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Abstract. This paper proposes an adaptive color-guided auto-regressive
(AR) model for high quality depth recovery from low quality measure-
ments captured by depth cameras. We formulate the depth recovery task
into a minimization of AR prediction errors subject to measurement con-
sistency. The AR predictor for each pixel is constructed according to both
the local correlation in the initial depth map and the nonlocal similarity
in the accompanied high quality color image. Experimental results show
that our method outperforms existing state-of-the-art schemes, and is
versatile for both mainstream depth sensors: ToF camera and Kinect.
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1 Introduction

Acquiring depth information of real scenes is an essential task for many ap-
plications such as 3DTV, augmented reality, and 3D reconstruction. There are
mainly two categories of methods to obtain depth information: passive methods
and active methods. Passive methods still suffer from some inherent problems for
practical application, e.g., requiring strict image rectification and inefficiency for
textureless areas [1]. The alternative is to acquire depth information by active
devices, e.g., Time-of-flight (ToF) camera, and Kinect.

Time-of-flight (ToF) based technique is a recent advance in active depth sens-
ing. ToF cameras determine depth information by measuring the phase difference
of the emitted light and the reflected light. ToF cameras can capture depth infor-
mation for dynamic scenes in real time, but are noisy and have low resolutions,
e.g., 176×144 and 200 × 200, compared with popular color cameras. Microsoft
Kinect is another break through to achieve real-time depth capturing for dy-
namic scenes. In Kinect, an infrared light source projects some patterns on the
scene and an offset infrared camera receives the pattern and estimates the depth
information. The generated depth maps contain considerable holes due to the
occlusion caused by the relative displacement of projector and camera.

While the new depth sensing techniques are promising, the use of depth cam-
eras is limited by the low quality of produced depth maps, e.g., low resolution,
noise, and depth missing in some areas. Some previous work on depth recovery
for depth cameras were proposed, and are briefly reviewed as follows.
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Depth Recovery for ToF Cameras : Limited by the sensing mechanism, ToF
cameras have a low resolution, which impedes their practical applications. It is
difficult to recover high quality depth maps from only the severely undersampled
versions due to the loss of salient discontinuities. Fortunately, the depth infor-
mation and texture information are two descriptions of the same scene from
different perspectives, and thus present strong structural correlations. In par-
ticular, discontinuities often simultaneously present at the same locations in a
depth map and the corresponding (registered) color image, and homogeneous
regions in color image tend to have similar depths. Therefore, the common wis-
dom is to couple a color camera with a ToF camera and recover high quality
maps with the help of the accompanied color image [2–6].

Markov Random Field (MRF) that plays an important role in classic stereo
matching [1] is also powerful in depth recovery with accompanied color images.
Diebel and Thrun [6] proposed a two-layer MRF to model the correlation be-
tween range measurements and solve the MRF optimization with the conjugate
gradient algorithm. Hu et al. [7] further extended this work by designing a data
term that fits to the characteristics of depth maps. Zhu et al. [8] extended the
traditional spatial MRFs to dynamic MRFs so that both the spatial and the
temporal relationship can be propagated in local neighbors, improving accuracy
and robustness of depth recovery for dynamic scenes. Another category is to use
advanced filters such as bilateral filters and non-local means (NLM) filters [9–11].
Joint bilateral filtering and its variations are readily available tools for depth re-
covery using high quality auxiliary color images for cross filtering [9, 10]. Chan
et al. designed an adaptive multi-lateral upsampling filter to further address the
noise in depth measurements. Min et al. [12] proposed a weighted mode filter-
ing method based on a joint histogram of depth video and color video. Huhle
et al. [13] proposed a fusion scheme based on the non-local principle. Park et

al. [14] used a NLM term to regularize depth maps and combined with a weight-
ing scheme that involves edge, gradient, and segmentation information extracted
from high quality color images.

Depth Recovery for Kinect : The main degradation in depth maps produced by
Kinect is random depth missing on the background and structural depth miss-
ing for occlusion regions. One possible way is to use inpainting methods. Lai et
al. [15] filled missing depth values by recursively applying a median filter in their
work on RGB-D object dataset construction, but blurring occurs in large occlu-
sion. Matyunin et al. [16] proposed a depth restoration method via temporal
filtering, which requires consecutive frames and introduces delay. Camplani and
Salgado [17] used a joint bilateral filter similar to Ref. [9] to fill missing depth.
However, the filtered depth maps present obvious artifacts around discontinu-
ities. The occlusion filling method in Ref. [18] achieves real-time processing, but
the recovered depth maps are not always consistent with the accompanied color
image, particularly around the boundaries of background and foreground.

