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A solution method is proposed to the inverse problem of determining the unknown initial temperature dis-
tribution in a laser-exposed test material from measurements provided by infrared radiometry. A Fredholm
integral equation of the first kind is derived that relates the temporal evolution of the infrared signal am-
plitude to the unknown initial temperature distribution in the exposed test material. The singular-value
decomposition is used to demonstrate the severely ill-posed nature of the derived inverse problem. Three
inversion methods are used to estimate solutions for the initial temperature distribution. A nonnegatively
constrained conjugate-gradient algorithm using early termination is found superior to unconstrained inversion
methods and is applied to image the depth of laser-heated chromophores in human skin.

Key words: constrained conjugate gradients, ill-posed problem, infrared radiometry, laser surgery, nonneg-
ative, singular-value decomposition.

1. INTRODUCTION

Pulsed photothermal radiometry (PPTR) is a noncontact

technique that utilizes an infrared detector to measure

temperature changes induced in a test material exposed

to pulsed radiation. Heat generated as a result of light

absorption by subsurface chromophores in the test ma-

terial diffuses to the surface and results in increased

infrared radiant emission levels. By collecting and con-

centrating the emitted radiation onto an infrared detec-

tor, one obtains a PPTR signal that represents the time

evolution of temperature near the test material’s surface.

Useful information regarding the test material may be de-

duced from analysis of the PPTR signal; reported appli-

cations include (1) evaluation of surface coating thickness

in industrial components,1 (2) identification of subsurface

microcracks in aircraft structures,2 (3) determination of

the optical absorption coefficients in human artery3 and

biliary calculi,4 and (4) characterization of port-wine stain

birthmarks.5

Because coupled radiative–thermal effects are present

during and after pulsed irradiation, determination of the

optical and/or the thermal properties of the test material

from a PPTR measurement can be complex. In the fol-

lowing analysis we assume that the thermal diffusivity

in a one-dimensional layered test material is constant

following pulsed laser irradiation and derive an integral

equation relating measured PPTR signal amplitude to the

initial temperature distribution. Because we seek only

to find the initial temperature distribution immediately

following laser irradiation, analysis of the pulsed radia-

tive transfer in the test material is not included. We

deduce the initial temperature distribution from the

measured PPTR signal amplitude by finding a solution

estimate to the derived integral equation. Computed

singular values of the kernel or point-spread function in

the derived integral equation demonstrate the severely

ill-posed nature of the PPTR inverse problem.

Since the derived integral equation is ill posed, esti-

mates of the initial temperature distribution can change

substantially as a result of small perturbations (i.e.,

noise) in the measured PPTR signal amplitude. We

present three inversion methods that are used to com-

pute solution estimates of the initial temperature dis-

tribution. The singular-value decomposition is used to

analyze the characteristic properties of the kernel func-

tion. First, we use a least-squares truncated singular-

value decomposition (LSTSVD) to compute a solution

estimate for the unknown initial temperature distribu-

tion in the exposed test material. Although inferior

to those obtained from the conjugate-gradient meth-

ods discussed below, results from LSTSVD demonstrate
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the effect of the PPTR signal-to-noise ratio on (1) the

degree of regularization, (2) the accuracy of the esti-

mated solutions, and (3) the instabilities that arise from

small singular values of the kernel function. Second,

we use the method of unconstrained conjugate gradients

to find solution estimates to the PPTR inverse prob-

lem. A shortcoming of unconstrained methods is the

presence of unrealistic negative temperature changes in

computed solution estimates. Third, we apply a non-

negatively constrained conjugate-gradient algorithm6 to

determine the initial temperature distribution from a

measured PPTR signal. Because temperature changes

in the test material resulting from radiative absorption

are strictly greater than or equal to zero, we constrain

the inversion method to search for nonnegative solutions

of the integral equation and obtain estimates of greater

accuracy.

2. BACKGROUND AND THEORY

A. PPTR Signal
We derive an expression for PPTR signal amplitude

fDSstdg in terms of the initial temperature distribution

fDT sz, t ­ 0dg in a test material immediately following

pulsed laser irradiation. For the purpose of our analysis

we assume that the test material occupies semi-infinite

half-space and that the plane positioned at z ­ 0 is coin-

cident with the boundary surface (Fig. 1). Radiative and

convective thermal losses at the air–material interface

are modeled with a Robin boundary condition [Eq. (1)]:

dDT

dz

É

z­0

­ hDT

É

z­0

. (1)

At the test material surface sz ­ 0d, heat flux Q ­

2kdDTydz is proportional to the surface temperature

increase Q ­ 2khDT ; proportionality constants in-

clude thermal conductivity k and heat-loss coefficient

h. Boundary conditions that represent a perfectly insu-

lating sQ ­ 0d and constant-temperature fDT s0, td ­ 0g

surface correspond, respectively, to limiting values of

h ­ 0 and h ­ `. From the Green’s function solution to

the one-dimensional heat-transfer problem7 the tempera-

ture distribution DT sz, td at an arbitrary depth z and

time t is written as

DT sz, td ­

1

s4pDtd1/2

Z `

z0­0
DT sz0, 0d

3 hexpf2sz 2 z0d2y4Dtg

1 expf2sz 1 z0d2y4Dtg

3 f1 2 h
p
4pDt expsu2derfcsudjdz0, (2)

where erfcsud is the complementary error function and u is

defined [Eq. (3)] in terms of the boundary loss coefficient

h and the thermal diffusivity D, which we assume is

homogeneous:

u ­

z 1 z0

2
p
Dt

1 h
p
Dt . (3)

