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Abstract. This paper deals with the problem of depth recovery or surface 

reconstruction from sparse and noisy range data. The image is modelled 

as a Markov Random Field and a new potential function is developed 

to effectively detect discontinuities in highly sparse and noisy images. No 

use of any line process is made. Interpolation over missing data sites is 

first done using local characteristics and simulated annealing is then used 

to compute the maximum a posteriori (MAP) estimate. Results of software 

simulations carried out on actual range images along with details of the 

simulations are presented. 
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1. Introduction 

Depth recovery is one of a set of early vision modules that deal with the recovery of 

properties of three-dimensional surfaces from their two-dimensional images. This has 

been a vibrant area in the recent past and there have been many papers in the 

literature dealing with surface reconstruction. We cite a few that have provided the 

motivation for this work: Boult & Kender (1986), Marroquin et al (1987), Shao et al 

(1987, pp. 530-5), Choi & Kender (1988, pp. 189-94), Frankot & Chellappa (1988), 

Terzopoulos (1988), Horn & Brooks (1989, and the papers therein), Prasad et al (1990) 

and Geiger & Girosi (1991). For a recent review on three-dimensional surface 

reconstruction, see Bolle & Vemuri (1991). Most of the work focuses on recovering 

three-dimensional surfaces from one- or two-dimensional intensity images, while some 

(Boult & Kender 1986, pp. 68-76; Choi and Kender 1988, pp. 189-94) deal with 

surface reconstruction from sparse and noisy range data. In this paper, we consider 

the latter problem. 

It is well known that problems in early vision are usually ill-posed, i.e. a solution 

may not exist, may not be unique, or may not depend continuously on the data. 

Ill-posed problems are usually handled by using methods from regularization theory 

(Bertero et al t988), which however may fail to give 9ood results in the presence of 

discontinuities. To overcome this, one often uses probabilistic approaches which 

usually involve representing a priori knowledge in terms of an appropriate probability 
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distribution of an image model. If the statistics of the noise are known, then given 

the observation, the posterior distribution of the solution can be found using Bayes 

theory. 

An extensively used stochastic model is the Markov Random Field (MRF) model 

(Besag 1974; Geman & Geman 1984), whose equivalence to the Gibbs Random Field 

can be used to exploit the Gibbs energy to specify the image model and the relation 

between the parameters of the model. Discontinuities in the image are modelled by 

selecting an appropriate clique model for the Gibbs energy function. Another 

advantage of such models is the existence of globally convergent algorithms like 

simulated annealing (Kirkpatrick et al 1983; Aarts & Korst 1989) to compute the 

maximum a posteriori (MAP) estimate 6f an image. An overview of probabilistic methods 

for ill-posed computational vision problems is given in Marroquin et al (1987). Faster 

algorithms, though not proven to be globally convergent, have been developed using 

mean field annealing (for example, Geiger & Girosi 1991 and Zerubia & Chellappa 

1990). 

1.1 Depth recovery 

We consider the problem of depth recovery in the MRF framework. The basic objective 

is to determine a depth map of an image, given corrupted range data. Range data is 

taken to be sparse which is the typical case. This means that depth observations at 

some points of the image are not known or are undefined due to some reason. Thus, 

one must be able to recover the depth at these points given only sparse noisy 

observations. The main motivation for using the MRF framework is to make this 

recovery process capable of retaining edges or discontinuities, since these often contain 

most of the information present in the image. 

The problem of depth recovery or surface reconstruction is encountered in many 

areas of computer vision, e.g. shape from stereo (where edges represent object 

boundaries and sparseness may be due to the limited number of points at which the 

matching or correspondence problem has been solved to give the depth from disparity), 

and applications like geophysical information processing (where edges represent 

geological faults and sparseness may occur due to scanning of the surface at a limited 

number of points). Sparseness may also be due to the loss of data caused by 

transmission over communication channels prone to fading or blackouts. 

2. The MRF framework 

We model the depth map as a Markov Random Field ~ over a finite lattice of N 

depth sites. We denote a particular configuration or realization of ~ by d, the random 

variable at a depth site i by ~i, and the value of ~i by di, the ith component of d. 

The value d~ represents the depth value at a point i in the depth map. The depth 

values belong to a finite set f~. The dependence of a value at a depth site on the values 

at other depth sites is given by a neighbourhood structure, which specifies for each 

site the set of sites that are its neighbours. The neighbourhood structure is assumed 

to be translation invariant, except at the boundary, where the free boundary 

assumption is used, i.e. the set of neighbours of a boundary site is the intersection 

of the translation invariant neighbourhood with the finite lattice. 

