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We propose an optical scanning holography system with enhanced axial resolution using two detections
at different depths. By scanning the object twice, we can obtain two different sets of Fresnel zone plates to
sample the same object, which in turn provides more information for the sectional image reconstruction
process. We develop the computation algorithm thatmakes use of such information, solving a constrained
optimization problem using the conjugate gradient method. Simulation results show that this method
can achieve a depth resolution up to 1 μm. © 2013 Optical Society of America
OCIS codes: (090.1995) Digital holography; (100.3190) Inverse problems; (100.3020) Image

reconstruction-restoration; (110.1758) Computational imaging.
http://dx.doi.org/10.1364/AO.52.003079

1. Introduction

Optical scanning holography (OSH) is a technique
that records the holographic information of a
three-dimensional object on a two-dimensional holo-
gram by lateral scanning [1–3]. It has many applica-
tions, ranging from microscopy to remote sensing
[4–8]. In an OSH system, two coherent beams illumi-
nate two pupil functions, respectively, with one com-
monly a point and the other a uniform pupil. They
are then combined to take a lateral raster scan over
a three-dimensional object. Subsequently, the inter-
ference of the two beams is detected by a single de-
tector, resulting in an electronic hologram after some
processing of the raw measurements [1]. Generally,
the electronic hologram contains volume informa-
tion of the object, i.e., multiple sections of this,

three-dimensional object. One important step is to
obtain the individual section from the hologram,
which is known as sectioning or sectional image
reconstruction. The challenge of sectioning lies in
the suppression of the defocus noise, which is the un-
desired residue signal of the other sections besides
the one being reconstructed.

The conventional method for sectioning involves
computing the convolution of the hologram with the
conjugate impulse response at the focused section,
but it suffers from large defocus noise from the
unwanted sections [1]. There are many other ways
to reduce the defocus noise, such as using inverse
imaging [9–11], a Wiener filter [12], or the Wigner
distribution [13]. Further development with inverse
imaging also includes the use of edge-preserving
regularization [14], edge detection to locate the sec-
tions [15], and compressed sensing [16]. A method
that involves altering the system itself is to manipu-
late the pupil function of the OSH system [17]. Using
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two point pupils, with one as the positive spherical
source and the other as the negative one, the defocus
noise is reduced and the depth resolution can be
doubled. Recently, to improve the depth resolution,
a method using a dual-wavelength laser source
has been proposed [18]. By switching the dual-
wavelength laser between 632 and 543 nm, more
information can be recorded, leading to a depth res-
olution of 2.5 μm.

In this paper, we propose another method to
achieve better depth resolution by scanning the ob-
ject twice at two different locations on the depth axis
(i.e., z axis), through which we can obtain two differ-
ent sets of impulse responses to sample the same ob-
ject. With proper image reconstruction schemes, we
can have a much better depth resolution by combin-
ing the two holograms. Compared to the methods us-
ing two point pupils or dual-wavelength, which
either requires modification of the OSH system or
is restricted by the available laser source, the pro-
posed system only requires controlling the location
of the object on the z axis, which is more cost effective
and simple to implement.

2. Double-Location Detection

A. System Setup

The schematic of the system, which we will refer to as
“double-detectionOSH (DD-OSH),” is shown inFig. 1.
In this system, the laser source centered at frequency
ω (or equivalently, wavelength λ) is divided into two
paths by beam splitter BS1, in which one would pass
through a pupil function p1�x; y�, normally set to
unity (i.e., p1�x; y� � 1) such that, after focusing by
lens 1, it would have a spherical wavefront on the ob-
ject. Meanwhile, the other path out of the beam
splitter would first have a frequency shift Ω via an
acousto-optic frequency shifter (AOFS) and then
arrive at another pupil function p2�x; y�, commonly
set to a delta function (physically a pinhole, with
p2�x; y� � δ�x; y�), to become a plane wavefront on
the object, after being collimated by lens 2. The two
coherent beams of different frequencies ω and ω�Ω
are then combined together by a second beam splitter

BS2, and are used to scan the object. The object is
located at a distance z away from the scanning
mirror, as indicated in Fig. 1.