In a physical sense, the three terms in the integrand

(from left to right) of Eq. (2) represent (1) a planar ther-

mal source with amplitude DT sz0, 0d located at position

z0, (2) an equal-amplitude image source located at posi-

tion 2z0, and (3) a continuous distribution of planar im-

age sinks extending from z ­ 2z0 to z ­ 2` of strength

2DTh expfhsz 1 z0dgdz that account for thermal energy

losses from the test material surface. The ideal PPTR

signal amplitude DSstd at any time t is proportional

to a superposition [Eq. (4)] of the depth-dependent tem-

perature changes DT sz, td weighted by the transmission

loss in the exposed test material that is due to infrared

absorption:

DSstd ­ Cdma

Z z­`

z­0
DT sz, tdexps2mazddz . (4)

Here ma is the infrared absorption coefficient in the ex-

posed test material at the detected wavelength(s) and

Cd is a proportionality constant determined by the in-

frared detection system. In addition, we have assumed

in Eq. (4) that observed temperature changes are much

less than the initial background temperature sDT ,,

T0d, so increases in the infrared radiant exitance, DE ~

sT0 1 DT d4 2 T0
4 ø 4T0

3DT , are linear with temperature

change. An expression for the ideal PPTR signal ampli-

tude is found [Eq. (5)] by substitution of the temperature

distribution DT sz, td defined in Eq. (2) into Eq. (4) and

completion of the z integral:

DSstd ­ sCdmay2d
Z z0­`

z0­0
DT sz0, 0dexps2z02y4Dtd

3

(

erfcxsu2d 1 erfcxsu1d

2
2h

h 2 ma

ferfcxsu1d 2 erfcxsu1dg

)

dz0. (5)

Here, erfcxsud ­ expsu2derfcsud is the exponential comple-

mentary error function and u6,1 are functions [Eq. (6)] of

space and time and the relevant material coefficients D,

h, and ma:

u6 ­ ma

p
Dt 6 z0y2

p
Dt , u1 ­ h

p
Dt 1 z0y

p
Dt . (6)

We view the measured PPTR signal amplitude as a

blurred image of the initial spatial temperature distri-

bution; our objective is to determine DT sz0d from the

blurred image fDSstdg.

B. Inverse Problem
Equation (5) is a Fredholm integral equation of the first

kind for the unknown initial temperature distribution,

Fig. 1. Geometry assumed for analysis of the inversion problem;
measured PPTR signal fDSstdg and initial temperature distribu-
tion fDT sz, t ­ 0dg solution.
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DT sz0, 0d. Determination of a solution for DT sz0, 0d re-

quires evaluation of the kernel or point-spread func-

tion [Eq. (7)] and measurement of the PPTR signal

amplitude DSstd:

Ksz0, td ­ exps2z02y4Dtd

(

erfcxsu2d 1 erfcxsu1d

2
2h

h 2 ma

ferfcxsu1d 2 erfcxsu1dg

)

. (7)

Inasmuch as Fredholm integral equations of the first kind

arise in numerous remote-sensing problems of practical

interest, many inversion methods have been formulated

for their solution.8 Most problems are ill posed in the

sense that small perturbations (i.e., noise) in the mea-

sured data can result in large variations in a computed

solution estimate. In the following, we seek a solution

for the initial temperature distribution DT sz0, 0d, using

a known kernel function Ksz0, td and a measured PPTR

signal DSstd, which is corrupted with noise. Knowledge

of the initial temperature distribution is the first step to-

ward determining the spatial distribution of laser-heated

subsurface chromophores in the exposed test material.

Because all observed physical systems (i.e., source,

transmission channel, and receiver) exhibit intrinsic ran-

dom fluctuations that contribute to measurement noise,

the ideal PPTR signal DSstd obtained by numerical evalu-

ation of Eq. (5) is a mathematical construct that does

not exist in practice. Noise present in an infrared de-

tection system originates from a number of sources9:

(1) fluctuations in the arrival rate of background photons,

(2) shot noise that is due to the discrete nature of the pho-

todetection process, (3) thermal-induced fluctuations or

Johnson noise present in any resistive elements utilized

in the readout electronics, (4) generation–recombination

noise that arises when photoinduced carriers recombine

at impurity sites within the detector element, (5) phonon

noise that is due to temperature fluctuations in the de-

tector element, and (6) 1yf noise that is due to processes

not completely understood. Inasmuch as multiple noise

sources are present, we invoke the central-limit theorem10

and add a zero-mean, Gaussian distributed noise value

e to the ideal PPTR signal amplitude DSstd in Eq. (5).

The variance of the noise distribution is determined by

the signal-to-noise ratio [SNR; Eq. (8)] of the infrared

detection system:

SNR ­ kDSstdlyke2l1/2, (8)

where kpl represents a time average of the quantity *.

