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Abstract 

If S is an idempotent-generated semigroup, its depth is the 

minimum nui:nber of idempotents needed to express a general element 

as a product of idempotents. Here we study the depth of S where 

S is the semigroup generated by all the idempotents of a von 

Neumann regular ring, and the depth of various subsemigroups of S. 

For example, if R is directly finite, the depth of S equals the 

index of nilpotence of R, which considerably extends a result of 

Ballantine (1978) for matrices over a field. We also answer a 

query of Professor Howie by supplying a ring-theoretic explanation 

of Reynolds and Sullivan's (1985) result that the depth is 3 for 

certain subsemigroups in the infinite-dimensional full linear case. 



Introduction 

The depth 6(8) of an idempotent-generated semigroup 8 is the least positive integer 

n such that each element of 8 can be written as a product of n idempotents, if such an 

n exists, otherwise 6(8) = oo. Thus depth is a measure of how far the elements of 8 

are from being idempotent (or how far the semiband 8 is from being a band). In 1981, 

Howie [H2] calculated 6(8) for the semigroup 8 generated by the idempotents of a full 

transformation semigroup, and also the depth of certain of its subsemigroups. Ballantine 

[B] (see also Dawlings [Dl]) and Reynolds and Sullivan [RS] obtained analogous results for 

the semigroup generated by the idempotent linear transformations of a vector space, in 

the finite-dimensional and infinite-dimensional cases respectively. In this paper we provide 

a very much broader setting for the results of Ballantine and Reynolds and Sullivan, by 

employing ring-theoretic machinery to calculate the depth of idempotent-generated sub

semigroups of a (von Neumann) regular ring, in the case where the ring is directly finite or 

right self-injective. The basic theme is relating depth to the more established ring-theoretic 

concept of nilpotent index, index(R ), of a ring R (or of an ideal of R). Our results rely 

heavily on the work in [OM] and [HO], which gave purely ring-theoretic characterizations 

of products of idempotents in regular rings. 

Let R be a regular ring and let 8 be the multiplicative semigroup generated by its 

idempotents. In §1 we show (Theorem 1.3) that always 6(8) = index(R) if R is directly 

finite. This generalizes Ballantine's 1978 result that 6(8) = n if R = Mn(F), the ring 

of n X n matrices over a field F. It also establishes that a directly finite regular ring has 

bounded index of nilpotence exactly when 8 has finite depth. For directly infinite rings, 

the connection between depth and index is more subtle. We show in Theorem 1.6, that for 

a regular, right self-injective ring R, 6(8) = index(R) except when Risa direct product 

R1 x R 2 of a ring Ri of bounded index of nilpotence and a nonzero ring Rz of Type III, in 

which case 

6(8) = max{index(R1),3}. 

Thus finite depth for this class of rings is equivalent to the ring being a direct product of 

a ring of bounded index and one of Type III. 
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Both Howie [H2] and Reynolds and Sullivan [RS] broke up their idempotent-generated 

semigroups S into a disjoint union of a "finite" part and "infinite" parts, the latter being 

labelled by infinite cardinals. Each part is in turn a regular, idempotent-generated sub

semigroup of S, and the finite part has depth oo (for an infinite set or infinite dimensional 

space). In the full transformation setting of Howie, the infinite parts have depth 4. But in 

contrast, the infinite parts in the full linear setting of Reynolds and Sullivan turned out to 

have depth 3. (This phenomenon turned up first in Daw lings' [D2] 1983 study of products of 

idempotent transformations of a separable Hilbert space.) This prompted Professor Howie 

to ask (the second author) whether this depth 3 was a quirk or was there a ring-theoretic 

explanation for it. In §2 we provide just such an explanation. Let S be the semigroup 

generated by the idempotents of a unit-regular or regular, right self-injective ring R. Then 

S can be split up into a disjoint union of regular, idempotent-generated subsemigroups S1 

labelled by the principal ideals I of R, namely 

S1 ={a ER I Rr(a) = f(a)R = R{l - a)R =I} 

(which is the "slice" consisting of all ''balanced elements of R of weight I"). Moreover, if 

R is regular, right self-injective, the depth of S1 is determined as follows (Theorem 2.12): 

if I is directly finite, then 6(S1) = i'ndex(I); if I is purely infinite, then 6(SI) = 3; in 

the mixed case, if I is directly infinite, then 6(S1) = max{index(Ii), 3} where Ii is the 

directly finite part of I. These subsemigroups S1 agree with the Reynolds and Sullivan 

components in the full linear case because of the natural labelling of the ideals of a full 

linear ring (or any prime, regular, right self-injective ring) by cardinals. Thus their result is 

the special case where the regular, right self-injective ring R is a full linear ring. However, 

as a guide to the limit of such results, we give an example of a directly finite regular ring 

with comparability for which 6(S1) =f. index(!) for the principal ideal I= R. 

This broader setting for the slices S1 brings to light a phenomenon that was too simple 

to be worth noticing in Reynolds and Sullivan's full linear ring case, and indeed in Howie's 

full transformation case, namely, that when R is unit-regular or regular, right self-injective, 

then S is a semilattice of the semigroups S1. This last statement means S = US1 and 

S1S1 <:;:;; SJ+J, where we are viewing the set of principal ideals of R as a semilattice under 
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addition. In particular, S can be mapped homomorphically onto the additive semilattice of 

principal ideals of R. Even for a general regular ring R, our techniques show that the map 

a 1-t R(l - a)R is a semigroup homomorphism from the multiplicative semigroup generated 

by the idempotents of R onto the additive semilattice of principal ideals of R. In view of 

the complexity of this semilattice in general, we find this "duality" in such a general setting 

a little surprising. 

In the final section, §3, we show that for a unit-regular ring or a regular, right self

injective ring R, the "bottom slice" SR is precisely the subsemigroup generated by the 

nilpotent elements of R (Corollary 3.4). 

Preliminaries 

All rings considered here are associative with an identity element. Semigroups, on the 

other hand, need not have an identity. The unqualified term ideal always refers to a two

sided ideal. For a subset X of a ring R, we let r ( X) = {a E R I X a = 0} denote the right 

annihilator of X in R, or if the parent ring is in doubt, the notation is rR(X). Similarly 

l(X) or £R(X) denotes the left annihilator. A module A is subisomorphic to a module B, 

written A :S B, if A is isomorphic to a submodule of B. The direct sum of n copies of a 

module A is denoted nA {for n a positive integer). 