These methods achieve good quality for smooth regions, but may introduce
artifacts, e.g. jagging, blurring, and ringing, around thin structures or sharp dis-
continuities. Both taking a low quality depth map and a high quality color image
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Fig. 1. Depth maps recovered by the proposed method from various types of degrada-
tions: (a) undersampling (1/8), (b) undersampling (1/8) with strong signal-dependent
additive noise, (c) random missing, and (d) structural missing. The degraded depths
and the recovered ones are at the top row and bottom row, respectively.

as input, depth recovery problems for ToF camera and Kinect are the same, but
are treated separately in literature. This paper proposes a color-guided AR model
to construct a unified depth recovery framework for both ToF and Kinect depth
cameras. Observing and verifying the fitness of AR model for depth maps, we de-
sign pixel-wise adaptive AR predictors based on the non-local similarity of both
the depth map and the accompanied color image. The depth map is recovered
by minimizing AR prediction errors subject to observation consistency. Experi-
ments demonstrate that our method can handle all common depth degradation
modes, as shown in Fig. 1, and is versatile for various depth capturing systems
such as ToF cameras and Kinect. Surprisingly, without resorting to higher level
tools such as segmentation used in Ref. [14], our proposed method achieves the
best quality among several state-of-the-art depth recovery methods.

2 Degradation Modes and AR Model of Depth Maps

2.1 Degradation Modes of Depth Maps

Current depth capturing systems are far from perfect. A captured depth map is a
degraded version of the underlying groundtruth. Let d and d0 denote the vector
form of the underlying perfect depth map and the captured one, respectively.
The observation model for depth capturing is described as

d0 = Hd+ n, (1)

where H represents the observation matrix and n is additive noise.
There are mainly four types of degradations: undersampling, random depth

missing, structural depth missing, and pollution with additive noise. For the for-
mer three ones, the observed depth map d0 has a smaller number of elements
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than d and H is a fat matrix, which makes the depth recovery ill-posed to at-
tack. As shown in Fig. 6, the depth maps captured by ToF is undersampled
(lower resolution than the accompanied color image), and polluted by noise. Af-
ter viewpoint registration, the warped depth map contains disoccludded regions
around object boundaries, and thus suffers from degradation of structural depth
missing. In Fig. 7, the Kinect depth map contains both random and structural
missing degradations. Our method is to recovery high quality depth maps from
low quality observations, and all the four kinds of degradations are handled in
the proposed unified depth recovery framework.

2.2 AR Model of Depth Maps

As shown in Fig. 4-7, depth maps for generic 3D scenes contain mainly smooth
regions separated by curves. AR model can well describe such type of 2D signals:
The key insight is that a signal can be regenerated by the signal itself. Denote
by D a depth map, and Dx the depth value at location x. The predicted depth
map D̃ by the AR model from the depth map D is expressed as

D̃x =
∑

y∈Nx

ax,yDy, (2)

where Nx is the neighborhood of pixel x and ax,y denotes the AR coefficient for
pixel y in the neighborhood Nx. The accuracy of the AR model can be measured
by the difference between D and D̃, e.g., mean absolute difference (MAD) or
root mean squared error (RMSE).

To verify the fitness of the AR model for depth maps, we check the prediction
error between the predicted depth maps and the ground truths for a set of test
depth maps. Four AR predictors are tested: an average filter, a Gaussian filter,
a bilateral filter and the proposed filter, all with a 11 × 11 neighborhood. As
shown in Fig. 2, all the four filters have good prediction for smooth regions.
The proposed filter has the smallest prediction error for discontinuities of depth
maps. Since the proposed filter adapts the AR model to the nonlocal structures
of signals, it almost regenerates the depth map: the average prediction error
(MAD) is only 0.051/pixel. These results demonstrate that the AR model is
quite effective in modeling the depth maps, which supports the application of
this model to the recovery of depth maps.

Depth information and the associated texture information have strong cor-
relation in terms of geometrical structures, and often are acquired and used
together [6, 19]. Depth maps are of low resolution and low signal-to-noise ratio
while color images are of high resolution and high quality. Exploiting depth-color
correlations is quite informative for depth recovery when the accompanied color
images are available. As shown in Fig. 2(a) and 2(b), edges in depth maps have
their counterparts in color images. This suggests that the locations of edges in
depth maps can be inferred from the accompanied color images, and motivates
the proposed color-guided AR model for depth recovery from low resolution and
incomplete observations.
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Fig. 2. Prediction efficiency for four AR predictors: (a) the associated color image,
(b) the input depth map, and prediction results of AR predictors constructed by (c)
average filter, (d) Gaussian filter, (e) bilateral filter, and (f) the propose filter. The
prediction error (MAD) between the predictions in (c), (d), (e), and (f) against the
original depth maps are 3.992, 3.131, 0.129, 0.051, respectively.

