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DepthMeasures forMultivariate Functional Data

FRANCESCA IEVA AND ANNA M. PAGANONI
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In this article, we address the problem of mining and analyzing multivariate
functional data. That is, data where each observation is a set of possibly correlated
functions. Complex data of this kind is more and more common in many research
fields, particularly in the biomedical context. In this work, we propose and apply a
new concept of depth measure for multivariate functional data. With this new depth
measure it is possible to generalize robust statistics, such as the median, to the
multivariate functional framework, which in turn allows the application of outlier
detection, boxplots construction, and nonparametric tests also in this more general
framework. We present an application to Electrocardiographic (ECG) signals.

Keywords Depth measures; ECG signals; Multivariate functional data;
Rank tests.

Mathematics Subject Classification Primary 62P10; Secondary 92C55.

1. Introduction and Notation

Today the data coming from a biomedical context are frequently functions or
images produced by medical devices. This calls for the identification of suitable
models and inferential techniques for managing the complexity of such data. For
example, a challenging task in functional data analysis is to provide an ordering
within a sample of curves to allow the definition of order statistics, such as ranks
and L-statistics (see Fraiman and Meloche, 1999). A natural approach to analyze
features of functional data is the concept of statistical depth, which provides a
measure of centrality or outlyingness of an observation with respect to a given
dataset or to a population distribution. Several definitions of depth measures for
multivariate data have been proposed and analysed in the literature (for example,
see Tukey, 1975; Liu, 1990; Liu and Singh, 1993; Zuo and Serfling, 2000; Zuo,
2003; among others). A generalization to univariate functional data that starts from
depth measures for multivariate data is given in Lopez-Pintado and Romo (2009).
They also provide an extension of robust statistics to a functional framework. This
extension generalizes properties of depth measures which are proved to hold in the
multivariate case (see Liu, 1990; Zuo and Serfling, 2000; Serfling, 2006 for further
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1266 Ieva and Paganoni

details on the multivariate setting). A specific focus on trimmed means for functional
data is presented in Fraiman and Muniz (2001). They propose a generalization of
some results of Fraiman and Meloche (1999) about multivariate L-estimators.

In this article, we address the problem of exploring and analysing multivariate
functional data. That is, each data observation is a set of possibly correlated
functions. In particular, our concerns focus on the definition of suitable depth
indexes to rank multivariate functional objects and then to make inference on
them. In fact, in several applications, the main focuses are to perform an
unsupervised clustering of functions arising from different populations and to make
inference about the latent differences among clusters, for example analyzing the
morphological structure of the curves shape. This is usually implemented without
parametric assumptions on the model generating the sample of curves, as in Lopez-
Pintado and Romo (2006) and Cuevas et al. (2007). There is also an interest in
making inference based on specific summary statistics, as proposed in Li and Liu
(2004) for the multivariate setting. Once a depth measure is associated with each
univariate/multivariate functional data within a sample, it is possible to rank data
as well as to visualize the result of ranking through functional boxplots, as proposed
in Sun and Genton (2011), Sun et al. (2012) and generalized in Ieva (2011).

In this article, we address with multivariate functional data. First, we generalize
the concept of a depth measure for univariate functional data to the multivariate
functional case; this depth measure is derived from averaging univariate centrality
measures for functional data in a suitable index. Then, we define suitable
generalizations of nonparametric statistics for ranking and classifying multivariate
curves as well as making inference on them. We also widen the employment of
functional boxplots. This graphical tool is generalized to the more complex case
of samples of multivariate functions. Finally, an extension of Wilcoxon rank test
based on the order induced by the multivariate functional depth is proposed to test
differences between groups of multivariate curves.

In fact, two are the main goals of the analysis: the first is to point out a
suitable method for detection of outliers in a multivariate functional setting, within
a sample of curves arising from the same population. The second is to carry out
a nonparametric test for comparing samples of multivariate curves and making
inference on the differences between the corresponding populations.