If we use g�z; y; z� to stand for the spatial impulse
response of the Fresnel diffraction [1]
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where x, y, z are the coordinates, and k0 � 2π∕λ is the
wavenumber of the optical source, with λ represent-
ing the wavelength. Then, the optical field C�x; y; z�
on the object can be expressed as [2]
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The symbol � and F stand for the two-dimensional
convolution operation and Fourier transform, respec-
tively. A photodetector collects the transmitted and
scattered light from the object and converts it into
an electronic signal. Lens 3 is used to collected the
light from the object. The optical transfer function
of the whole system can thus be expressed as [2]
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The principle and detailed mathematical analysis of
the OSH system can be found in [2].

The description, so far, is identical to the conven-
tional OSH system, but here is the difference:
instead of scanning only once at each spatial location,
in DD-OSH, it is scanned twice. This is achieved by
moving the object to a second depth location, z0, at a
distance Δz from z (i.e., z0 � z� Δz). In so doing, we
have doubled the data capture, which would provide
more information for the reconstruction process. By
combining the two holograms, we expect to have a
better depth resolution for the sectioning process.
However, one should note that a second scan means
that the acquisition time is doubled. In addition, the
object cannot move in between the two scans, making
the method inappropriate for dynamic objects, if
scanning is not fast enough.Fig. 1. Schematic of a DD-OSH system.
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B. DD-OSH Imaging Model

The spatial impulse response of this DD-OSH sys-
tem, also known as the Fresnel zone plates (FZPs),
can be deduced from Eq. (4) with p1�x; y� � 1 and
p2�x; y� � δ�x; y� [2]:

h�x; y; z� � −j
1

λz
exp

n

j
π

λz
�x2 � y2�

o

; (5)

where x, y, and z are the coordinates, and λ is the
wavelength of the optical source. Given an object
with a complex amplitude ψ�x; y; z�, its complex holo-
gram generated by OSH can be expressed in a dis-
crete form as [9]

g�x; y� �
X

n

i�1

jψ�x; y; zi�j
2 � h�x; y; zi�; (6)

where zi represents the depth location of the i-th sec-
tion. We assume that there are a total of n discrete
sections.

To model the DD-OSH system, let us consider an
object with two sections (n � 2) to simplify the de-
scription. When the object is placed in the first loca-
tion, Eq. (6) can be written without the summation
sign as

g1�x; y� � jψ�x; y; z1�j
2 � h�x; y; z1�

� jψ�x; y; z2�j
2 � h�x; y; z2�: (7)

This can be expressed into a matrix form, with
vectors ψ1, ψ2, and g1 representing jψ�x; y; z1�j

2,
jψ�x; y; z2�j

2, and g1�x; y� using lexicographical order-
ing, respectively. Suppose the hologram is of size
N ×N; then vectors ψ1, ψ2, and g1 are of length
N2. We then form two N2 ×N2 matrices, HOSH�z1�
and HOSH�z2� from h�x; y; z1� and h�x; y; z2�, respec-
tively, so that the convolution process in Eq. (7)
becomes a matrix multiplication,

g1 � HOSH�z1�ψ1 � HOSH�z2�ψ2 � n1 � Hψ � n1: (8)

We have added the term n1 above to denote the
Gaussian random noise that exists in a typical imag-
ing system and group the two terms together where
H � �HOSH�z1� HOSH�z2� � and ψ � �ψ1 ψ2 �

T .
Next, we move the object away from the scanning

mirror for the second scan by a distance Δz. The new
distances of the two sections are

z01 � z1 � Δz (9)

and

z02 � z2 � Δz: (10)

The complex hologram generated during the second
scan can be expressed as

g2�x; y� � jψ�x; y; z01�j
2 � h�x; y; z01�

� jψ�x; y; z02�j
2 � h�x; y; z02�: (11)

The corresponding matrix form is

g2 � HOSH�z
0
1�ψ1 � HOSH�z

0
2�ψ2 � n2 � H0ψ � n2;

(12)

where, similar to the above, n2 is the Gaussian
random noise for the second scan, and
H0 � �HOSH�z

0
1� HOSH�z

0
2 ��. It should be noted that

we have assumed that the object does not change be-
tween the two scans, and therefore jψ�x; y; z01�j

2 �
jψ�x; y; z1�j

2 and jψ�x; y; z02�j
2 � jψ�x; y; z2�j

2.