3 Color-Guided AR Model for Depth Recovery

AR model has been successively applied in many image processing applications,
such as image interpolation [20] and video frame-rate upconversion [21]. This
section describes our AR formulation of the depth map recovery, which takes
the benefit of the strong correlation between depth maps and the associated
color images.

3.1 Depth Recovery Based on AR Model

Denote by D0 the observed depth map and O the set of pixels with observed
depth values. Given the observed depth map D0, we proposed the following
depth recovery model based on AR:

minD Edata

(

D,D0
)

+ λEAR (D) , (3)

where Edata(D,D0) is the data term to make the recovered depth map consistent
with the observation, and EAR(D) is the AR term to impose AR model on the
recovered depth map. The data term and the AR term are weighted by λ.

The data term is expressed as

Edata

(

D,D0
)

�
∑

x∈O

(

Dx −D0
x

)2
, (4)

and the AR model is incorporated into the depth recovery as the AR term

EAR (D) �
∑

x

(

Dx −
∑

y∈Nx

ax,yDy

)2

, (5)

where the AR coefficient ax,y is defined according to both depth and color infor-
mation in the following section. The proposed method has a similar form, but is
a departure essentially, to related work. For example, the work in Ref. [14] solves
the depth upsampling problem with an energy minimization with three terms,
i.e., data term, smoothness term, and non-local term. In addition to color in-
formation, segmentation and edge saliency are taken into account in confidence
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weights. Although such features can be readily incorporated in our recovery
model, we found that the elegant AR model can well describe the characteristics
of depth maps. Therefore, we insist on the low level processing in depth recovery,
and retain the simplicity of the model.

As shown in Sec. 2.2, the AR model is powerful in describing depth maps
only when the AR coefficients are properly designed. However, an accurate AR
model is difficult to infer from only the degraded depth map D0. Noting that the
depth-color pairs have strong structural correlations, the information loss due
to depth degradation can be complemented by the accompanied color image. To
achieve high quality depth recovery, we design pixel-wise adaptive AR predictors
in Sec. 3.2 using both the initial depth map and the auxiliary color image.

3.2 Color-Guided AR Model

In AR-based image processing [20], images are often divided into small units and
each unit shares an AR predictor. Preprocessing like segmentation is often used
for extraction of homogeneous regions. However, the piece-wise AR model cannot
provide sufficient adaptivity when each unit contains considerable variations.
Therefore, we design pixel-wise adaptive AR predictors for depth recovery: an
AR predictor {ax,y}, y ∈ Nx is constructed for each pixel x by considering both
the depth and color information.

A depth map is reliably recovered with the optimal AR predictors, which
can be derived only when the depth map is available. To break this chicken-
egg dilemma, we design AR predictors using the available depth map and the
accompanied color image. Note that the observed depth map D0 is not directly
applicable due to degradations such as the undersampling or depth missing.
Denote by D̂ the rough estimated depth map obtained by bicubic interpolation
from D0. Represent the accompanied color image with I = {Ii, i ∈ C}, where Ii

is the intensity of the color channel with index i and C is the index set of color
channels in a certain color space. We had investigated three color spaces (RGB,
YUV, and Lab). All three color spaces yield similar results, and we choose the
YUV color space due to its slightly better performance, i.e., C = {Y, U, V }. The
AR coefficient ax,y consists of two terms:

ax,y =
1

Cx

aD̂x,ya
I
x,y, (6)

where Cx is the normalization factor, aD̂x,y and aIx,y are the depth term and color
term, respectively.

The depth term aD̂x,y is defined on the initial estimated depth map D̂ by a
range filter:

aD̂x,y = exp

(

−

(

D̂x − D̂y

)2

2σ2
1

)

, (7)

where σ1 is the decay rate of the range filter. Qualitatively, aD̂x,y has a large

value if D̂x is close to D̂y. This term is also to avoid incorrect depth prediction
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due to depth-color inconsistency: pixels of the same depth layers may have very
different colors; pixels of similar colors may belong to different depth layers.