A natural application of this theoretical framework is in a biomedical context.
For example, applications that deal with cardiovascular diseases diagnosed by
Electrocardiographic (ECG) devices. In fact, ECG signals can be considered
multivariate functional data with correlated components. Each data describes
the same biological event, i.e., the heartbeat. In this context, some interests are
classification of groups of curves with similar morphological patterns, multivariate
functional outlier detection within a homogeneous group, and classical inference
on means and quantiles of subpopulations. From a clinical view point, the first
concern is how to carry out a semi automatic diagnosis based only on the
morphological deviations from physiological patterns induced by the presence of the
disease of interest. The second issue leads to profile “typical” curve expression for
each pathology. The third aim is the investigation for the presence of statistically
significant differences in the subpopulations of pathological units with respect to
physiological ones.

This article is organized as follows. In Sec. 2, a definition of multivariate
functional depth is presented and the statistical properties of this depth measure
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Depth Measures for Multivariate Functional Data 1267

are proved in the more general framework of multivariate functional data. In
Sec. 3, an application to ECG signals of healthy patients and patients affected by
Bundle Brunch Block Infarction is presented. Finally, Sec. 4 contains conclusions,
discussion of results and further developments. The proofs of propositions stated in
Sec. 2.1 are included in the Appendix.

2. Band Depth and Inference for Multivariate Functional Data

In this section, a new concept of multivariate functional depth measure is presented
and some natural properties are established. Moreover, a modified version of the
band depth is given and it is used to construct an extension of functional boxplot
to the multivariate setting. Finally, a Wilcoxon non parametric rank test framework
is adopted to make inference on samples of multivariate functional data, once they
have been ranked according to a suitable multivariate functional index of depth.

2.1. Band depth for Multivariate Functional Data

As mentioned in the previous section, a natural tool to analyze and rank data is
based on the concept of statistical depth. Statistical depth measures the centrality of
a given observation within a group of data providing a center-outward ordering of
the set itself. In general, several different definitions of depth can be given (see Zuo
and Serfling, 2000). In our case, we refer to the band depth measure for univariate
functional data proposed in Lopez-Pintado and Romo (2009) and we introduce one
way of extending this notion to the framework of multivariate functional data.

Let X be a stochastic process with a law P taking values on the space ��I�
of real continuous functions on the compact interval I . The graph of a function
f ∈ ��I� is the subset of the plane G�f� = ��t� f�t�� � t ∈ I�. The random band depth
of order J ≥ 2 for a function f ∈ ��I� is

BDJ
PX
�f� =

J∑
j=2

PX�G�f� ⊂ B�X1� X2� � � � � Xj���

where B�X1� X2� � � � � Xj� is the random band in �2 delimited by X1� � � � � Xj ,
independent copies of the stochastic process X, defined as

B�X1� � � � � Xj� =
{
�t� y�t�� � t ∈ I� min

r=1�����j
Xr�t� ≤ y�t� ≤ max

r=1�����j
Xr�t�

}
� for j= 2� � � � � J�

In this article, we propose a new definition of a band depth measure for
multivariate functional data, i.e., data generated by a stochastic process X taking
values in the space ��I��s� of continuous functions f = �f1� � � � � fs� � I → �s.

Definition 2.1. Let f be a function on I taking values in �s. The multivariate band
depth measure is defined as

BDJ
PX
�f� =

s∑
k=1

pkBD
J
PXk

�fk�� pk > 0 for k = 1� � � � � s�
s∑

k=1

pk = 1� (1)

Obviously, this is just one of the possible extensions of the concept of band
depth to the multivariate functional setting. This definition allows the analyst to
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1268 Ieva and Paganoni

take into account all the components of the multivariate data. In general, the choice
of weights in (1) is problem driven. So doing, weights may account for any previous
knowledge about the data and/or about the correlation structure between the
components of multivariate functional data. In particular, the dependence between
data components, which depict the same event from different perspectives, should
be summarized in a suitable choice of weights, since they rule how to average depth
measures of marginal components. The freedom in weights choice causes a lack of
uniqueness in the proposed definition, but guarantees a great adaptivity to the real
problem under study.

Let X be a multivariate random process such that P�mink=1�����s �Xk�� > M� → 0
as M → �. Using the properties of the functional depth measure summarized in
Lopez-Pintado and Romo (2009), it is easy to prove the following results on the
basic properties of the multivariate band depth measure defined in (1).