We begin seeking a solution estimate by approximat-

ing the PPTR signal, the initial temperature change in

the exposed test material, and the kernel function with

respective discrete vector and matrix quantities, DS ­

DSstid, DT ­ DT szj
0, 0d, and K ­ Ksti, zj

0dDz0; addition-

ally, we assume that ti and zj are uniformly spaced, so

(1) ti 2 ti21 ­ tnetysNt 2 1d, with t1 . 0, (2) Dz ­ zi 2

zi21ysNz 2 1d, with z1 . 0, and (3) Nt $ Nz so the problem

is overdetermined. Boldface terms are used to represent

vector and/or matrix quantities. The measured PPTR

signal amplitude DS differs from the ideal DS by zero-

mean, white Gaussian noise vector e. The linear ma-

trix equation that approximates the continuous integral

formulation [Eq. (5)] is

DS ­ DS 1 e ­ KDT . (9)

The simplest means to estimate a discrete approxi-

mation of the initial temperature distribution is to se-

lect the DT that minimizes the Euclidean norm of the

residual vector sjjrjj ­ jjDS 2 KDT jjd, which is the

minimum-variance unbiased least-squares estimate.

Unfortunately, because Eq. (9) is ill posed, the high vari-

ance of this estimate makes it essentially useless. One

obtains meaningful estimates by augmenting the unbi-

ased least-squares problem with various constraints. We

consider three increasingly sophisticated methods that

permit computation of initial temperature distribution

estimates DT .

3. INVERSION METHODS

To determine the degree to which a problem is ill posed,

a first step11 is examination of the singular values of the

kernel matrix K. The fundamental theorem of linear

algebra12 provides the mathematical basis for the exis-

tence and characteristic properties of the singular values

and vectors for an arbitrary matrix over a finite-

dimensional real vector space. The singular-value de-

composition13 allows for an arbitrary kernel matrix K

of rank r to be expanded [Eq. (10)] in terms of bases of

orthonormal left ssid and right stid singular vectors:

K ­

rP

i­1
di ? si ? ti

T . (10)

The basic difficulty in computing a solution estimate for

the initial temperature distribution DT in Eq. (9) stems

from the relatively large number of small singular val-

ues di of the kernel matrix K. Any selected inversion

method can be viewed as forming a linear superposition

of right singular vectors of the kernel matrix K for the

unknown initial temperature distribution DT . In the su-

perposition, each right singular vector is weighted by the

inverse of an associated singular value. Large oscilla-

tions in such a solution estimate can occur if expansion

terms are not selected judiciously. Because smaller sin-

gular values correspond to higher-order right singular

vectors of increasing spatial frequency (see, for example,

Fig. 5 below), efforts to extract edges and sharp features

of the unknown initial temperature distribution DT can

be difficult and lead to instabilities. Thus any realistic

inversion method must deal with the instability problem

that originates from small singular values of the kernel

matrix and their associated high-spatial-frequency right

singular vectors.

A. Least-Squares Truncated Singular-Value
Decomposition
If there exists some integer m , r so that the singular

values dl sl . md are small [Eq. (11)], expansion of the

kernel matrix in Eq. (10) for values greater than m is not

physically meaningful because the energy in successive

terms is less than the noise energy Ntkei
2l:

m ­ Argmin
1#j#r

"

j :

√

di #
Nt

1/2ke2l1/2

jti ? DT j

!

, ; i . j

#

. (11)
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We use Eq. (11) to truncate the singular-value expan-

sion [Eq. (10)] after the first m terms and seek a solution

estimate that is a linear combination of the first m or-

thonormal right singular vectors ti, with coefficients ci
selected to minimize the Euclidean norm of the residual,

f sc1, c2, . . . , cmd, in Eq. (12):

f sc1, c2, c3 , . . . , cmd ­

É É

K

"
mP

i­1
scitid

#

2 DS

É É 2

. (12)

The concept of the LSTSVD method is to truncate the

singular-value decomposition expansion [Eq. (10)] before

small singular values [Eq. (11)] begin to dominate the

estimate of the initial temperature distribution. Later

we apply the LSTSVD method to compute solution esti-

mates of the unknown initial temperature distribution in

a model problem.

The truncation integer m in Eq. (11) can be viewed as

analogous to a regularization parameter. The optimum

value of m cannot be computed directly from Eq. (11)

because knowledge of the unknown initial temperature

distribution DT is required. We determine the trun-

cation integer by using an L-curve analysis.14 In this

method we find the optimum truncation integer by plot-

ting the Euclidean 2-norms of the computed solution

estimate jjDT spdjj versus that of the residual vector

jjDS 2 KDT spdjj for a number of truncation integers

p. The value of p that corresponds to the corner of the

resulting curve—which often resembles the letter L—is

selected as the optimum truncation integer m.