The probability distribution of the configurations of a Markov Random Field can 
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be shown to be equivalent to the Gibbs distribution via the Clifford-Hammersley 

theorem (Besag 1974; Geman & Geman 1984). Using this equivalence, we can write 

the probability distribution of the field configurations as 

exp( -  U(d)/T) 
P{~=d} = , (i) 

Z 

where U, the Gibbs free energy, is written as 

U(d) = ~ V~(d), (2) 

where c¢ represents the set of all cliques defined by the neighbourhood structure, Vc 

is the potential at a clique ceCg whose value depends only on the components of d 

that lie in c, and Z is the normalization constant given by 

Z= ~ exp(- U(d)/T). (3) 
d ~ D ,  ~r 

2.1 Constructin9 the potentials V c 

In the literature on image and texture modelling using Markov Random Fields, 

numerous clique models and associated potential functions have been considered 

(Geman & Geman 1984; Geman & Graffigne 1987; Lakshmanan & Derin 1989; 

Geiger & Girosi 1991). Most models use an explicit line process to detect edges or 

discontinuities. For our problem, we have chosen the potentials and the neighbourhood 

structure with the express purpose of retaining discontinuity information without the 

use of a line process. The basic motivation behind our choosing the potentials in the 

manner described below is the observation that, in the continuous case, the double 

partial derivative of an image d2I(x,y)/Oxdy vanishes at flat edges oriented in the 

coordinate directions. 

We illustrate the procedure for a vertical edge in a discrete image, where partials 

are approximated by differences. Consider the lattice of depth values in figure 1. 

Assume there is a vertical edge E v between the two columns of sites {5, 10, 14} and 

{6,0, 15}. Due to the edge, the depth values at sites {5, 10, 14} will be higher than 

those at the corresponding sites {6,0, 15} by an amount that does not change very 

much with the position of the pair of corresponding sites in the columns. So if we 
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consider the differences of depth values in the two columns of sites, they will remain 

approximately the same down the column. This is the case even if the depth values 

at these sites are part of a smooth surface without any edges. 

To express the above in equations, we first define: 

aj. i = Idj -- dil. 

Then, the v a l u e s  {a6,5,ao, lo,a15.14} are approximately the same. Note that these 

terms are the absolute values of the partials of the depth map with respect to x at 

particular sites, i.e., a6, 5 is the discrete counterpart of the absolute value of dI(x, y)/dx 
evaluated at the site 5. 

One way to examine the fluctuation in these values is to compare the difference 

between (a6, 5 --ao,lo) and (ao , lo-  a15.1,). That is, consider the quantity 

V(Eo) = ((a6, s - -  ao , lo  ) - -  (ao,lo - a l  s,14)) 2. (4) 

The term (a6, 5 -ao , lo )  is analogous to d2I(x,y)/OxOy evaluated for a discrete I at 

site 10, but with absolute values of differences instead of just the differences themselves. 

This quantity will be small, and roughly equal to O2I(x,y)/OxOy at site 14, i.e. 

(ao , lo-  als,~4). So the potential V(Eo) will be small for the vertical edge E,. 

Expanding (4), we get 

V(Ev) = (a6, 5 - ao,lo) 2 + (ao,lo - a15,14) 2 - 2(a6, s - ao,lo)(ao,lo - al~,14) 
(5) 

We denote each of these terms by Vv(a6,5-ao,lo ), Vv(ao,lo,als,14) and 

2I,'v(a6,5,ao,lo,a15,14). Each constitutes a potential defined over some clique. We 

now examine these cliques. Vv(a6,s,ao,lo ) depends on or is defined on the sites 

{0,5,6, 10}, i.e. a 2 x 2 clique. Similarly, VJao,io,als,14) is defined on the 2 x 2 clique 

{0, 10, 14, 15}. Vvv(a6,s, ao , lo  , a15,14) is formed by the product of two terms which are 

defined over overlapping 2 x 2 cliques {0, 5, 6, 10} and {0, 10, 14, 15}, and can be seen 

to be defined on a 2 x 3 clique {0, 5, 6, 10, 14, 15} that is a union of these two cliques 

(figure 2). Cliques that are formed by the union of two overlapping 2 x 2 cliques i 

and j will be denoted by i Oj. 
Similarly, for the horizontal edge E h between the two rows of sites {5,6, 7} and 