A ring (or semigroup) R is (von Neumann) regular if for each x ER there exists y ER . 
such that x = xyx. If y can always be chosen to be a unit (i.e. an invertible element), then R 

is unit-regular. All our rings are regular. Throughout the paper, the reader will frequently 

be referred to Goodearl's book [GJ for properties ofregular rings. Any unexplained notation 

or terms relating to regular rings can be found there. A ring R is right self-injective if the 

module RR is injective. 

A module A is directly finite if A is not isomorphic to a proper direct summand of itself. 

Otherwise A is directly infinite. A module A is purely infinite if it does not contain any 

nonzero, fully invariant, directly finite, direct summands. A ring R is directly finite if xy = 1 
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implies yx = 1 (this is equivalent to the module RR being directly finite); otherwise R is 

directly infinite. A regular ring R is called purely infinite if it contains no nonzero, directly 

finite, central idempotents (this is equivalent to the module RR being purely infinite). 

An abelian regular ring is one in which all idempotents are central. Any property P 

already defined for regular rings can also be conferred on an idempotent e of a regular ring 

R by the convention that e has P when the corner ring eRe has P. Thus, for example, 

we can speak of abelian idempotents, directly finite idempotents, and so on. Incorporating 

these latter two notions is a well-developed theory of types for regular, right self-injective 

rings (see [G, Chapter 10]): any such ring R is uniquely a direct product of rings of Types 

I, II, and III, where (roughly speaking) Type I rings have lots of abelian idempotents, Type 

II rings have no nonzero abelian idempotents but lots of directly finite ones, and Type 

III rings have no nonzero directly finite idempotents. The archetypical Type I ring, for 

example, is a direct product of full linear rings over division rings. 

A regular ring R satisfies the comparability axiom if for any x, y E R either xR ;::., yR 

or yR ~ xR, while it satisfies general comparability if for any x, y E R there is a central 

idempotent e ER such that exR ~ eyR and (1- e)yR ~ (1- e)xR. By [G, Corollary 9.15] 

any right self-injective regular ring satisfies general comparability. 

The nilpotent index of an ideal J of a ring R is the least positive integer n such that 

xn = 0 for all nilpotent elements x E J, if such an n exists, otherwise the index is oo. 

We denote the index of J by index( J). If index( J) < oo, we say J has bounded index of 

nilpotence. 

Finally, we recall the depth of an idempotent-generated semigroup 8 (defined in the 

introduction). It is customary to denote the depth of 8 by 6(8). Occasionally we also 

refer to the depth of an element x in 8, which is the least n that works for this particular 

x. In what follows the semigroup 8 will be the multiplicative semigroup generated by 

all the idempotents of a regular ring R, or various idempotent-generated subsemigroups 

of this. Here we can take 6(8) as a measure of how far this semiband is from being a 

band (where all elements are idempotent). We remark that the case where 8 is a band 
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(6(S) = 1) occurs exactly when R is an abelian regular ring, because if R is not abelian, it 

must contain nonzero nilpotent elements [G, Theorem 3.2] and these are in S (see Lemma 

1.2). 

1 Depth of the full idempotent-generated semigroup 

In this section, we examine the depth of the multiplicative semigroup S generated by 

all the idempotents in a regular ring R. Our goal is to relate the depth of S to the index 

of nilpotency of R when R is directly finite (Theorem 1.3) or right self-injective (Theorem 

1.6). As a first step, we have the following general relationship. 

Proposition 1.1 Let R be any regular ring and let S be the multiplicative semigroup 

generated by all its idempotents. Then 6(8) :::; index(R). 

Proof. If index(R) = oo there is nothing to prove, so suppose that index(R) = n < oo 

and let a E R be a product of idempotents. We must show that a is a product of (at 

most) n idempotents. But since R has bounded index, it is unit-regular [G, Corollary 7.11] 

and so, by [HO, Theorem 1.2], it is enough to show that (1 - a)R ;:,, n(r(a)). Since R is 

unit-regular it is thus enough, by [G, Theorem 4.19], to show that for any prime ideal P 

of R we have 

(1- a)R/(1 - a)P;:,, n[r(a)/r(a)P]. 

Let P be a prime ideal of Rand let - denote the homomorphism onto R = R/ P. Choose 

x ER such that a= axa and so r(a) = (1- xa)R. Since index(R) = n, Risa k x k matrix 

ring over a division ring and k:::; n by [G, Theorem 7.9]. Since a is a product of idempotents, 

so is a and hence a is a product of k :::; n idempotents by [B] or [HO, Theorem 1.2]. Thus 

by [HO, Proposition 1.1] we have (1 - a)R = (I- a)R::,, n(r.R(a)) = n(I- xa)R = n(r(a)), 

which is what we had to show. Hence 6(S) :::; n, as required. 0 

In the directly finite case we actually have 6(8) = index( R) but to see this we need 
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the following (probably well-known) result. 

Lemma 1.2 Let R be a regular ring and let a E R with an = 0. Then a is a product of n 

idempotents in R. 

Proof. We use induction on n. The case n = 1 is trivial, so suppose the result is true 

for elements satisfying xn-l = 0 and let a ER with an = 0. By [G, Lemma 7.1] there is a 

decomposition R = Ai EB A2 EB· · ·EB An such that aAn = 0 and aAi = Ai+l for 1 :::; i :::; n -1. 

Hence there are orthogonal idempotents ei, ... , en summing to 1, such that aen = 0 and 

aeiR = ei+lR for 1 :::; i :::; n - 1. Hence a= ae1 + · · · + aen-1 = e2ae1 + · · · + enaen-1· 

Let x = egae2 + · · · + enaen-1· Then x E (1 - el)R(l - el) and since the idempotents are 

orthogonal it is easy to see that xn-l = 0. Since (1 - el)R(l - ei) is a regular ring, by 

induction there are idempotents Ji, ... , fn-1 E (1 - el)R(l - el) such that x =Ji··· fn-1· 

