation map and the predicted saliency map
for evaluation.

5.1 Comparison of State-of-the-art Models

In this study, we examine the capability of seven bottom-up visual attention
models to predict both the 2D and 3D fixation data in a free-viewing task.

1 Due to the space limitation, we do not further report how to more elegantly integrate
depth priors into the models themselves, and only do simple late fusion in this work.
We will explore the methods along this direction in our further work.
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Table 2. The AUC and CC (correla-
tion coefficient) comparison of different
saliency models without the depth priors
on the 2D and 3D eye fixation dataset

Criteria AUC CC
Method 2D Fix. 3D Fix. 2D Fix. 3D Fix.

IT 0.7270 0.7299 0.2706 0.2594
GBVS 0.7486 0.7506 0.2986 0.2844
FT 0.5707 0.5726 0.1402 0.1388
ICL 0.7676 0.7673 0.3095 0.2759
AIM 0.7293 0.7308 0.2868 0.2531
LSK 0.7142 0.7158 0.2658 0.2425
LRR 0.8045 0.7971 0.3155 0.2975

2D Fix. 0.7982 0.3797
3D Fix. 0.8156 0.3797

Table 3. The AUC and CC (correla-
tion coefficient) comparison of different
saliency models with the depth priors on
the 2D and 3D eye fixation dataset

Criteria Method 2D Fix. 2D Fix. 3D Fix. 3D Fix.
⊕ ⊗ ⊕ ⊗

AUC IT 0.8521 0.8536 0.8490 0.8539
GBVS 0.8541 0.8562 0.8509 0.8546

FT 0.7995 0.7458 0.7971 0.7449
AIM 0.8502 0.8517 0.8495 0.8503
ICL 0.8406 0.8088 0.8455 0.8077
LSK 0.8496 0.8233 0.8453 0.8237
LRR 0.8511 0.8495 0.8556 0.8463

CC IT 0.4000 0.4202 0.3752 0.3977
GBVS 0.4128 0.4346 0.3903 0.4128

FT 0.3355 0.2804 0.3148 0.2680
AIM 0.3651 0.4180 0.3419 0.3913
ICL 0.4126 0.3704 0.3850 0.3248
LSK 0.4064 0.3764 0.3793 0.3511
LRR 0.4065 0.4085 0.3847 0.3953
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(a) 2D fixation data (b) 3D fixation data

Fig. 11. ROC curves of different models. The results are from seven bottom-up saliency
detection models to predict on the 2D and 3D fixation data individually.

Figure 11 and Table 2 show the comparison results. First of all, most of models
performed well for predicting human fixation when viewing 2D scenes. LRR
exhibits stronger consistence with human eye fixations than the other models.
We also evaluate the performance on 2D(3D) fixation maps to predict the 3D(2D)
fixation maps. Interestingly, the AUC for the 2D fixation maps to predict 3D
version is equal to 0.7982. On the contrary, the AUC of 0.8156 is obtained using
3D fixation maps to predict 2D fixation maps.

In contrast to 2D scenes, 3D scenes contain the additional information re-
garding the depth cue. This additional information could change the saliency of
regions that are present in both 2D and 3D images. Here we show that the overall
saliency is comparable in 2D and 3D scenes in terms of AUC. Thus, the bottom-
up saliency models should also predict a fraction of the allocation of attention
in 3D scenes. However, all models conducted on 2D scenes perform significantly
better than 3D versions in terms of correlation coefficients. It further suggests
that in a 3D attention model, depth could be considered as the important cue
for saliency detection.
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(a) (b)

Fig. 12. Representative examples in depth saliency prediction on 2D and 3D scenes
respectively. (a) The predicted depth saliency maps are similar between 2D and 3D
versions due to the scenes with one conspicuous area/object clearly standing out from
the others. (b) The results show an obvious difference of the predicted depth saliency
maps between 2D and 3D versions when multiply attractive objects or no conspicuous
stimuli in the scenes.

5.2 Depth Priors for Augmented Saliency Prediction

In this subsection, we assess the influence of the depth priors on saliency detec-
tion. To evaluate quantitatively the effectiveness of the proposed depth priors,
the results of saliency models integrating depth priors are shown in Table 3. The
ROC curves are illustrated in Figure 10. These results show that the models
with predicted depth priors perform consistently better than those without such
depth priors. Overall we observe a 6% to 7% increase in predictive power using
depth based cues. Another important aspect brought out in Table 2 a multi-
plicative modulating effect explains the influence of depth on saliency better
than a linear weighted summation model, the latter has been used popularly in
literature to combine results saliency maps derived from individual features [28].

Furthermore, Figure 12 gives some predicted saliency maps using depth priors
alone (denoted as depth saliency map). On the one hand, the predicted depth
saliency maps are similar in their spatial distribution between 2D and 3D versions
when there is one conspicuous area or object clearly standing out from the others.
On the other hand, when the scenes include multiple objects or no conspicuous
objects, there is a noticeable difference between the predicted depth saliency
maps of 2D and 3D cases.

6 Conclusions and Future Work

In this paper, we introduce the eye fixation dataset NUS-3DSaliency compiled
from 600 images for both 2D and 3D scenes viewed by 80 participants. Using the
state-of-the-art models for saliency detection, we have shown new performance
bounds for this task. We expect that the newly built 3D eye fixation dataset
would help the community advance the study of visual attention in a real 3D
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environment. Furthermore, based on the analysis of the relationship between
depth and saliency, extending the saliency models to include the proposed depth
priors could consistently improve performance of the current saliency models.
In future work, we are interested in how to integrate depth priors into various
models instead of the current late fusion methods.
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