B. Method of Conjugate Gradients
Originally developed by Hestenes and Stiefel,15 the

method of conjugate gradients is an iterative technique

that can be successfully applied to minimize f sDT , ld:

f sDT , ld ­ minsjjKDT 2 DSjj2 1 ljjLDT jj2d , (13a)

or, equivalently,

f sDT , ld ­ min

( É É "

Kp
lL

#

DT 2

"

DS

0

# É É 2)

. (13b)

The additional regularization term ljjLDT jj2 is added

to the squared norm of the residual, jjKDT 2 DSjj2, to

penalize large solution estimates.

First, we consider the unconstrained case in which the

unknown solution can represent positive or negative tem-

perature changes. Second, we find a better approach in

a constrained conjugate-gradient algorithm6 that requires

that the computed estimate for the initial temperature

distribution be nonnegative (i.e., DT $ 0). The non-

negativity constraint permits computation of physically

realistic (i.e., representative of radiative absorption)

and more-accurate estimates of the initial temperature

distribution.

When constrained and unconstrained conjugate-

gradient methods are used the quality of the estimate

strongly depends on the degree of regularization as speci-

fied by the real parameter l. A number of techniques

and philosophies exist for specifying the degree of regu-

larization. The most common are (1) the discrepancy

principle,16 (2) generalized cross validation,17 and (3) the

L curve.15 The L curve has intuitive appeal because it

graphically represents the variance-versus-bias trade-off

that is involved in specifying the degree of regularization.

For small l the estimate for DT overfits the measured

PPTR signal and models measurement noise that is in-

herent in the infrared detection process. The result is

a large, noisy, high-variance estimate for DT . For large

l the result is a small, smooth, high-bias estimate that

does not adequately model the initial temperature dis-

tribution; consequently the residual norm is very large.

Plotting the estimate norm jjDT sldjj against the residual

norm jjKDT sld 2 DSjj was first suggested by Lawson

and Hanson14 and yields an L-shaped plot, where the op-

timum regularization parameter is at the corner of the L.

Use of the L-curve technique has an advantage over use

of the discrepancy principle in that prior knowledge of

the noise variance is not required. The advantages over

generalized cross validation are that it is easily adapted

to the nonnegatively constrained case and appears not

to require the same degree of orthogonality between the

signal and noise. Various simulations18 suggest the ad-

vantages of the L-curve technique over generalized cross

validation.

A method that is much faster than either LSTSVD

or solving Eq. (13b) is to apply the conjugate gradient-

algorithm to the unaugmented problem sl ­ 0d of

Eq. (13a), starting with DT ­ 0, and to regularize by

early termination. In the chemometrics literature the

method is called partial least squares and has been given

a sound theoretical basis.19,20 In these references the

best iterate is selected by use of ordinary or generalized

cross validation.21 Furthermore, both the discrepancy

principle and L curve can be used to determine the best

iterate. Although the theory behind this approach is too

complex to discuss here, we have observed in numerous

computations that this method is fast and works well.

4. METHODS AND MATERIALS

We formulate a model PPTR problem that allows for nu-

merical testing of each of the three inversion methods.

We assume a temperature increase DTisz, t ­ 0d in the

test material as a result of radiative absorption in an

ith subsurface layer [Eq. (14)] and derive an analytic

expression [Eq. (15)] for the corresponding ideal PPTR

signal fDS istdg:

DTisz, t ­ 0d ­

(

DTi expf2ksz 2 z1dg z1 , z , z2

0 otherwise
, (14)

DS istd ­

DTi expskz1d

2

√√√

expf2kz 2 z2y4Dtg

3

(

ma erfcxsu1d

ma 2 k
2

ma erfcxsu2d

ma 1 k

1
2mah

h 2 ma

"

erfcxsu1d

h 2 k
2

erfcxsu1d

ma 2 k

#

1
2maksma 1 hderfcxsu2d

sma 1 kdsma 2 kdsh 2 kd

)!!!z2

z1

. (15)

We derive Eq. (15) by solving the Green’s function in-

tegral [Eq. (2)] for the time-dependent temperature dis-

tribution DT sz, td and computing the ideal PPTR signal
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[Eq. (4)]; u6,1 are defined in Eqs. (6), u2 in Eq. (16):

u2 ­ k
p
Dt 1

z

2
p
Dt

. (16)

Although noise in any infrared detection system is

due to a number of sources, best system performance

is attained when the dominant source originates from

intrinsic fluctuations in the photon emission rate (i.e.,

radiant power) from the background field; in this case

the detection system is said to be photon-noise limited

or a background-limited photodetector (BLIP). In prac-

tice, BLIP systems require more stringent design crite-

ria, which frequently include cooling the detector element

to liquid-nitrogen or -helium temperatures and use of an

ultralow-noise electronic preamplifier.