Hence el+ x = (e1 + fi) · · · (e1 + fn-d is a product of n - 1 idempotents in R. Since 

hae1 + (1- el)](e1 + x) = ezae1 + x =a and since e2ae1 + (1- el) is idempotent, it follows 

that a is a product of n idempotents, as required. D 

Theorem 1.3 Let R be a directly finite regular ring and let S be the multiplicative semi

group generated by all its idempotents. Then 6(S) = index( R). {In particular, finite depth 

for S is equivalent to bounded index of nilpotence for R.} 

Proof. By Proposition 1.1 we just have to show that index(R) :::; 6(8) so we may 

assume that 6(S) = n < oo. Suppose that index(R) > n so that by [G, Theorem 7.2] R 

contains n + 1 independent, pairwise isomorphic, nonzero right ideals. We may write these 

as eiR, ... , en+lR where the ei are orthogonal idempotents. From the isomorphisms we get 

elements eij E eiRej such that eijeji = ei whenever i i=- j. Let y = e21 + eg2 + · · · + en+l,n 

and e = e1 + · · · + en+l and consider the element a= y + (1- e). Notice that since y E eRe 

satisfies yn+l = O, Lemma 1.2 shows that a is a product of n+ 1 idempotents in R. We show 
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that a cannot be written as a product of n idempotents, and this contradiction of 6(5) = n 

will complete the proof. If a is a product of n idempotents, then (1-a)R ~ n(r(a)) by [HO, 

Proposition 1.1]. But it is easy to see that (1 - a)R = (e - y)R = eR while r(a) = en+lR. 

Hence (1 - a)R ~ (n + l)r(a) and so (1 - a)R ~ n(r(a)) contradicts the fact that R is 

directly finite. Thus a is not a product of n idempotents. D 

Corollary 1.4 Let R be a unit-regular ring and letT = Mn(R) be the ring ofnxn matrices 

over R. Let S and U be respectively the semigroups generated by all the idempotents of R 

and T. Then 

6(U) = n 6 (S). 

Proof. By [G, Theorem 7.12], index(T) = n(index(R)). Thus since R and T are both 

directly finite [G, Proposition 5.2], we have by Theorem 1.3 that 

6(U) = index(T) = n(index(R)) = n 6 (S). 

D 

To obtain Ballantine's formula for depth in the case of n x n matrices over a field, 

notice that when we take R to be a field F (or any abelian regular ring for that matter), 

the formula in Corollary 1.4 gives the depth of the full idempotent-generated semigroup of 

Mn(F) as n (because then 6(8) = 1). 

The equation 6(S) = index(R) does not hold for all regular rings as we shall now see 

by calculating 6(8) for right self-injective regular rings. Firstly we recall a result proved 

in [HO, Lemma 2.7]. 

Lemma 1.5 Let R be a regular ring satisfying general comparability. If e, f E R are 

idempotents such that 

eR ~ (1- e)R and f R ~ (1-f)R 

then each a E eRf is a product eie2e3 of three idempotents each of which satisfies 

eiR ~ (1 - ei)R. 
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Theorem 1.6 Let R be a right self-injective regular ring and let 8 be the semigroup 

generated by its idempotents. Then 

6(8) = index(R) 

except when R is a direct product Ri x R2 of a ring Ri of bounded index of ni'lpotence and 

a nonzero ring R2 of Type III, in which case 

6(8) = max{index(R1), 3}. 

Proof. Firstly suppose R is a nonzero ring of Type III. We shall show by an argument 

used in [HO] that then 6(8) = 3 (whereas in this case, index(R) = oo because R is directly 

infinite). Since R satisfies RR ~ 2RR, [HO, Example 2.2] shows that 6(8) 2 3. Suppose 

on the other hand that a E 8. We want to show that a is a product of 3 idempotents and 

by the reduction technique in [HO, Lemma 2.5] (restated below in Lemma 2.2), we may 

assume that 

Rr(a) = f(a)R = R (1) 

(since the ring gRg in the Lemma is still of Type III). There are idempotents e, f E R such 

that eR = aR and Rf= Ra, and so (1) gives us R(l- f)R = R(l-e)R = R. Since a E eRf 

it is thus enough by Lemma 1.5 to show that eR :!:,, (1 - e)R and f R :!:,, (1 - f)R. Hence 

we just need to show that RhR = R implies R :!:,, hR. But if RhR = R then R :!:,, n(hR) 

for some integer n (by [G, Corollary 2.23]). Since R is Type III, it is purely infinite and so 

nR ~ R :!:,, n(hR) (by [G, Theorem 10.16]). Hence R :!:,, hR by [G, Theorem 10.34]. Thus 

a is a product of 3 idempotents and so 6(8) = 3 as required. 

It now follows from Theorem 1.3 that if R = Ri X R2 is a direct product of a ring Ri 

of bounded index and a nonzero ring R2 of Type III, then 6(8) = max{index(R1), 3} and 

certainly 6(8) -:/- index(R) = oo in this case. 
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Conversely, suppose that 6(S) f- index(R). We shall prove that R is a direct product 

of a ring of bounded index and a nonzero ring of Type III. By Proposition 1.1 we know 

L'-.(S) < oo, say 6(S) = n. We first show that R cannot contain n + 1 independent copies 

of a nonzero directly finite right ideal eiR. Suppose, on the contrary that it does. As in the 

proof of Theorem 1.3 we can then find an element a ER such that (1 - a)R ~ (n + l)r(a) 

where r(a) ~ eiR, and such that a is a product of n + 1 idempotents. As before 6(S) = n 

implies that (1 - a)R :::., n(r(a)) by [HO, Proposition 1.1]. Thus (n + l)e1R :::., n(e1R). 

Since R is right self-injective and eiR is directly finite, [G, Corollary 9.19] says that we can 

cancel eiR factors in such an embedding and so we get the contradiction eiR = 0. 

Now let R = R1. X R2 X Ra be the decomposition of R into its Type I,II and III 

parts, respectively [G, Theorem 10.13]. Since every nonzero right ideal of Ri contains a 

nonzero abelian idempotent and since any abelian idempotent is directly finite, the previous 

paragraph shows that Ri cannot contain n + 1 independent, pairwise isomorphic, nonzero 

right ideals. By [G, Theorem 7.2], it follows that index(R1) ::;; n. To complete the proof 

we just have to show that R2 = O, and then Theorem 1.3 will ensure Ra f- 0 because 

L'-.(S) f- index(R). But if R2 f- 0 then R contains a nonzero directly finite idempotent e 

such that eR contains no nonzero abelian idempotents. By [G, Proposition 10.28] applied 

to the ring eRe there would then be an idempotent ei E eRe such that eR ~ (n + l)e1R. 