The color term aIx,y is designed to take benefit of the inter-correlations in the
depth-color pair. Edges in a depth map co-occur with their counterparts in the
accompanied color image. The color term aIx,y should be able to prevent the AR
model from predicting across depth discontinuities. Structure-aware filters such
as the NLM filter can be used for this purpose. Based on the non-local principle,
we propose the following color terms :

aIx,y = exp

(

−

∑

i∈C ‖Bx ◦
(

P i
x − P i

y

)

‖22
2× 3× σ2

2

)

, (8)

where σ2 controls the decay rate of the exponential function, P i
x denotes an op-

erator that extracts a w×w patch centered at x in color channel i, “◦” represents
the element-wise multiplication. The bilateral filter kernel Bx is defined in the
neighborhood Nx as in the patch operator:

Bx(x,y) = exp

(

−
‖x− y‖22

2σ2
3

)

exp

(

−

∑

i∈C(I
i
x − Ii

y)
2

2× 3× σ2
4

)

, (9)

where σ3 and σ4 are parameters of the bilateral filter to adjust the importance
of the spatial distance and intensity difference.

The difference between the proposed filter in the color term and the standard
NLM filter is that the proposed one uses a bilateral kernel to weight the distance
of local patches while the standard one uses a Gaussian kernel. The bilateral

Fig. 3. Illustrations for the color term of AR predictors: (a) patch-based neighbor-
hood and shape-based neighborhood, (b) two pixels centered with neighborhood for
similarity search, (c) and (d) presents AR predictors for the two pixels constructed by
bilateral filter (top), standard NLM filter (middle), and the proposed filter (bottom)
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kernel Bx has a strong response for pixels of similar intensities to x, and hence
carries the shape information of local image structures. This extends the NLM
filter from path-based to shape-based in measuring the resemblance of local
structures, and has a significant impact on the structure of AR predictors for
pixels around edges. As shown in the top part of Fig. 3 (a) , two homogeneous
regions are separated by smooth curves and x is nearby a curve. To construct
the AR predictor for x, the similarity of between x and each pixel y in the
neighborhood Nx is evaluated. Constrained by the patch structure, the standard
NLM filter produces large coefficients only for pixels that are parallel to the edge,
e.g. y1 and y2, but small coefficients for other pixels, such as y3, even though they
have the same intensity as x. On the contrary, our bilateral-weighted NLM filter
has a shape-adaptive neighborhood, and increases opportunities to exploit more
correlations for pixels around discontinuities. This is illustrated in the bottom
part of Fig. 3 (a). With the shape-adaptive neighborhood, the proposed filter
produce an equally large coefficient for y3 as for y1 and y2. This will enlarge the
prediction set for AR predictor, and lead to more stable and reliable estimation.

Fig. 3 further shows real examples of AR predictors constructed from the
bilateral filter, standard NLM filter, and the proposed filter. The proposed color
term of AR predictor can better adapt to the local structures of color images.
This merit helps to well determine the inverse problem. Our recovery depth
model is equivalent to solve a linear system, say Ad = d0, where d is the vector
form of the depth map to be recovered, A is the matrix constructed from the
assumed model and d0 is the vector form of the observed depth map. The AR
predictor for each pixel is associated with each row of A. The stability of the
linear system tightly depends on the structures of AR predictors. AR predictors
estimated by the standard NLM filter tend to have small supports for pixels
around edges and contours, which would underdetermine the linear system at
least for related pixels; our proposed AR predictors tend to have larger supports
and form a more well-determined system, and therefore are more powerful in
depth recovery.

4 Experiments and Results

Our method is first evaluated onMiddlebury datasets with four kinds of synthetic
degradations and compared with several existing methods. Then, our method is
applied on two real depth cameras to obtain high quality depth maps.

4.1 Experiments on Datasets with Synthetic Degradations

Three datasets, Art, Book, and Moebius, from the Middlebury’s benchmark [22]
are used for evaluation. Four kinds of typical degradations are synthesized: sub-
sampling, subsampling with noise, random missing, and structural missing. In
the following experiments, the parameters in the AR model are set as: λ = 0.01,
σ1 = 4, σ2 = 6.67, σ3 = 3.5, σ4 = 0.25. We investigated the influence of the
parameters on the recovery performance, and find that the performance is stable
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when the parameters are within certain ranges: λ ∈ [0.01, 0.10], σ1 ∈ [3.0, 7.0],
σ2 ∈ [3.8, 19.0], σ3 ∈ [3, 10], σ4 ∈ [0.01, 0.45]. The neighborhood Nx is chosen as
a 11× 11 patch with x as its center.