For the purpose of determining the optimum SNR we

examine a BLIP infrared detection system and write an

expression9 for SNRblip:

SNRblip ­

kDSlV0

p

Ad

m
p

Df

Z l2

l1

tsldDpsld
≠Mlsl, T d

≠T
dl . (17)

SNRblip is expressed [Eq. (17)] in terms of the

background-limited normalized spectral detectivity

Dpsld, the temperature derivative of the Planck ex-

pression for the spectral radiant exitance Mlsl, T d of a

unit emissivity blackbody, the transmission coefficient

tsld from the test material surface to the detector

element (i.e., through the intervening air and optical

components), the infrared region of spectral sensitivity

sl1, l2d, the mean signal increase above background

levels at the test material surface in response to pulsed

radiative exposure skDSld, the collection solid angle

V0 in object space, the detector surface area Ad, the

frequency bandwidth of the detection system Df , and

geometric magnification m of the optical system. We

compute SNRblip for two infrared detectors with a peak

responsivity wavelength (lp ­ 11 mm) that are sensitive

in the 7–11– mm spectral range. For liquid-nitrogen-

(77 K) and thermoelectric- s275 ±Cd cooled detectors,

the respective normalized spectral detectivities are

Dpslpd ­ 3 3 1010 and 2 3 108 scm Hz1/2 W21d. We

assume a measured temperature increase kDSl ­ 5 ±C
and a unit magnification optical system with a 25-mm-

diameter, fy1 lens stopped down to a 6-mm-diameter

entrance pupil that is antireflection coated so that

ktsldl ø 0.8. For the purpose of model inversion calcula-

tions, allowance for the presence of multiple noise sources

is made for a liquid-nitrogen-cooled infrared detector

that reduces the SNR up to three times below the BLIP

limit so that SNR ­ 100, corresponding to a Df ­ 1 kHz

system bandwidth (Fig. 2). The SNR is compromised

by 2 orders of magnitude when a thermoelectric-cooled

detector is used; for a 200-Hz system bandwidth the

optimum SNR is 10. A numerical routine22 that com-

putes random numbers following a zero-mean Gaussian

white-noise distribution is used to generate noise values

ei. The variance s2 of the Gaussian distribution is fixed

to require that s ­ kei
2l1/2 ­ kDSilySNR.

Accurate evaluation of Eq. (15) requires realistic esti-

mates of the diffusion constant D, the infrared absorption

coefficient ma, and the heat-loss coefficient h. Inasmuch

as our primary interest concerns the response in biologi-

cal tissue immediately following pulsed laser irradiation,

we assume a diffusion constant sD ­ 0.11 mm2 s21d rep-

resentative of human skin.23 The infrared attenuation

coefficient in human skin displays a strong dependence

on water and protein. Except in the superficial stra-

tum corneum (upper 5–10 mm), water is the dominant

biochemical species in human skin and is present at

a concentration24 of 70%. We assume a 70% water-

dominated absorption spectrum,25,26 which is weighted

by the detector responsivity and blackbody emission and

averaged over a spectral bandwidth (7–11 mm) to yield

ma ø 50 mm21. In the absence of surface cooling agents,

heat loss from the skin surface is due primarily to radia-

tion and free-air convection. We assume skin emissivi-

ties close to unity and typical free convection heat-transfer

coefficients27 to find h ø 0.03 mm21, representative of

20-Wm22 K21 surface losses.

A simulated PPTR signal is computed to test each in-

version method. A temperature increase DT1 ­ 20 ±C in

a thin sz2 2 z1 ­ 150 mmd, superficial sz1 ­ 300 mmd, and

absorptive sk ­ 3 mm21d layer (Fig. 3A) is assumed to

give a simulated signal (Fig. 3B). The size of the kernel

matrix K used in each inversion computation is fixed at

256 3 128, corresponding to a digitized signal DS sampled

at 8-ms intervals over 2 s and an initial temperature dis-

tribution vector DT with 8-mm spatial resolution extend-

ing to a depth of 1 mm.

Error sed of a solution estimate DT is computed

[Eq. (18)] with respect to the true solution DT ± by use of

the L1 vector norm:

e ­

jjDT 2 DT ±jj1
jjDT ±jj1

. (18)

Error computations allow for objective comparison of each

inversion method.

The nonnegatively constrained conjugate-gradient algo-

rithm is applied to solve a biomedical problem frequently

encountered in laser treatment of port-wine stain (PWS)

birthmarks.28 In this approach, pulsed laser light par-

tially transmits through the epidermis and is preferen-

tially absorbed by hemoglobin (the major chromophore in

blood) contained in ectactic blood vessels located in the

upper dermis. There the incoming laser energy is con-

verted to heat, causing thermal injury and thrombosis in

the targeted blood vessels. The normal overlying epider-

mis is not totally spared because of the partial absorption

of pulsed laser energy therein by melanin. For improved

Fig. 2. SNRblip of liquid-nitrogen- s· · · · · ·d and thermoelectric-
(– – – –) cooled infrared detection systems; see text for the specific
configuration.
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Fig. 3. A, Assumed source distribution DT sz, t ­ 0d. B, Simu-
lated PPTR signal DSstd with SNR ­ 100.

laser treatments we seek to know the position and the

relative concentration of melanin in the epidermis and of

hemoglobin with PWS blood vessels in the upper dermis.

PPTR has been used to measure the level of infrared ra-

diant emission from PWS skin in response to pulsed laser

exposure.5 One motivation for the present study is deter-

mination of the initial temperature distribution in PWS

skin immediately following pulsed laser exposure—given

only a diagnostic PPTR measurement. Knowledge of the

initial temperature distribution gives diagnostic infor-

mation that can be used for designing improved laser

treatments.