Since this eiR would also be directly finite, the previous paragraph shows that. this cannot 

happen and so R2 = 0 as required. 

Remark 1. 7 As noted in the proof, if R itself is of Type III, then L'-.(S) 

index(R) = oo. 

0 

3 while 

0 

Regular right self-injective rings of bounded index, being finite direct products of full 

n X n matrix rings over abelian self-injective regular rings [G, Theorem 7.20], are vastly 

different objects from those of Type III. In a ring R of Type III every nonzero corner ring 

eRe (where e = e2 E R) contains an infinite-dimensional matrix ring since it is directly 

infinite. (Perhaps the simplest example of such a ring is the maximal right quotient ring of 
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a proper factor ring of an infinite dimensional full linear ring.) Thus the joint appearance 

of bounded index and Type III in the following corollary is unusual. 

Corollary 1.8 Let 8 be the semigroup generated by the idempotents of a regular right 

self-injective ring R. Then 6(8) < oo if and only if R is a direct product of a ring of 

bounded index of nilpotence and a ring of Type III. D 

2 Depth of the slices 81 

Both Howie [H2] and Reynolds and Sullivan [RS] study the depth of their idempotent

generated semigroups in more detail by decomposing the semigroups into disjoint unions of 

a "finite" part and "infinite" parts, the latter labelled by infinite cardinal numbers. Each 

of these parts is in turn an idempotent-generated regular subsemigroup of the original 

semigroup and so each has a depth in its own right. In [HO, Theorem 2.8] we showed 

that in the context of regular rings, Reynolds and Sullivan's characterization of products of 

idempotent linear transformations, in terms of vector space dimension of certain associated 

subspaces, could be replaced by the condition 

Rr(a) = £(a)R = R(l - a)R 

on the associated principal ideals in the ring (for a E R). This suggests that we look at 

subscmigroups of 8 consisting of elements associated with a common principal ideal of R. 

Definition 2.1 Let R be a regular ring. Given any principal ideal I of R, we set 

81 ={a ER I Rr(a) = £(a)R = R(l - a)R =I}. 

D 

Thus 81 consists of all elements of R for which the ideals in condition ( *) take the 

common value I. Following Howie [H2] we say that a E R is balanced if it satisfies ( *) and 
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that its weight is I if a E 81. In the case where R is the full linear ring Endp (V) these 

sets of balanced elements correspond to the components of the decomposition considered 

by Reynolds and Sullivan in [RS]. Their finite part 1 consists of those transformations a 

on V for which 

0 < n(a) = d(a) ~ s(a) < ~o 

where n(a) = dim(ker(a)), d(a) = codim(Im(a)), s(a) = codim{ v E V : av = v} and 

this is precisely the set 81 where I = soc(R) is the ideal of all transformations of finite 

rank (see [OM, Corollary 12]). On the other hand their infinite parts are defined as the 

subsemigroups 

1(€) ={a ER: n(a) = d(a) = s(a) = €} 

where ~o ~ € ~ dim V, and these are just the sets 81 where I is the ideal of R consisting 

of all transformations of rank ~ £ (again see [OM, Corollary 12]). Notice that with our 

labelling of the components 81 by the principal ideals I of R, the finite part no longer needs 

to be singled out for a separate notation. 

In this section we show that these ccslices" 81 are regular subsemigroups of R, which 

are idempotent-generated if R is unit-regular or right self-injective. Our principal result 

(Theorem 2.8) is a precise determination of 6(81) when R is regular, right self-injective. 

This yields the Reynolds and Sullivan full linear case as a special instance. 

The following cccorner reduction" technique was introduced in [OM] and also. used in 

[HO, Lemma 2.5]. Here we restate it in terms of 81. It simplifies many situations by 

allowing us to pass from a balanced element a E R of weight I (that is, a E 81) to an 

element y in some corner A of I such that, in the ring A, y is a balanced element of 

maximum weight (that is, y E SA)· 

Lemma 2.2 Let I be a principal ideal of a regular ring R and let a E 81. Then there 

exists an idempotent g E I such that I= RgR and an element y E A = gRg such that 

a= y + (1 - g), 
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and in the ring A, y E SA. Conversely, if g E I is an idempotent with I= RgR {that is, 

l-gES1} andyESA, theny+(l-g) isinS1. D 

Proposition 2.3 For any principal ideal I of a regular ring R, the set S1 is a regular 

subsemigroup of the multiplicative semigroup of R. If R is unit-regular or regular, right 

self-injective, then S1 is idempotent-generated. 

Proof. Since I is a principal ideal in a regular ring, I = RgR for some g = g2 E R. 

Then 1 - g E S1, which establishes that S1 is nonempty. Let a, b E S1. Noting that 

1 - ab= a(l - b) + (1 - a), we have 

Rr(ab) 2 Rr(b) =I 2 R(l - b)R + R(l - a)R 2 R(l - ab)R 

and so Rr(ab) = R(l - ab)R =I. Similarly £(ab)R =I and therefore Rr(ab) = £(ab)R = 
R(l - ab)R =I. Thus ab E S1 and hence S1 is a subsemigroup of R. 

To show 81 is regular, it is sufficient by Lemma 2.2 to consider the case I= R. Let 

a E SR. Because R is a regular semigroup, there exists b E R with a = aba and b = bab. 

Observing that £(a) = R(l - ab) and r(b) = (1 - ab)R, we see that Rr(b) = £(a)R = R. 

Similarly £(b)R = R. Hence Rr(b) = £(b)R = R(l - b)R = R, which shows bis the desired 

"inverse" in SR of a. 

Now assume R is unit-regular. Let a E S1. By [HO, Corollary 1.4], a is a product 

fi/2 · · · fk of idempotents of R. By [HO, Remark 1.3], the fi can be chosen such that 

fiR e:! aR. Then, because R is unit-regular, (1 - fi)R ~ r(a) and hence R(l - fi)R = 

Rr(a) = I. Thus each fi E S1 which shows that S1 is idempotent-generated. 

It will be shown in Theorem 2.12 that 81 is also idempotent-generated when R is regular, 

right self-injective. D 

When ( *) characterizes products of idempotents in a regular ring R, then the 81 give 

a disjoint covering of the semigroup S generated by all the idempotents of R. Our next 
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proposition gives a coarse description of the products ab for a E S1 and b E SJ. 

Proposition 2.4 Let R be a regular ring. 