Proposition 2.1.

(a) Let T�f� = A�t�f�t�+ b�t�, where ∀t ∈ I A�t� is a s × s diagonal matrix such that
Akk�t� are continuous functions in I , with Akk�t� 	= 0, for each t ∈ I , and b�t� ∈
��I��s�. Then BDJ

PT�X�
�T�f�� = BDJ

PX
�f�.

(b) BDJ
PX�g�t��

�f�g�t��� = BDJ
PX�t�

�f�t�� when g is a one-to-one transformation of the
interval I .

(c) supmink=1�����s �fk��>M BDJ
PX
�f� → 0 as M → �.

(d) If ∀k = 1� � � � � s the probability distribution PXk
on ��I� has absolutely continuous

marginal distributions, then BDJ
PX

is a continuous functional on ��I��s�.

If X1� � � � �Xn are independent copies of the stochastic process X, the sample
version of (1) can be introduced in order to conduct descriptive and inferential
statistical analyses on a set of multivariate functional data f1� � � � � fn generated by
the process X. For any f in the sample f1� � � � � fn we can compute the depth as

BDJ
n�f� =

s∑
k=1

pkBD
J
n�k�fk��

where for the function fk ∈ ��I�

BDJ
n�k�fk� =

J∑
j=2

(
n

j

)−1 ∑
1≤i1<i2<···<ij≤n

��G�fk� ⊂ B�fi1�k� � � � fij �k��

and ��G�fk� ⊂ B�fi1�k� � � � � fij �k�� indicates if the band determined by �fi1�k� � � � � fij �k�

contains the whole graph of f . The k component of the vector fi is denoted by fi�k.

Proposition 2.2. The sample version of multivariate functional depth is consistent, i.e.,


BDJ
n�f�− BDJ

PX
�f�
 → 0� a.s. if n → �� (2)

Moreover, the convergence is uniform on any equicontinuous set A of functions on I
taking values in �s.
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Depth Measures for Multivariate Functional Data 1269

As proposed in Lopez-Pintado and Romo (2009), and also in this multivariate
functional setting, we can move to the analogous of the modified band depth:

MBDJ
n�f� =

s∑
k=1

pkMBDJ
n�k�fk�� (3)

where for the function fk ∈ ��I� the modified band depth measures the proportion
of time that the curve fk is in the band, i.e.,

MBDJ
n�k�fk� =

J∑
j=2

(
n
j

)−1 ∑
1≤i1<i2<···<ij≤n

	̃�E�fk� fi1�k� � � � � fij �k���

where E�fk� =� E�fk� fi1�k� � � � � fij �k� = �t ∈ I�minr=i1�����ij
fr�k�t� ≤ fk�t� ≤ maxr=i1�����ij

fr�k�t�� and 	̃�fk� = 	�E�fk��/	�I� and 	 is the Lesbegue measure on I . As stated in
Lopez-Pintado and Romo (2009), the values of the modified band depth measure are
stable with respect to the choice of J , and in order to be computationally faster we
set J = 2 and we denote MBDJ

n�f� as MBD�f�. Also, in the multivariate functional
context the use of the modified band depth measure avoids the problem of ties.

Given the multivariate band depth measure defined in (3), a sample of
multivariate functional data f1� � � � � fn can be ranked. We will denote f
i� the sample
curve associated with the i-th largest depth value, so f
1� = argmaxf∈�f1�����fn�MBD�f� is
the median (deepest and more central) curve, and f
n� = argminf∈�f1�����fn�MBD�f� the
most outlying one.

2.2. Multivariate Functional Boxplot and Outlier Detection

The idea of generalizing the concept of functional boxplot to multivariate functional
data is based on the new definition of multivariate functional depth measure given in
(3) which takes into account simultaneously the behaviour of all the s components
of f , and weighing the depth measures of the marginal components in a suitable
way. The same idea is used when the goal is to carry out multivariate functional
outlier detection. For example, to robustify a training set adopted in unsupervised
classification algorithms (see Ieva et al., 2012). In fact, the definition of multivariate
functional outlier is strictly connected to the definition of depth measure and, in
particular, to the choice of the weights used to define the multivariate functional
depth measure. In general, the meaning of the term outlier changes as long as
the different types of data are considered. In our case, an outlier among ECG
curves could be a signal very different from others in terms of phase/amplitude
and morphology. In this case, the concept of outlier has to take into account
outlyingness on all the components (i.e., the leads), eventually weighting them in
different way according to the importance of each lead within the diagnosis process,
since all its components are describing the same biological event (i.e., the heartbeat).
That is why we define an average index such the one proposed in (1).