To aid in interpreting clinical results, we first consider

a two-layer PWS model that consists of a thin sz2 2 z1 ­

40 mmd superficial layer sz1 ­ 10 mm deep) of melanin in

the epidermis overlying a thicker sz2 2 z1 ­ 650 mmd and

deeper sz2 ­ 350 mmd plexus of laser-heated PWS blood

vessels in the upper dermis. Because incoming laser ra-

diation is strongly scattered, absorption of incident pulsed

laser light in the melanin layer is augmented by backscat-

tered light29 and is assumed to give a nearly uniform

sk ø 0d temperature increase sDT1 ­ 40 ±Cd. We assume

an initial temperature increase DT2 ­ 20 ±C in the PWS

layer that decreases with depth sk ­ 5 mm21d as a re-

sult of light absorption and scattering (Fig. 9 below, solid

curve). Then we apply the inversion problem to a PPTR

signal recorded following pulsed laser exposure of in vivo

PWS skin. The recorded signal represents the infrared

response collected over a 1-mm-diameter circular area on

the skin surface following pulsed (0.45-ms, 1.4-J) laser

sl ­ 585 nmd irradiation s7 J cm22d of a PWS; a detailed

description of the apparatus and irradiation procedure

was given previously.5

5. RESULTS AND DISCUSSION

We present computational results for the PPTR inversion

problems and discuss their interpretation. First we com-

pute the singular values and right singular vectors of the

kernel matrix [Eq. (7)]. We compute solution estimates

of the PPTR inverse problem, (1) using LSTSVD, (2) un-

constrained, and (3) using nonnegatively constrained con-

jugate gradients. For each inversion method tested no

prior knowledge of the initial temperature distribution is

assumed; the initial estimate is always DT ­ 0. For each

inversion method we use an L-curve analysis to determine

the optimum degree of regularization. The error of the

computed solution estimates [Eq. (18)] permits an objec-

tive comparison of each inversion method.

A. Singular-Value Decomposition
The degree to which the PPTR inverse problem is ill posed

is determined by examination of the singular values of

the kernel matrix [Eq. (7)]. Solution error depends not

only on the degree to which the problem itself (i.e., the

kernel function) is ill posed but also on the SNR of the

detection system. We plot the magnitude of the first

15 singular values of the kernel matrix corresponding to

the previously defined model problem and examine the

dependence on the infrared absorption smad and heat-loss

(h) coefficients.

First, we observe that the singular values decrease

according to a power law sd ­ A2id in the index i with

constant A (Fig. 4A). Following Hofmann’s definition,30

the PPTR inverse problem is classified as severely ill

posed. Second, we note that a relatively small number of

singular values s,10d can be used [Eq. (12)] to compute

solutions when SNR ­ 100–1000. Furthermore, only

Fig. 4. Magnitude of the first 15 singular values: A, ma ­

10 mm21 (squares), ma ­ 1000 mm21 (circles); B, h ­

0.03 mm21 (squares), h ­ 20 mm21 (circles).
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Fig. 5. First five right singular vectors of the kernel matrix: 1
( ), 2 (– – –), 3 (— - — - —), 4 (— · · ·— · · ·— · · ·), 5 (· · ·).

a marginal increase in the number of included singu-

lar values and right singular vectors is obtained for an

order-of-magnitude increase in SNR. This feature is

particularly important when one is considering SNR limi-

tations of infrared detection systems. The best SNR

is achieved for a BLIP detection system and is sub-

ject to limitations in the frequency bandwidth Df . For

example, the SNR of a BLIP liquid-nitrogen-cooled de-

tector system with a 10-kHz bandwidth, using a 1-mm2

detector that is sensitive in the 7–11-mm range, does not

exceed 100 (Fig. 2); in this case the number of useful sin-

gular values is limited to eight or fewer, approximately

6% of the total. Higher SNR (500) can be attained by re-

duction of the system bandwidth (Df ­ 500 Hz); however,

such an increase permits inclusion of only one additional

singular value. Third, if the infrared absorption coeffi-

cient ma in the test material increases, singular values of

the kernel matrix also increase (Fig. 4A), and the inver-

sion problem is slightly less ill posed. We understand

this by considering a relatively small infrared absorption

coefficient; in this case the penetration depth 1yma into

the exposed test material is deeper, and the infrared

measurement samples the temperature distribution

DT sz, td over a greater depth. Hence a function [e.g.,

exps2mazd in Eq. (4)] with a larger spread (i.e., smaller

ma) blurs the sampled temperature distribution, which

accentuates the ill posedness of the inversion problem.

Numerical experiments test the dependence of the

singular values on the magnitude of the heat-loss co-

efficient h. Reduction of the largest singular values

is observed when the heat-loss coefficient is increased

to values fh ø 20 mm21, or 670 sW m22 K21dg corre-

sponding to forced liquid convective cooling (Fig. 4B).

In such circumstances, large heat fluxes force a large

temperature gradient near the test material surface so

that the measured infrared signal amplitude DSstd is

less indicative of the temperature distribution at deeper

positions [Eq. (4)].