For the subsampling degradation, recovery results in terms of MAD against
the ground-truth depth maps are reported in Table 1. Beside the bicubic inter-
polation, the proposed method is compared with four recent methods: MRF [6],
bilateral filter [9], guided image filter [23], and edge-weighted NLM-regularization
[14] 1. As shown in Table 1, our method obtains the lowest MAD for all cases,
which demonstrates its effectiveness. For visual comparison, 8× upsampled depth
maps for Art are shown in Fig. 4. The MRF method [6] tends to produce
oversmooth results. The edge-weighted NLM-regularized method [14] generates
comparable results to ours, but introduces some jaggy artifacts along edges.
The computational complexity of our method is similar to the NLM-regularized
method [14] since they both solve minimization with quadratic terms, and is
higher than methods in Ref. [9, 23] that perform single filtering for each pixel.

Table 1. Quantitative superresolution results from subsampled depth maps on Mid-
dlebury datasets at four subsampling rates. Our method consistently achieves the best
recovered quality (the lowest MAD) among all the compared methods.

Art Book Mobius 

2  4  8  16 2  4  8  16 2  4  8  16

Bicubic

MRFs [13]

Bilateral [16]

Guided [24]

Edge [9] 

Ours

0.48

0.62

0.57

0.66

0.43

0.18

0.97

1.01

0.70

1.06

0.67

0.49

1.85

1.97

1.50

1.77

1.08

0.66

3.59

3.94

3.69

3.63

2.21

2.15

0.13

0.22

0.30

0.22

0.17

0.11

0.29

0.33

0.45

0.36

0.31

0.25

0.59

0.62

0.64

0.60

0.57

0.48

1.15

1.21

1.45

1.16

1.05

0.80

0.13

0.25

0.39

0.24

0.18

0.11 

0.30

0.37

0.48

0.38

0.30

0.23

0.59

0.67

0.69

0.61

0.52

0.42

1.13

1.29

1.14

1.20

0.90

0.90

Recovery results for other three kinds of depth degradations are summarized
in Table 2. For subsampling with additive noise, we add strong signal-dependent
Gaussian noise whose variance is within the range of [0, 225] and is proportional
to depth values. More distant depth layers are polluted with stronger noise. For
random-missing degradation, depth values are randomly dropped up to three
ratios: 10% , 20% , and 50%. For structural-missing degradation, missing areas
are created by drawing black curves on depth maps with a brush. As shown
in Table 2, the proposed method provides promising recovery quality for all
the three types of depth degradations. Particularly for the random missing and
structural missing, the average recovery error is consistently at a low level for
all the three datasets. Compared with other two cases, the recovery error for
undersampling with additive noise is much higher due to the strength of the noise
and the complex nature of signal-dependent noise. Fig. 5 shows the recovered
depth maps together with degraded ones. Our method nearly achieves visually
perfect recovery for random missing and structural missing. For undersampling

1 The authors thank J. Park for providing recovered depth maps for comparison.



Depth Recovery Using an Adaptive Color-Guided Auto-Regressive Model 167

Fig. 4. Depth maps upsampled (8×) by (a) the MRFs method [6], (b) edge-weighted
NLM-regularized method [14], and (c) our method

with additive noise, our method obtains good recovery quality for close depth
layers (low noise level), but introduces “dirty clouds” for distant depth layers
(strong noise level). This suggests that the proposed method owns the capability
to fight against moderate-level noise, but would better resort to a denoising filter
before depth recovery.

Table 2. Quantitative depth recovery results for other three types of degradations:
undersampling with additive noise, random missing, structural missing

Art Book Mobius 

Additive noise (8×) 4.91 4.50 5.48 

Structural missing 0.12 0.07 0.06 

10% 20% 50% 10% 20% 50% 10% 20% 50%
Random missing 

0.09 0.17 0.45 0.03 0.05 0.14 0.03 0.07 0.17

4.2 Experiments on Real Systems

Recent mainstream depth sensors include ToF depth camera and Microsoft
Kinect camera. Both depth sensors have their disadvantages: ToF depth cameras
have low resolutions while Kinect camera suffers from the occlusion problem. It is
desirable to have higher quality depth maps in practical applications. We apply
our method on these two depth sensors to achieve high quality depth recovery
from the low quality sensor measurements.