{1} If I and J are principal ideals of R, then 

{2} If the condition 

Rr(a) = £(a)R = R(l - a)R 

characterizes products of idempotents in R {for example, if R is unit-regular or regular right 

self-injective), then the multiplicative semigroup S generated by all the idempotents of R is 

a semilattice of the semigroups S1 1 where I ranges over the additive semilattice of principal 

ideals of R. 

Proof. (1) Observe that if x ER, then £(x)R ~ RyR for any y ER for which xR+yR = 

R. For if we choose e = e2 ER with xR = eR and (1-e)R ~ yR, then £(x)R = R(l-e)R ~ 

RyR. 

Now let a E S1 and b E SJ. We first show £(ab)R = Rr(ab) using the corresponding 

properties of a and b. Since R is regular, there is a decomposition r( ab) = r(b) EB f R for 

some f ER. Then bf R = r(a) n bR and so f R ~ r(a) n bR. Hence 

Rr(ab) = Rr(b) + R(r(a) n bR). (1) 

Similarly 

£(ab)R = £(a)R + (e(b) n Ra)R. (2) 

Also by regularity, there exists h ER such that R = (r(a) + bR) EB hR. Note that RhR = 

£(r(a) + bR)R = (£(b) n Ra)R. Using our initial observation, we have from 

R = bR + (r(a) + hR) and r(b) ~ £(b)R that r(b) ~ Rr(a) + RhR, and hence r(b) C 
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Rr(a) + (f(b) n Ra)R. Hence from (1) and (2) and the fact that Rr(a) = f(a)R (because 

a E S1), we have 

Rr(ab) Rr(b) + R(r(a) n bR) 

c Rr(a) + (f(b) n Ra)R 

f(a)R + (f(b) n Ra)R 

f(ab)R 

which establishes that Rr(ab) ~ f(ab)R. The reverse containment follows from symmetry, 

and so Rr(ab) = f(ab)R. 

To complete the proof that ab E SJ+J, note that from 1 - ab = (1 - a)+ a(l - b) 

we have R(l - ab)R ~ R(l - a)R + R(l - b)R = I+ J. Also I= f(a)R ~ f(ab)R and 

J = Rr(b) ~ Rr(ab),hence I+J ~ f(ab)R+Rr(ab) = Rr(ab). Since Rr(ab) ~ R(l-ab)R, 

we have 

Rr(ab) = f(ab)R = R(l - ab)R =I+ J 

which says ab E SI+J. Therefore S1SJ ~ SI+J. 

(2) When (*) characterizes products of idempotents, S is the disjoint union of the 

semigroups S1 as I ranges over the principal ideals of R. The set of principal ideals of R 

forms a semilattice (commutative semigroup of idempotents) under addition, whence by 

(1) we have that S is a semilattice of the S1 (see [Hl,p89] for this concept). D 

Remark 2.5 Because of (1), and the fact that(*) is a necessary condition for an element 

to be a product of idempotents (see [HO, Proposition 2.3]), the map 

a rt R(l - a)R 

is always a semigroup homomorphism from the multiplicative semigroup S generated by 

the idempotents of R onto the semilattice of principal ideals of R under addition - an 

unexpected duality in such a general setting. In particular, if we choose generators from 
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the set {1 - a I a E S}, then principal ideals add according to the rule 

RxR + RyR = R(x + y - xy)R, 

which extends the well-known rule for adding central idempotents .. What (2) is saying is 

that when ( *) characterizes products of idempotents, the congruence classes of the kernel 

of the above homomorphism are precisely the semigroups Sr, as I ranges over the principal 

ideals of R. D 

The semilattice structure of the semigroup S was of course present in Reynolds and 

Sullivan's full linear ring case, and indeed in Howie's full transformation semigroup. How

ever in both cases the semilattice was too simple to be worth noticing, being essentially a 

set of infinite cardinal numbers under addition (see [H2, Lemma 2.10] for example). For 

general regular rings, though, the semilattice can be quite complicated. 

Example 2.6 Let B be any Boolean ring and n a positive integer, and let R = Mn(B). 

Then R has index n and so is unit regular [G, Theorem 7.12 and Corollary 7.11]. Hence by 

Proposition 2.4 the semigroup S generated by the idempotents of R is a semilattice of the 

subsemigroups Sr. On the other hand, each principal ideal of R is generated by a central 

idempotent of B because finitely generated ideals of B are generated by central idempotents. 

Thus we see that the semilattice of principal ideals of R (under +) is isomorphic to the 

semilattice of idempotents of B (under v). In particular, by choosing B to have no atoms 

we see that the semilattice need not be a product of well-ordered chains. Of course, the 

example would be simpler if n = 1, in which case S = R = B, but then the subsemigroups 

Sr would be trivial, consisting of just one idempotent element each. It is perhaps worth 

noticing that in this case, the homomorphism a 1-+ R(l - a)R mentioned in Remark 2.5 

from the semigroup S onto the semilattice of principal ideals is essentially the complement 

map e 1-+ 1 - e of the Boolean algebra structure on B which maps the multiplicative 

structure to the additive structure ((e A!)' = e1 V / 1). The next lemma, applied to the 

present example, shows for a general n that if I is a nonzero principal ideal of R, then 
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S1 is idempotent-generated with 6(S1) = ind~x(I) = n (so here these slices have uniform 

depth). By Corollary 1.4, S itself also has depth n. Also, if n > 1 and B is infinite, then 

the S1 are infinite. 0 

We now aim to describe the depth of S1 when R is a regular, right self-injective ring 

(Theorem 2.12). As preliminaries we need a number of lemmas. 

Lemma 2. 7 If I i's a principal ideal of bounded index in a regular ring R, then S1 is 

idempotent-generated with 

6(S1) =index(!). 

Proof. Let a E SJ. By Lemma 2.2 there exists g = g2 ER with R9R =I such that 

a= y + (1 - 9) 

for some y E SA, where A = gR9. Certainly index(A) < oo because A ~ I. By [G, 

Corollary 7.11], A is unit-regular. Hence by Propositions 1.1, 2.3 and [HO, Remark 1.3], y is 

a product of k = i'ndex(A) idempotents in SA, say y = 9192 · · · 9k· Then a= [g1 +(1-g )] [9 2+ 

(l-9)] · · · [gk+(l-9)] is a product of k idempotents in S1. Since k = i'ndex(A)::::; index(!), 

this shows that S1 is idempotent-generated with 6(S1)::::; index(!). 