The following steps should be implemented on multivariate curves sample
f1� � � � � fn.

1. For each statistical unit j, j = 1� � � � � n, compute the value of depth measure
MBD�fj�;
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1270 Ieva and Paganoni

Figure 1. Functional boxplots (only leads V1 and V6 are represented) of 150 ECG traces.
The central bands (grey area), fences (solid lines), and outliers (dotted lines) of each lead
are defined as described in Sec. 2.2, according to the ranking induced by MBDJ

n�f� defined
in (3), and all the leads are weighted equally. (color figure available online)

2. Rank the multivariate functions fj�t� according to the value of multivariate depth
measure and define outliers as those curves that, for at least one t, are outside
the fences obtained by inflating by h times the envelope defined by the �% of
the central region. In particular, the �% central region for the component fk
determined by a sample of curves is defined as

�� =
{
�t� y�t�� � min

r=1�������n�
f
r��k�t� ≤ y�t� ≤ max

r=1�������n�
f
r��k�t�

}
�

where ��n� is the smallest integer greater than or equal to �n. In the following,
we set �% = 50% and h = 1�5.

3. Visualize the functional boxplot of each component, building the envelope of the
50% deepest functions and then the functional boxplot according to the ranking
arising from the multivariate index previously pointed out.

Notice that this algorithm defines outliers according to the multivariate index
of depth, which takes into account simultaneously the depth of all components of
the multivariate function. This implies that the envelope of the central region is
composed of the same �% most central curves, with respect the multivariate index
of depth, in each component (see also Lopez-Pintado and Romo, 2007).

An example of multivariate functional boxplot is shown in Fig. 1. The presence
of a high number of outliers can be appreciated in the picture; in fact the 150
traces correspond to 100 physiological and 50 pathological units. So this explorative
graphical tool calls for a statistical quantitative procedure to test differences between
subgroups of data.

2.3. Robust Statistics and Rank Test

By taking the order of the sample curves to be the one induced by multivariate
functional depth measure, the definition of trimmed mean in Fraiman and Muniz
(2001) can be extended to multivariate functional data. We can also generalize to
this framework a non parametric rank test to compare two samples of multivariate
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Depth Measures for Multivariate Functional Data 1271

functions. In particular, consider a sample f1� � � � � fn generated according to a
distribution PX and another sample g1� � � � � gm generated according to a distribution
PY. We want to test differences between the two populations. Assume that there
is a third reference sample, say h1� � � � � hN , from one of the two populations, for
example PX. Calculate the rank of each element of sample f1� � � � � fn and of the
sample g1� � � � � gm with respect to the reference sample h1� � � � � hN . In particular, let
R�PN � fi� be the proportion of hj’s with MBD less than or equal to the MBD of fi,
where the MBD is computed with respect to the reference sample h1� � � � � hN . An
analogous definition is assumed for R�PN � gi�. Then order these values, R�PN � fi� and
R�PN � gi�, from the smallest to the highest giving them a rank from 1 to n+m. This
induces a rank on the functions f1� � � � � fn� g1� � � � � gm. According to Liu and Singh
(1993), we can apply the Wilcoxon test to the induced ranks. In particular, the lower
the depth the lower the rank. The proposed test statistic R is the sum of the ranks
of the second sample R�PN � g1�� � � � � R�PN � gm�. According to the null hypothesis
(H0) there are no differences between the distributions generating the data. Hence,
R�PN � g1�� � � � � R�PN � gm� can be viewed as a random sample size m drawn without
replacement from the set �1� � � � � n+m�, and we reject H0 for values of R too small.
For large values of n and m it is possible to use a Normal approximation (see Li and
Liu, 2004). The presence of ties is treated as explained in Liu and Singh (1993) and
Lopez-Pintado and Romo (2009). Such test represents a quantitative method for
carrying out inference in a supervised multivariate functional clustering framework.
On the other hand, in the unsupervised clustering case, it can also be seen as a way
to test if the process generating the outliers, pointed out by the functional boxplot,
can be considered as different from the process generating the curves of the �% most
central region.