ToF depth camera: For the first depth sensing system, we mount a high resolu-
tion Grey Flea2 color camera on a PMD[vision] CamCube3 ToF depth camera to
construct a depth-color camera rig. The ToF camera has a resolution of 200×200,
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Fig. 5. Recovered depth maps (bottom row) from degraded versions (top row): (a)
undersampling (1/8) with additive noise, (b) random missing at the ratio of 50%, and
(c) structural missing. The highlighted regions are enlarged for visual inspection.

and the resolution of color camera is set at 640×480 to obtain nearly the same
field of view as the ToF camera. To compensate misalignment due to different
viewpoints, depth maps are warped to the viewpoint of the color camera using
intrinsic parameters and extrinsic parameters for both cameras computed by the
camera calibration module in the OpenCV library [24]. Outliers in depth maps
are rejected by the associated amplitude images as confidence levels.

As shown in Fig. 6(a), the obtained depth map suffers from the undersam-
pling degradation combined with some random missing on the ceiling. The view-
point warping between the depth camera and color camera introduces structural
missing around depth discontinuities due to disocclusion. To recover depth map
from measurements with various degradation modes is more challenging than the
previous simulations with single synthetic degradation mode. It is observed in
Fig. 6(b) that the recovered depth map quite coincides with the depth relation-
ship as suggested in the accompanied color image. Fig. 6(c) shows the rendered
results from the color image and the recovered depth map. We render the image
at a different viewpoint from the one of the color camera. The rendered image
suggests that our method reliably restores the geometric relationship from a set
of low-resolution depth measurements. However, it is observed that there is also
slight global blending artifact in the rendering results. We find that the blending
artifact is caused by the geometrical distortion of the ToF depth camera. This
suggests that geometric distortion compensation can be used a as preprocessing
to further improve the recovery accuracy.

Kinect camera: Microsoft Kinect is an integrated sensor array for natural
user interaction, consisting of a depth camera and a color camera. The captured
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depth maps and color images are of size 640×480. We observe that color images
captured by Kinect present jaggy artifacts and fake colors along discontinuities
such as contours and edges due to inefficient demosaicing, which severely affects
the quality of depth recovery. These artifacts in color images are suppressed by
re-demosaicing the color images with a more advanced demosaicing method [25].

Fig. 7 shows the depth-color pair captured by the Kinect camera as well as
depth recovery results. It is observed that the depth map contains lots of holes
around depth discontinuities due to occlusion. This corresponds to the case of
synthetic datasets with structural missing areas in Sec. 4.1. The recovered depth
map and the rendered image indicate that the recovered depth map correctly
preserves the 3D geometrical relationship of the captured scene. We also observe
that there are some artifacts around the depth discontinuities in the rendered
view due to the smooth transition of different depth layers (the person, the
sofa, and curtain). This is caused by the blurring of the Kinect color image that
finally leads to the blurring in the recovered depth map. For applications where
the accompanied color images are of low quality, we can improve the recovery
quality by applying some pre-processing techniques on the color images such as
deblurring and sharpening.

The results in this section demonstrate that the proposed method is versa-
tile for both the two mainstream depth cameras, and is applicable in various

Fig. 6. Depth recovery results for ToF camera: (a) input depth-color pair, (b) recovered
depth map, and (c) rendered image at a new viewpoint from the recovered depth and
the color image. The depth-color pair is shown at their original ratio of size.

Fig. 7. Depth recovery results for Kinect camera: (a) input depth-color pair, (b) recov-
ered depth map, and (c) rendered image at a new viewpoint. The Kinect color image
is shown at a smaller size overlayed on the depth map to save space.
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applications involving depth sensing. It is also worth to mention that our depth
recovery method should collaborate with other preprocessing techniques such as
geometric distortion calibration for depth sensor and color image sharpening to
achieve high quality depth acquisition in practical systems.

5 Conclusion

This paper proposes an elegant framework to recover depth maps from low qual-
ity measurements with various types of degradations. We show that depth maps
are well described by AR models if the AR predictors can adapt to the charac-
teristics of depth maps. Based on this observation, we design pixel-wise adaptive
AR predictors using both the depth map and the accompanied color image. The
depth map is recovered by minimizing AR prediction errors subject to the ob-
servation consistency. Experiments demonstrate that our method achieves high
quality depth recovery from low quality versions with various degradation. Ex-
periments on two real systems demonstrate that our method is versatile for
various depth capturing systems such as ToF cameras and Kinect.

The proposed framework would be extended and improved in future work: 1)
incorporate other regularization to strengthen robustness against noise, 2) opti-
mize model parameters according to depth and image characteristics, 3) derive
fast algorithms to achieve real-time implementation for practical applications.
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