We plot (Fig. 5) the first five right singular vectors

stid of the kernel matrix corresponding to the model

problem. As noted above, smaller singular values are

associated with higher-spatial-frequency right singular

vectors. When the initial temperature distribution con-

tains large thermal gradients representative of discrete

chromophores, high-spatial-frequency right singular vec-

tors with associated small singular values must be in-

cluded in the solution for accurate edge reconstruction.

Because the SNR limits the number of high-frequency

right singular vectors that can be included in a solution

estimate, accurate reconstruction of corners and edges

that may be inherent in the initial temperature distri-

bution is impossible.

B. LSTSVD Solutions
Solution estimates for the initial temperature distribu-

tion DT sz, 0d by LSTSVD are computed, given a PPTR

signal that is representative of the defined model prob-

lem (Fig. 3B). We examine the effects of noise in the in-

frared detection system by considering SNR ­ 100 and

SNR1 ­ 1000. Proper regularization or selection of the

appropriate truncation integer (m) in Eq. (11) is necessary

for best results. To determine the optimum truncation

integer, we plot the estimate sjjDT jjd versus the residual

sjjKDT 2 Sjjd Euclidean norms for each SNR (Fig. 6A).

Points clustered near the corner of the L curve give a

truncation integer; for both SNR ­ 100 and SNR ­ 1000,

we find that m ­ 10. Minimum solution error [Eq. (18)]

in the computed estimates is 0.80 and 0.62 for respective

SNR’s (100 and 1000). We plot (Fig. 6B) both solution

estimates and the true initial temperature distribution.

When a solution estimate is formed with few right

singular vectors, the residual error is large, and the cor-

responding point lies on the lower right-hand edge of the

L curve. As more right singular vectors are included

in the solution estimate, solution error e decreases, and

points move toward the corner of the L curve where resid-

ual and estimate norms are relatively balanced in magni-

tude. As successive right singular vectors are included,

the solution estimate becomes unstable and the norm

jjDT jj increases rapidly, with little reduction of the resid-

ual norm. In this regime, signal noise magnifies the

Fig. 6. A, L curve for LSTSVD solutions: SNR ­ 100
(squares), SNR ­ 1000 (circles); B, LSTSVD solution estimates:
true ( ), SNR ­ 100 (– - – - –), SNR ­ 1000 (- - -).
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Fig. 7. A, L curve for unconstrained conjugate gradient solu-
tions by the conventional (squares) and the early-termination
(circles) regularization methods. B, Unconstrained conjugate
gradient solution estimates: true ( ), conventional (– – –),
and early (– - – - –) termination.

influence of the small singular values associated with

high-spatial-frequency right singular vectors (Fig. 5).

The effect is evident in the L-curve analysis (Fig. 6A);

inclusion of 11 or more right singular vectors pro-

duces unstable solution estimates with large norms (i.e.,

jjDT jj . 20). Because the inversion problem is severely

ill posed, an order-of-magnitude increase in SNR of the

infrared detection system gives a small decrease in com-

puted solution error (i.e., from e ­ 0.80 to e ­ 0.62)

despite an order-of-magnitude decrease in the residual

norm. Furthermore, reconstruction of corners and edges

that are inherent in the initial temperature distribution

(Fig. 6B) is difficult because a sufficient number of right

singular vectors cannot be included in a solution esti-

mate, given the SNR and bandwidth limitations of the

detection system.

C. Conjugate-Gradient Solutions
We determine estimates for the inverse problem [Eq. (5)],

using constrained and unconstrained conjugate gradi-

ents, by minimizing the regularized norm [Eqs. (13)].

Solution estimates are computed by conventional and

early-termination regularization methods. For the con-

ventional case we estimate a solution DT by solving the

augmented problem [Eq. (13b)] with L ­ I for various

regularization parameters sl ­ 0.01–3 3 1028d. When

using early termination with conjugate gradients, we

solve the unaugmented problem [Eq. (13a), l ­ 0] and

regularize by selecting the terminating iteration number.

We find characteristic L curves by plotting (Fig. 7A) the

estimate versus residual norms corresponding to regu-

larization by both conventional and early termination.

For each method we find that respective parameters

(l ­ 1 3 1026, 15th iterate) represent a reasonable

balance between signal error and excessive regulariza-

tion. Conventional and early-termination regulariza-

tion give the respective solution errors e ­ 0.74 and

e ­ 0.75. Both methods of regularization are nearly

equivalent and are observed to give solution estimates

that are similar to those found when LSTSVD is used.

The 15 iterations used in the unconstrained conjugate-

gradient method is approximately equal to the num-

ber of right singular vectors (i.e., 10) included in the

corresponding LSTSVD solution estimate. When con-

ventional regularization is used, however, each value

of l used to compute a single point on the L curve

requires a large number of iterations, greatly increas-

ing the total computation time; for example, genera-

tion of the L curve for conventional regularization

requires in excess of 7500 iterations. Use of early ter-

mination simplifies the computation because each suc-

cessive iteration represents a new and decreased degree

of regularization and the optimum point is found with

substantially fewer iterations (i.e., 300).