To show that 6(S1) =index(!) we just need to find an element of S1 which is a product 

of n =index(!) idempotents in R but no fewer. By [G, Lemma 7.17] there is a central 

idempotent e E I such that eR ~ Mn(A) for some abelian regular ring A. Thus eR is a 

directly finite regular ring and is isomorphic to a direct sum of n isomorphic right ideals. 

As in the proof of Theorem 1.3 there is some y E eR such that (e - y)R = eR and y is a 

product of n idempotents in eR but no fewer. Since I is principal there is an idempotent 

f E (1 - e)R such that I= eR +Rf R. Now let x = y + (1 - e - f) so that xis a product 

of n idempotents in R but no fewer (since e is central). Also R(l - x)R =I and so x E S1 

as required. 0 

For regular rings (with identity), and modules..o.ver such rings, the concepts of directly 

finite, directly infinite, and purely infinite are well established. We now formulate their 
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appropriate analogues for any principal ideal I = RwR of a regular, right self-injective 

ring R, in terms of the R-module wR. In this situation, the result is independent of the 

generator w. However, in view of the open problem [G, Problem 1,p344] of whether Mn(R) 

is always directly finite for a general directly finite regular ring R, we would be unable to 

make this claim of independence even for the concept of a directly finite principal ideal in 

an arbitrary regular ring. 

Definition 2.8 Let I= RwR be a principal ideal of a regular, right self-injective ring R. 

Then I is called directly finite, directly infinite, or purely infinite according to whether the 

R-module wR is directly finite, directly infinite, or purely infinite, respectively. D 

Lemma 2.9 The definition in 2.8 is independent of the generator w for I. 

Proof. Assume I = RwR = RvR for some w, v E R. Then by [G, Corollary 2.23], 

there are positive integers k and m such that wR;:::., k(vR) and vR ;:::_, m(wR). 

Firstly suppose wR is directly finite. Then so is m( wR) by [G, Corollary 9.20] because 

w R is a nonsingular injective module. Hence, since v R ;:::_, m( wR), we have that vR is 

directly finite. This argument shows that wR is directly finite (respectively, directly infinite) 

if and only if vR is directly finite (respectively, directly infinite). 

Next suppose wR is purely infinite. Since wR is nonsingular and injective, by [G, 

Proposition 10.33] this means wR ~ n(wR) for all positive integers n. Hence k(wR) ~ 

wR ;:::., k(vR), which implies wR ;:::., vR by [G, Theorem 10.34] because wR and vR are 

nonsingular injective modules. Also vR ;:::., m( wR) ~ wR yields vR ;:::_, wR, whence by the 

injectivity of wR and vR we have wR ~ vR [G, Theorem 10.14]. Thus vR is purely infinite. 

D 
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The following lemma generalizes the fact that any regular, right self-injective ring is 

uniquely a direct product of a directly finite ring and a purely infinite ring [G, Proposi

tion 10.21]. 

Lemma 2.10 Let l be a principal ideal of a regular, right self-injective ring R. Then l 

is uniquely a direct sum 

of a directly finite principal ideal Ii and a purely infinite principal ideal fz. Moreover, there 

is a central idempotent e of R such that Ii = el and l2 = (1 - e)l. 

Proof. Suppose l = RwR where w E R. Applying [G, Theorem 10.32] to the nonsin

gular injective module wR, we see that there exists a central idempotent e E R such that 

ewR is directly finite and (1 - e)wR is purely infinite. Then 

l =el EB (1 - e)l 

where el= RewR is a directly finite principal ideal and (1- e)l = R{l - e)wR is a purely 

infinite principal ideal. 

For the uniqueness, suppose also RwR = Ji EB h where Ji is directly finite and Ji is 

purely infinite. Write w = wi + w2 where Wj E Ji. Then Ji = RwiR. Hence we have 

a decomposition wR = wiR EB w2R of the nonsingular injective module wR as a direct 

sum of a fully invariant directly finite submodule wiR and a fully invariant purely infinite 

submodule w2R. By the uniqueness of such decompositions [G, Theorem 10.31], we have 

w1R = ewR and w2R = {1 - e)wR where e is the central idempotent above. Thus Ji =el 

and h = {1 - e)I. O 

Lemma 2.11 Let l be a principal ideal of a regular ring R and let e be a central idempotent 

of R. Then 
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Proof. It is easily verified that the map 

a 1-+ (ea + ( 1 - e), e + ( 1 - e) a) 

provides a semigroup isomorphism from Sr onto Ser x S(l-e)r· Internally, Sr = SerS(l-e)r 

and each a E Sr has a unique representation as a product, namely, a = [ea+ (1- e)][e+ 

(1 - e)a]. Moreover, these factors commute and so we are justified in writing Sr as an 

internal direct product of Ser and S(i-e)r (despite the fact that these semigroups do not. 

necessarily have an identity, and so do not have natural copies inside Sr). D 

We are now in a position to present the main result of this section. It is worth noticing 

that the formulae given in the following theorem for the depth of the slices Sr in a regular, 

right self-injective ring Rare much "cleaner" than the corresponding formulae for the depth 

of the full idempotent-generated semigroup S in Theorem 1.6. For instance, if R is purely 

infinite, S may have infinite depth (for example, if R is an infinite-dimensional full linear 

ring) or finite depth (for example, R of Type III), whereas for a purely infinite ideal I, Sr 

always has depth 3. 

Theorem 2.12 Let I be a principal ideal of a regular, right self-injective ring R. Then 

S1 is a regular, idempotent-generated semigroup whose depth is determined as follows: 

{1} If I is directly finite, then 

L.(Sr) =index( I). 

{2} If I is purely infinite, then 

6(Sr) = 3. 

(3) If I is directly infinite, and I=-Ii EB fz is the unique decomposition of I as a direct 

sum of a directly finite ideal Ii and a purely infinite ideal fz , then 
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and 

6(S1) =max{ index( Ii), 3}. 

Proof. By Lemma 2.3, S1 is a regular semigroup. In the course of proving (1),(2), and 

(3), we show that S1 is idempotent-generated. 

(1) We consider first the special case I= R. Then by Lemma 2.9 R is directly finite, 

and hence unit-regular by [G, Theorem 9.17]. Let n :::; index(R) be a positive integer. 