3. An Application to ECG Signals

In Ieva et al. (2012), a statistical framework for analysis and classification of ECG
curves starting from their sole morphology is proposed. The main goal of this
article is to identify, from a statistical perspective, specific ECG patterns which
could benefit from an early invasive approach. In fact, the identification of statistical
tools capable of classifying curves using only their shape could support an early
detection of heart failures, not based on usual clinical criteria. In order to do this,
a real time procedure consisting of preliminary steps like reconstructing signals,
wavelets denoising, and removing biological variability in the signals through data
registration is tuned and tested. Then, a multivariate functional k-means clustering
of reconstructed and registered data is performed. When testing the new procedures
the performance of classification method is validated through cross validation.
Hence, it is mandatory to find a suitable training of the algorithm on data. This
would robustify classification algorithm and would improve reliability of prediction.
The procedure proposed in the previous section is an effective way to reach this
goal. In fact, it leads to select as training set the proportion of multivariate curves
whose depth is high. Considering the ECG of the j-th patient as a 8-variate function
fj = �fj�1� � � � � fj�8�, the fj�k, (k = 1� � � � � 8) correspond to the eight leads I, II, V1,
V2, V3, V4, V5, and V6. Then the procedure discussed in Sec. 2 is applied in
order to carry out functional boxplots and to perform outlier detection for two
different groups: physiological and pathological patients, i.e., people affected by a
particular kind of heart disease, called Bundle Branch Block (BBB). It is easy to
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1272 Ieva and Paganoni

Figure 2. Row signals (leads V1 and V6) of the 100 physiological patients. (color figure
available online)

detect this pathology through observing shape modifications of the ECG pattern;
this disease divides in Right Bundle Branch Block (RBBB) and Left Bundle Branch
Block (LBBB) according to the side of the heart it affects. In the following, we will
consider a sample of 100 physiological signals and 50 pathological ones, where the
latter come from patients affected by LBBB. In Figs. 2 and 3, the row data showing
leads V1 and V6 of Normal and LBBB signals, respectively, are depicted. Figures 4
and 5 show the corresponding functional boxplots, (see Ieva et al., 2012 for details
on statistical analysis and procedures). Functional boxplots are produced according
to the ranking induced by the multivariate functional index where the weights pk,
(k = 1� � � � � 8) are all equal to 1/8, weighting all the leads equally.

Since there is a common ranking of all components of fjs, induced by the
multivariate index of depth, as noticed in Sec. 2.2, the central band of the functional
boxplot is defined by the same statistical units in each component. The multivariate
functional index of depth defined in (3) takes jointly into account the order of
each component (lead) of the multivariate function (ECG). This is the main and
most important difference between functional boxplots reported in Figs. 4 and 5
and those we would have obtained by simply asking for functional boxplots of

Figure 3. Row signals (leads V1 and V6) of the 50 pathological patients. (color figure
available online)
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Depth Measures for Multivariate Functional Data 1273

Figure 4. Functional boxplots of ECG leads V1 and V6 of the 100 physiological patients.
The central bands (grey area), fences (solid lines), and outliers (dotted lines) of each lead
are defined as described in Sec. 2.2, according to the ranking induced by MBDJ

n�f� defined
in (3) and using the same weight for each lead. (color figure available online)

each lead. This difference is confirmed and can be appreciated also considering the
number of curves labeled as outlier in the first and in the second case, i.e., adopting
procedures where functional boxplots are based on multivariate index of depth or
taking lead-by-lead outliers, respectively. In our case, curves labeled as multivariate
functional outliers are always a subset of those identified as outlier by the lead-by-
lead outlier detection procedure. In general, taking jointly into account the depth of
each component of the multivariate curve, the number of outlying curves decreases.