As with the LSTSVD method, however, the uncon-

strained conjugate-gradient solution estimates exhibit

unrealistic negative temperature changes that are not

representative of the true solution. Examination of each

solution estimate (Figs. 6B and 7B) points to an under-

lying limitation of both methods. When the initial tem-

perature distribution contains corners and sharp edges

representative of large thermal gradients, higher-order

right singular vectors must be included in a solution

estimate for accurate reconstruction. Inasmuch as an

arbitrarily large number of right singular vectors cannot

be included because of fundamental SNR and bandwidth

limitations, broadened and physically unrealistic nega-

tive temperature changes are inevitably present and con-

tribute to increased solution error e.

The problem with negative temperature changes in un-

constrained solutions is resolved by introduction of a non-

negativity constraint. We consider the model problem

for two infrared detection systems with SNR ­ 10 and

SNR ­ 100 and regularize by early termination. The

residual and solution estimate norms follow an L curve

that we had observed earlier, using the unconstrained

methods. The constrained conjugate-gradient solution

estimates (Fig. 8) substantially reduce the solution error;

Fig. 8. Nonnegatively constrained solution estimates: true
( ), SNR ­ 10 (- - -), and SNR ­ 100 (– - – - –).
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Fig. 9. Thermal profile in PWS skin following laser irradiation:
assumed ( ), nonnegatively constrained conjugate-gradient
solution estimate (– - – - –).

Fig. 10. A, Measured PPTR signal fDSstdg of PWS skin fol-
lowing laser irradiation; B, nonnegatively constrained conju-
gate-gradient solution estimate.

for SNR ­ 10 and SNR ­ 100 the respective values are

e ­ 0.65 and e ­ 0.27. Solution error when the nonnega-

tivity constraint is used is reduced by 2.5 times com-

pared with that for the unconstrained method for

equivalent SNR ­ 100. When SNR ­ 10, the solution

error of the constrained algorithm is comparable with that

obtained with the unconstrained method and SNR ­ 100.

Furthermore, unrealistic negative temperature changes

are not present in solution estimates computed with the

nonnegativity constraint, and the initial temperature

gradient is reproduced with greater accuracy.

Next we consider a medical diagnostic problem. A

PPTR signal sDSd representative of a laser-irradiated

simulated PWS is computed by application of Eq. (15).

The nonnegatively constrained conjugate-gradient algo-

rithm is applied to compute a solution estimate of the

initial temperature distribution. The terminating iter-

ation number (200th iterate) is identified by use of an

L-curve analysis. The position and the amplitude of both

the epidermal melanin and PWS blood vessel temperature

increases are reproduced (Fig. 9) with a small solution

error e ­ 0.35.

Finally, we consider a PPTR signal recorded following

pulsed laser irradiation of in vivo PWS skin. Important

features in the recorded signal are evident (Fig. 10A): a

rapid initial temperature increase that is due to light

absorption in the epidermis by melanin and the presence

of a delayed thermal wave that is due to heat generated

within subsurface PWS blood vessels diffusing to the skin

surface. The terminating iteration number (32nd iter-

ate) is determined with an L-curve analysis. Heating of

both epidermal melanin and PWS blood vessels is clearly

distinguished in the initial temperature distribution com-

puted (Fig. 10B) by the nonnegatively constrained con-

jugate gradient algorithm. The computed temperature

increase in the epidermis s35 ±Cd provides a means to esti-

mate a threshold laser dose (16 J cm22) that corresponds

to the temperature of melanosome explosion s110 ±Cd.31

Laser doses above the threshold increase the risk of

epidermal injury, long-term changes in pigmentation,

and scarring; such a regime is to be avoided in clinical

practice.

The depth (200 mm) and the extent (400 mm) of blood

vessel heating are also deduced from the computed

solution estimate. Inasmuch as blood vessels are dis-

crete absorbers of limited spatial extent, the computed

solution represents a mean areal temperature and does

not provide sufficient information to permit estimation

of the clinically important temperature increase of indi-

vidual blood vessels. Noninvasive optical methods that

allow for accurate estimates of the fractional blood vessel

area at a given depth on a site-to-site basis are under

investigation.

6. CONCLUSIONS

The PPTR inversion problem is severely ill posed and in-

herently difficult to solve. A large infrared absorption ma

and/or a small heat-loss coefficient h increases the magni-

tude of the singular values and thus alleviates the sever-

ity of the inverse problem, albeit slightly. The SNR of

the background-limited infrared detection system and cor-

responding bandwidth constraints fundamentally restrict

the number of singular values and vectors that can be

used to reconstruct the initial temperature distribution.

The difficulty is compounded when large thermal gradi-

ents representative of discrete chromophores are present.

Unconstrained inversion methods are not well adapted

to reconstruct edges because—of necessity—SNR and

bandwidth limitations restrict the number of included

right singular vectors, resulting in physically unrealis-

tic negative temperature changes and increased error

in computed solution estimates. Solution error is sub-

stantially reduced s2.53d by inclusion of a nonnegativity

constraint. Regularization by early termination permits

faster s303d computation of solution estimates over con-

ventional methods. Inversion of PPTR signals recorded

following pulsed laser irradiation of PWS skin provides

for direct estimates of the magnitude of melanin heating

and the limiting laser dose as well as the depth and the

spatial extent of laser-heated blood vessels.
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