{10,0, 11}, we will have the quantity 

V(Eh) = (aml 1 -- a6.o) 2 + (a6.o -- a5,1o) 2 -- 2(aT.ll -- a6.o)(a6.o -- a5.1o) (6) 

=Hh(aT,ll,a6,o)+ nh(a6,o,as,to)+ 2Hhh(aT,tl,a6,o,as,io), (7) 

where Hh(a7,  l i ,  a6,o)  and Hh(a6,o, as,i o) are potentials defined over 2 x 2 cliques, and 

Hhh(aT.ll,a6,o,as,io ) is defined over a 3 x 2 clique. 
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Figure 2. Unions of 2 x 2 cliques to 
give (a) a 2 x 3 clique and (b) a 3 x 2 
clique. 
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Adding V(Ev) and V(Eh) with suitable weights flo and 3h, we get the potential 

V(E~, Eh) for both the edges as 

v(/L, Eh) =/L v(E.) + Ph V(Eh). (8) 

This gives an expression for the potentials for the two edges Ev and E h. After grouping 

terms in (7) according to the various clique types in E~ and Eh that they are defined 

on, we have 

where 

and 

V(Ev,Eh)= ~, ~'~2'2)(E~,Eh) + E 3e~(a'3)tE E ~ 
i ~ j  ~ v)  h i  

i~(2,2)(Ev,Eh) i~j¢c~tL3)(Ev,Eh) 

+ E ~r(3'2)tE Eh) 
r i C ,  j ~ v ,  

i ~jecgt3,2)(Ev, Eh) 

--i'~/(2'2)tEt ~, Ehf~= flv(Vv(ae,s,ao,xo) + V~(ao,lo,alsA,)) 
i6~(2,2) (Ev, Eh) 

+ flh(Hh(aT,11' a6,o) + Hh(ar,o' as, to)), 

E "~/'(2'3) (E Eh)=fl~Vvv(a65,aolo,a1514), v i (> j  ~ v ,  , • , 
i <>j¢~(2,3) (E~, Eh) 

E ~(3'2)EE E ~ -  ic~ j ~ ~, h i -  flhhHhh(aT,11,a6,0,asAo), 
i Oj~r~(3,2)(E,~, Eh) 

(10) 

(II) 

(12) 

(13) 

and where flv~ = 2fly and [3hh = 2fib. c~(2,2)(Ev, Eh), c-~(2,3)(Ev, Eh) and c~(3,2)(Ev, En) are 

respectively the sets of 2 x 2, 2 x 3 and 3 x 2 cliques for the sites included in Eo or 

E h specific to figure 1. 

We note that these terms take into account only edges present in the specified 

positions. If we sum these terms over all possible cliques of these types, thus taking 

into account all the sites of the lattice, we arrive at a Gibbs energy for the entire field 

which takes into account vertical and horizontal edges anywhere in the lattice. Thus, 

we have 

U(d) = ~ ~(i2'2)(d) + ~ (2,3) .~(3,2) d ¢r j (d )+  ~ ~ Vc(d), - i ~ j  ( ) = 
iE~ (2.2) i ~j~c~(2.31 i O jEll3,2) ¢.e~ 

(14) 

where (~(2,2) '  (6;(2,3) a n d  (~(3,2) are the sets of all cliques of the corresponding type, 

and ~g is the set of all cliques. 

This model takes into account only vertical and horizontal edges. But edges oriented 

differently may be approximated closely by an appropriate zigzag combination of 

vertical and horizontal edges of small length. This is especially the case in discrete 

images, where one cannot have continuous straight edges oriented at an angle. 

Each depth site is a member of four 2 x 2 cliques, six 2 x 3 cliques and six 3 x 2 

cliques. The neighbourhood of an interior depth site is a 5 x 5 window, centred at 

the site and excluding the site and the four corners, and is thus of the fourth order 

(figure 1). As mentioned earlier, the neighbourhood is modified at the boundary sites 

in accordance with the free boundary assumption. 