As described in Sec. 2.3, using the order of the sample curves induced by the
multivariate functional depth measure, it is possible to generalize to this framework
a non parametric rank test to compare two samples of multivariate functions.
Actually, we adopt the rank test to check for differences in the underlying process
generating the LBBB curves with respect to the physiological ones. To apply the

Figure 5. Functional boxplots of leads V1 and V6 of the 50 pathological (Left Bundle
Brunch Block) ECGs. The central bands (grey area), fences (solid lines), and outliers (dotted
lines) of each lead are defined as described in Sec. 2.2, according to the ranking induced
by MBDJ

n�f� defined in (3) and using the same weight for each lead. (color figure available
online)
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1274 Ieva and Paganoni

rank test, we considered 50 ECGs randomly chosen from the physiological traces
as the reference group to compute the ranks of the remaining 50 physiological
and 50 LBBB traces. The procedure has been repeated 20 times to avoid bias
selection in the choice of the reference group. The average of the p−values of
the tests is less than 10−16. Therefore, we can conclude that there exist significant
differences between the two groups. The statistical evidence remains very strong
(average p−value still less than 10−16) if we compute the depth measure (3) setting
�p1� � � � � p8� equal to �1/10� 1/10� 2/10� 1/10� 1/10� 1/10� 1/10� 2/10�, stressing the
weight of leads V1 and V6, since they are the most important for carrying out the
LBBB diagnosis, as confirmed by cardiologists. That is, there is a strong evidence
that the LBBB signals arise from a different latent process.

4. Conclusions

In this work, we generalize the notion of depth for functional data presented in
Lopez-Pintado and Romo (2009) to the multivariate functional case and we also
define a new multivariate functional index of depth which is able to jointly take
into account the depth of the multivariate functional data on each component.
This provides a center-outward ordering criterion for a sample of multivariate
functions. Extensions and proofs of the statistical properties of the new index
are also provided, as well as for the modified version. A generalization of the
nonparametric test to this framework has been adopted to carry out inference in a
supervised clustering context. Finally, the application of the new index to a real case
of ECG signals has been presented and discussed, highlighting how the methodology
works effectively both in detecting outliers and in distinguishing between samples
arising from different underlying latent processes. Further developments of this
work will be focused on the study of ECG traces arising from numerical simulations.
We will assess if a simulated multivariate signal can be considered as coming from
a reference population of signals, computing its depth in the way described above.
This will be a new method for validating numerically simulated ECGs from a
statistical perspective.

Appendix

Proof of Proposition 2.1. Part (a). Using Definition 2.1 and the property (1) of
Theorem 3 in Lopez-Pintado and Romo (2009) we have

BDJ
PT�X�

�T�f�� =
s∑

k=1

pkBD
J
PAkkXk+bk

�Akkfk + bk� =
s∑

k=1

pkBDXk
�fk� = BDJ

PX
�f��

The diagonality requirement on matrix A means that the multivariate functional
depth measure BDJ

PX
�f� is invariant as regards affine transformations of each

component taken one by one, without combining different elements of the
multivariate function.

Part (b) follows directly from property (2) of Theorem 3 in Lopez-Pintado and
Romo (2009).
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Part (c)

sup
mink=1�����s �fk��>M

BDJ
PX
�f� = sup

mink=1�����s �fk��>M

s∑
k=1

pkBDXk
�fk�

where each term in the sum is summed over components that go to zero as M goes
to infinity.

Part (d) this point also follows directly from property (4) of Theorem 3 in
Lopez-Pintado and Romo (2009).

Proof of Proposition 2.2.
∣∣∣∣BDJ

n�f�− BDJ
PX
�f�

∣∣∣∣ =
∣∣∣∣

s∑
k=1

pkBD
J
n�k�fk�−

s∑
k=1

pkBDXk
�fk�

∣∣∣∣
≤≤

s∑
k=1

pk

∣∣∣∣BDJ
n�k�fk�− BDXk

�fk�

∣∣∣∣ (4)

and each term of the sum in the last term of (4) goes to zero as stated in Theorem 4
of Lopez-Pintado and Romo (2009). Also, the uniformity of convergence on the
equicontinuous sets is a straightforward extension of the univariate functional case.
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