Then by [G, Theorem 7.2] there exist nonzero orthogonal idempotents ei, ···,en ER such 

that eiR ~ ejR for all i,j. Let e = ei + e2 +···+en. Since R is directly finite and right 

self-injective, by [G, Theorem 9.25] the ideal ReR contains a nonzero central idempotent 

f of R. Let B = f R. In the ring B, 

with f eiB ~ f ejB for all i,j. Hence by the argument of Theorem 1.3, there exists x EB 

with rB(x) = fenB and (f-x)B = feB ~ n(rB(x)). Now BrB(x) =Bf enB =Bf eB = B 

whence x ESB (relative to the ring B), and Rr(x) = R which implies x E SR. Because B 

is unit-regular and (! - x)B ~ n(rB(x)), we have by [HO, Theorem 1.2 and Remark 1.3] 

that x is a product of n idempotents in SB. But, as B is directly finite, we cannot have 

(!- x)B ;!:., m(rB(x)) for any m < n, whence [HO, Proposition 1.1] shows that x has depth 

exactly n in SB. It follows that x also has depth n in SR. From Proposition 2.3 we already 

know that SR is idempotent-generated and we have just shown that n :::; 6(SR)· Thus 

i'ndex(R):::; 6.(SR)· By Lemma 2.7 we have 6(SR):::; index(R), hence 6(SR) = index(R), 

completing the special case. 

For the general case we use the corner reduction technique. By Lemma 2.2, if a E S1 

then for some idempotent g EI with RgR =I, a takes the form 

a=y+(l-g) 

where, if A= gRg, y E SA. Conversely, any a of this form is in S1. Since I is a directly 

finite ideal, A is a directly finite, regular right self-injective ring. From the above special 

case applied toy E SA, we see that a is therefore a product of idempotents in S1. Suppose 
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such a product involves k idempotents. Then (1- a)R ;:!:, k(r(a)) by [HO, Proposition 1.1], 

which implies (g -y)A ;:!:, k(rA(Y)) because rA(Y) = r(a)g. In turn, since A is unit-regular, 

this implies by [HO, Theorem 1.2 and Remark 1.3] that y is a product of k idempotents in 

SA. It follows that 

depth of a in S1 = depth of yin SA. 

Now by the earlier special case, we have 

sup{6(SA) I A= gRg, g2 = g, RgR =I} 

sup{index(A) j A= gRg,g 2 = g,RgR =I} 

index(!) 

because I= LJ{gRg j g2 = g ER, RgR =I} (by [HO, Lemma 2.4] for example). 

(2) Again we first treat the special case I= R, and show 6(SR) :S 3. Thus by Lemma 

2.9 we are supposing R is purely infinite. Let a E SR and let e, f E R be idempotents with 

aR eR and Ra= Rf. Then R.(a)R = R = Rr(a) implies R(l - e)R = R = R(l - J)R, 

which as in the proof of Theorem 1.6 yields R ;:!:, (1 - e)R and R ;:!:, (1 - J)R because R is 

purely infinite. Hence by Lemma 1.5, a = eie2e3 for some idempotents ei E R satisfying 

eiR ;:!:, (1 - ei)R. In particular, R(l - ei)R = R, placing each ei in SR. Thus SR is 

idempotent-generated with 6(SR) ::::; 3. 

For the general case, if a E S1 then by Lemma 2.2 there is an idempotent g E R such 

that Rg R = I and a has the form 

a=y-l--(1-g) 

for some y E SA, where A= gRg. Since I is a purely infinite ideal, gR is a purely infinite R

module and so gRg is a purely infinite ring. Invoking the special case, we know 6(SA) ::::; 3 

and 

with each gi E SA. 

Now 

a= [g1 + (1- g)][g2 + (1- g)][g3 + (1- g)] 
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is a product of 3 idempotents in Sr. Thus Sr is idempotent-generated with 6(Sr)::::; 3. 

To show 6(Sr) = 3, fix an idempotent h E R with RhR = I, and let B = hRh. Since 

B is a purely infinite, regular, right self-injective ring, B ~ 2B. Hence by [HO, Example 

2.2] there exists z ESB with rB(z) ~ zB and z 2 -.:/- z3 . The element x = z + (1- h) is now 

in Sr but is not a product of two idempotents (even in R) by [HO,Lemma 2.1], because 

r(x) ~ xR whereas x2 
-.:/- x3

• Thus 6(Sr) = 3. 

(3) This follows directly from Lemmas 2.10 and 2.11 together with (1) and (2). D 

Corollary 2.13 (Reynolds and Sullivan [RS]) Let VF be an infinite-dimensional vector 

space and let L = L(V) be the full linear semigroup. 

{1} The set 1 = {a E L I 0 < n(a) = d(a) ::::; s(a) < ~o} is a regular, idempotent

generated subsemigroup of L of infinite depth. 

{2} For ~o::::; ~::::;dim V, the set I(~)= {a EL I n(a) = d(a) = s(a) = ~} is a regular, 

idempotent -generated subsemigroup of depth 3. 

(3) The semigroup S generated by all the proper(-.:/- 1) idempotent linear transfo1'mations 

is the union of 1 and the I(~) for ~o::::; ~::::; d-!m'V. 

Proof. Let R = EndF (V) be the full linear ring, which is a regular, right self-injective 

ring [G, Theorem 9.12]. Then 1 =SJ where J = soc(R) is the ideal of all transformations 

of finite rank, while I(~) = Sr where I is the ideal of all transformations of rank ::::; ~. 

Thus 1 and the J(~) are regular, idempotent-generated subsemigroups by Proposition 2.3. 

Also S = 1 U {I(~) I ~o ::::; ~ ::::; dim V} by Proposition 2.4(2) and the fact that a nonzero 

principal ideal of R is either J or of the form {a ER I rank(a) ::::; ~}for some ~o ::::; ~ ::::; 

dim V. Inasmuch as J is a directly finite ideal of infinite index, 6(1) = 6(SJ) = oo 

by Theorem 2.12(1). On the other hand, for ~o ::::; ~ ::::; dim V, the ideal I = {a E R I 
rank(a)::::; ~}is purely infinite, whence Theorem 2.12(2) says 6(1(~)) = 6(Sr) = 3. D 
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Remark 2.14 Since R {above} is a .. prime ring, it has no nontrivial central idempotents 

and so the mixed case {9) in Theorem 2.12 does not occur. o 

Although the relationship 6(S) = £ndex(R) holds for any directly finite, regular ring 

(Theorem 1.3), the connection in part (1) of Theorem 2.12 between depth and index at the 

subsemigroup level 81 breaks down in general, even for directly finite, regular rings with 

comparability, as the following example illustrates. 