To generalize the model, we may use different weighting parameters for the 

potentials for the 2 x 3 and 3 x 2 cliques, i.e. we may use for flvv and flhh values 

different from the ones that arise out of the above derivation. 
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2.2 Posterior Gibbs distribution 

We assume that the noise process X corrupting the depth process ~ to give the 

observation process f# = ~ + Y is white Gaussian, with mean p and variance a 2, 

and is independent of ~.  Then the degradation model is a conditional probability 

distribution for (¢ given ~,  namely, 

where 

and 

P { @  = d[ = g}  _ e{c  = = d}P{  = d}  

P{(# = g ig  = d} = P { ~  + sV" = g]~ = d} 

= P { X = g - d }  

= (1/2rw2) N/2 exp ( -  .= (g i -  d i -  ~)2 , 

P { ~  -- d} = exp( -  Cr(d)/r), 

Z 

P {f¢ = g} = a constant. (15) 

Analogous to the approach in Geman & Geman (1984), it can be shown that the 

degradation model is also Gibbsian, with the same neighbourhood structure as ~,  

p { ~  = dlC~ = g} = e x p ( -  Up(d)/T) (16) 

Z 

The posterior Gibbs energy Up(d) in this case will be given by 

U,(d) = U(d) + II (g - d) - ~ II 2/2a2. (17) 

The MAP estimate of ~ corresponds to that configuration d for which the posterior 

energy Up(d) is minimum. The minimization of the posterior energy is done using 

the simulated annealing algorithm (Kirkpatrick et al 1983; Aarts & Korst 1989). 

2.3 Initialization 

Ideally, one can start the simulated annealing algorithm with any initial configuration 

d and converge to the global minima with probability 1. However, this requires 

infinite time. In practice, a finite time approximation for the algorithm is carried out, 

and a "good" estimate of ~ is used as the starting configuration. The simplest way 

of generating an initial estimate from the given data is by filling in missing observations 

by the average of the neighbouring data values (assuming that the latter are present). 

However, it has been our experience that this gives poor results, which may be due 

to the fact that this approach does not utilize the clique model. Very good initial 

estimates can be generated with the clique model by using "local" MAP estimates of 

the depth values at sites at which observations are not present. These estimates are 

taken with respect to the local characteristics (conditional distributions) of the depth 

values. The local characteristic of ~ i  describes the probability distribution of the 
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value of site i, given the (fixed) values at all the other sites, and is given by 

P{N~ = elNj = dj,j  ~ i} = e x p ( -  U(d)/T)ld,=~ 
X~m(exp(-  U(d)/T)ld,=~)' 

(18) 

where ~f~ .  We emphasize that the notation Id,=~ indicates that the expression 

immediately to the left is evaluated with the random variable N~ at site i set to e, 

with the other random variables Nj kept at the conditioning values d~. 

We can simplify this by expressing the posterior Gibbs energy as a sum of terms 

that depend on d~ and terms that do not: 

U(d) = ~ E(d)+ ~ E(d), 

where cg i is the set of cliques that contain the site i, and ¢i denotes the complement 

of rg~. Noting that the latter terms are constant and can be cancelled from the 

numerator and denominator, we arrive at the reduced expression 

P { ~ i = e l ~ j = d j , J  ¢i} = 
e x p ( -  Yc:i~c E(d)/T)ld,=~ 

E ~ n ( e x p ( -  Ec:i~ ¢ E(d)/T)id,= a) 
(19) 

The local MAP estimate for ~i  is that value of di for which Ec~¢ ' Vc(d) is minimum. 

During initialization, or computing the initial estimates for sites with missing 

observations, it may happen that the neighbourhood of those sites contain sites at 

which observations are absent. In such cases, the potentials at cliques which contain 

such sites are set to zero. Since such terms drop out of the summation, the other 

terms are correspondingly scaled up. 

Although time consuming, it was observed that the local MAP estimate approach 

gives far better depth recovery than the neighbourhood averaging approach. 

3. Simulation results 

Simulations were carried out on 240 x 240 range data images. The depth image chosen 

for display here is that of a collection of pipes (figure 3a). The intensity of a pixel 

was proportional to the height of the corresponding point over a fixed datum, and 

was quantized to lie from 0 to 511. Noisy depth images were generated by adding zero 

mean (# = 0) white Gaussian noise to the original image. To obtain sparse noisy depth 

images, a specified percentage of data points at random positions of the noisy depth 

images were made invalid. Figures 3b, 3e, 4b and 4e show the noisy sparse images 

for various degrees of noise and sparseness as given in table 1. In all cases, the inverse 

log cooling schedule was used for annealing. The results were found to be relatively 

insensitive to the starting temperature in the range 1 to 4. The clique parameters 

were estimated by trial and error. The parameters chosen were ]/h =/Iv = 1.5 and 

]/hh = ]/vv = 3"0. During simulated annealing, the generating mechanism picked up 

depth values from a Gaussian distribution. At each site, the mean of the distribution 

was the current depth value at that site, and the variance decreased linearly with the 

temperature, i.e. 

variance = scale factor x temperature, 
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Figure 3. (Continued) 
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Figure 3. (Continued) (a) Original image; 
(b) 40°0 data loss; (e) initial estimate; (d) after 
annealing; (e) 60% data loss; (f) initial estimate; 
(g) after annealing. 