Example 2.15 There is a directly finite ring R satisfying the comparability axiom and 

such that the subsemigroup SR has depth 2 but R has index oo {cf. Theorem 2.12{1}}. 

Proof. (See [G, Example 16.23].) Let V be a countable-dimensional vector space over 

a field F and let Q = Endp (V), the elements of Q being viewed as column-finite ~o x ~o 

matrices over F. For each integer n let Jn be the set of all x E Q of the form 

(-$-) 
where *indicates an n X n block, and let Rn= F +Jn. Thus Rn is a subring of Q such that 

Rn ~ F X Mn(F) and so Rn is unit-regular. Also Ri ~ R2 ~ ···so that if we let R = LJ Rn 

then R is a unit-regular, and hence directly finite, subring of Q. It is easy to see that the 

only ideals of R are O, R and J = U ln. Also R satisfies the comparability axiom and has 

nilpotent index oo. To see that 6(SR) = 2 consider any a E SR. Then Rr(a) = R implies 

that a E J and so a E ln for some n. Hence there is an idempotent e E ln with a E eRe 

and eR;:., (1 e)R. Then e = yz for some y E eR(l - e) and z E (1- e)Re. We now have 

the factorization (cf. Lemma 1.5) 

a= [e + y][e + z(a - e)] = eie2 (say) 

where the idempotents ei, e2 satisfy eiR = eR and Re2 = Re and hence both lie in SR 

because e E SR. (Notice that this shortens the factorization given in [OM, Proposition 2].) 
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In matrix form this factorization is 

A 0 0 

a= 0 0 0 

0 0 0 

I I O 

0 0 0 

0 0 0 

I 0 0 

A- I 0 0 

0 0 0 

where the entries in the top left-hand block are n x n matrices (see [L]). Hence 6.(Sn) = 2. 

Of course, by Theorem 1.3, we must have 6.(S) = index(R) = oo. What has happened 

here is that all the elements of S needing more than 2 idempotents have been gathered into 

the subsemigroup SJ. (By Proposition 2.4, S =So U SJ U Sn= {1} U SJ U Sn.) D 

A similar example, using the ring R of ~1 X ~1 column-finite matrices which have an 

arbitrary countable-by-countable top left-hand block, a scalar down the rest of the diagonal, 

and zeroes elsewhere, produces a regular ring with comparability and a purely infinite ideal 

I= R such that S1 is idempotent-generated with 6.(S1) = 2. Thus even parts (2) and (3) 

of Theorem 2.12 break down here. 

3 Subsemigroup generated by the nilpotent elements 

We have seen that any nilpotent element in a regular ring Risa product of idempotents 

(Lemma 1.2). Since 1 - a is a unit whenever a is nilpotent it follows that the nilpotent 

elements of R all belong to the subsemigroup Sn. In this section we characterize those 

idempotents which are products of nilpotent elements and show that as long as R is unit

regular or regular, right self-injective, then. S[l is in fact the subsemigroup of R generated 

by all the nilpotent elements of R. We begin with a lemma which may be of independent 

interest. 

Lemma 3.1 Suppose A, B are finitely generated pro/ective modules over a 1·egular ring 

R and that k is a positive integer. Then A :S kB if and only if there is a decomposition 

A= Ai EB · • ·EB Ak such that 
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Proof. It is easy to see that A :., kB is necessary for such a decomposition. We prove 

the converse by using induction on k, the case k = 1 being trivial. Suppose A :., kB where 

k 2 2. By [G, Corollary 2.9] there is a decomposition A= U E9 W where U :., (k - l)B and 

W :., B. By the induction hypothesis, there is a chain 

of submodules of B such that U £:'. C1 E9 C2 E9 · · · E9 Ck-1· Let Di,···, Dk be submodules 

of B such that D1 = Ci, Ci = Ci-1 E9 Di for 2 :::; i :::; k - 1, and B = Ck-1 E9 Dk. Then 

B = D 1 E9· · ·E9Dk. Inasmuch as W:., B, [G, Corollary 2.9] shows that there are submodules 

Xi ~ Di such that W £:'. X1 E9 · · · E9 Xk. Hence 

A UE9W 

where 

and so the induction step is complete. D 

Remark 3.2 An equivalent formulation of the lemma would be that A:., kB if and only 
I 

if there are decompositions 

such that Ai£:'. iBi for i = 1,·· · ,k. D 

Proposition 3.3 Let R be any regular ring and let e e2 E R. Then the following 

conditions are equivalent: 
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(i) e E SR 

(ii} R(1 - e)R = R 

(iii} e is a product of 2 nilpotent elements of R 

(iv) e is a product of nilpotent elements of R 

Proof. The equivalence of (i) and (ii) follows from the definition of SR since r(e) = 

( 1 - e) R and £( e) = R(l - e). Also (iii) :::} (iv) is trivial, while (iv) :::} (i) because nilpotent 

elements all belong to SR and SR is closed under multiplication (Proposition 2.3). This 

leaves only (ii) :::} (iii). So suppose R(l - e)R = R. By [G, Corollary 2.23] we have 

eR ~ R ;:-:_, k(1 - e)R for some integer k. By Lemma 3.1 there are orthogonal idempotents 

ei,···,eksuchthate=e1+···+ekande1R;::_, ··· ;::.,ekR;::_, (1-e)R. Letek+i=l-eand 

for 1 ~ i ~ k pick Xi E eiRei+l and Yi E ei+lRei such that Xi Yi = ei. Then x = x1 + · · · + xk 

and y = Yl + · · · + Yk satisfy xk+1 = 0 = yk+ 1 and xy = e. Thus e is a product of two 

nilpotent elements. 0 

Corollary 3.4 Let R be a regular ring which is unit-regular or right self-injective. Then 

the subsemigroup 

SR= {a ER I Rr(a) = l(a)R = R} 

(which is regular and idempotent-generated} is precisely the subsemigroup of R generated 

by the nilpotent elements of R. 

Proof. This follows immediately from Proposition 3.3 because SR is idempotent-generated 

(Proposition 2.3). O 
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