Figure 4. (Continued) 
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Figure 4. (Continued) (a) Original with added 
8-53 dB noise; (b) 4070 data loss; (c) initial 
estimate; (d) after annealing; (e) 60% data loss; 
(f) initial estimate; (g) after annealing. 

where scale factor was chosen to be 10-20 for images with high signal to noise ratio 

(SNR) (8 dB or more), and about 40-50 for lower SNR images. 

During initialization, the sparse image was scanned in raster scan fashion to check 

for missing data points. At each such point, the posterior Gibbs energy (19) was 

computed for every fifth depth value in the range of all ,possible depth values (in our 

case 0 to 511). The depth value for which it was minimum was chosen as the local 

MAP estimate. The sampling of the range of depth values was done to reduce the 

Table 1. Performance time. 

Data loss Interpolation time Annealing time 
Figure set SNR (dB) (70) (s) (s) 

3 No noise 40 618 9199 
No noise 60 908 9244 

4 8'53 40 786 9057 
8"53 60 942 9101 
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Figure 5. Depth values in the 100th row ( - -  
.... after 200 iterations). 

continuous; --- initial estimate; 

240 

computation involved in initialization (by a factor of five). Figures 3c, 3f, 4c and 4f 

show the interpolated starting estimates for the different cases. 

For about 40 to 50yo data loss, excellent recovery was obtained (figures 3d and 

4d). For 60 to 75?/0 data loss, the recovery was partial but encouraging (figures 3g 

and 4g). For noisy images, good results were obtained when the SNR was over about 

5 d B. Lower signal to noise ratios required larger number of iterations of the algorithm. 

From the figures (3c, 3f, 4c, 4f), it can be seen that the local estimate of the depth 

map is itself a good estimate of the original image, even for high sparseness and noise 

levels. Thus, the time-consuming process of annealing can be avoided for applications 

where the initial estimate itself provides sufficient information for decision making. 

Figure 5 shows the performance of the algorithm across a discontinuity in one of 

the rows of the depth map. The plots show the depth values in the 100th row in the 

original depth map, the initial estimate and the final output. As can be seen, for even 

large amounts of sparseness, the clique model (10)-(13) is able to recover the 

discontinuities very well. 

All simulation results were done on a 33 MHz 80386 based PC-AT. Table 1 tabulates 

the CPU times taken by various stages of the algorithm. The annealing times are for 

200 iterations of the simulated annealing algorithm. 

4. Conclusions 

The clique model developed was found to be very effective for recovery of depth 

information from noisy and sparse real depth images. Although the model was 

especially tailored for recovery of straight line edges, it was also found to be capable 

of recovering other types of edges found in real depth images. 
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For simulations reported here, parameters were estimated by a trial and error 

method. An algorithm that incorporates parameter estimation for the clique model 

is clearly preferable. Various methods have been proposed for this purpose, based 

on maximum likelihood estimation (Younes 1988) and maximum pseudo-likelihood 

estimation (Besag 1977; Geman & Graffigne 1987; Younes 1988; Lakshmanan & 

Derin 1989). We propose to incorporate into our algorithm a parameter estimation 

module based on these methods. 

Algorithms based on simulated annealing usually are very computationaUy intensive, 

which explains the large cPu times in table 1. However, these would be substantially 

reduced for better machines like an RISC machine, or a massively parallel machine 

like the connection machine. A useful paradigm for the parallel implementation of 

this algorithm is the Boltzmann machine, which is a stochastic neural network 

formulation that uses simulated annealing to minimize an energy function. A 

Boltzmann machine implementation of the depth model presented in this paper is 

described in Mundkur et al (1992). 

The simulated annealing algorithm for the MRF model in this paper gives an initial 

local estimate of the depth map that, in most cases, is itself a good estimate of the 

original image. Thus, the time-consuming process of annealing can be avoided for 

applications where the initial estimate itself provides sufficient information for decision 

making. 

Another approach to speed up annealing is to modify the simulated annealing 

algorithm to use a small amount of problem-dependent heuristic information. Such 

an approach has been tried for the problem described in this paper, and has been 

found to give both excellent speed up as well as much improved recovery results for 

the initial and annealed estimates (Kapoor et al 1992). 
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