C. Sectional Image Reconstruction

To reconstruct object sections, we need to recover the
object vector ψ given the measurements in g1 and g2,
which is an inverse problem [10,19]. Due to its ill-
posed nature [20,21], we must use different methods
to find an approximation for ψ because of the regu-
larization that must be imposed [9,10]. Considering
the contribution of the two scans, we obtain the com-
bined matrix formula

g �

�

g1

g2

�

�

�

H

H0

�

ψ �

�

n1

n2

�

� HDDψ � n; (13)

where HDD now represents the overall DD-OSH sys-
tem, and g is the entire observation data. One can see
from Eq. (13) that an additional set ofN2 linear equa-
tions have been added to the same ill-posed problem
due to the second scan.

The image reconstruction can be solved as a min-
imization problem such that the estimated signal
ψest is given by [22–24]:

ψest � arg min
ψ

‖HDDψ − g‖22 � ϑ‖Cψ‖22; (14)

where ‖ · ‖2 denotes the l2 norm, ϑ > 0 is a penalty
parameter, and C stands for the Laplacian operator.
A more sophisticated regularization method has
been shown to deliver better results [14,25,26], but
we choose this l2-norm regularization for better
comparison with the original inverse imaging for
OSH [9] and the dual-wavelength technique [18].
The solution to Eq. (14) is

�H�
DDHDD � ϑC�C�ψest � H

�
DDg; (15)

where H
�
DD indicates the conjugate transpose of HDD.

3. Simulation and Analysis

We analyze the sectioning results of the DD-OSH
system with objects containing two and three sec-
tions. In addition to examining the visual quality,
we also present analysis on the measurement error
and the finite diameter of the apertures.
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A. Reconstruction with Two Sections

Referring back to the system described in Fig. 1, we
suppose that the object is illuminated by a HeNe la-
ser, whose wavelength is 632 nm. The two sections
are located at z1 � 34 mm and z2 � 34.001 mm,
making them 1 μm apart. Each object section has
a size of 1 mm × 1 mm, which we discretize to a ma-
trix size of 512 × 512. The two sections are scanned to
generate the first hologram g1. We then move the ob-
ject away from the scanning mirror by Δz � 15 mm,
such that z01 � 49 mm and z02 � 49.001 mm. The ob-
jects are then scanned again, resulting in the second
hologram g2.

Fig. 2. (a) Real part of the ideal FZPof anOSH systemand (b) real
part of the FZP with the OSH simulator when D � 40 mm and
f � 50 mm.

Fig. 3. Two sections together with the real part of the FZPs for
each scan.

Fig. 4. Holograms containing two sectional images of the object
under double-location detection.

Fig. 5. Sectioning results using (a),(b) the conventional method
with SD-OSH; (c),(d) conjugate-gradient-based method with SD-
OSH; (e),(f) conjugate-gradient-based method with DD-OSH.

3082 APPLIED OPTICS / Vol. 52, No. 13 / 1 May 2013



In order to evaluate the performance of the pro-
posed method in a more precise system, we use an
OSH simulator for the investigation. In the simula-
tor, the finite diameter of the apertures together with
the finite scanning step size of the scan process, and
different kinds of noise are taken into consideration,
the detail of which can be found in [18]. The system
parameters are as follows: the pinhole aperture is
r � 2.5 μm, the diameter of the collimated beam
is D � 40 mm, and the focal length of the lens is
f � 50 mm. The scanning step size is 100 nm. The
thermal noise is a white Gaussian noise with an en-
ergy per bandwidth at σ20, where σ0 � 12.75. The
Poisson noise has a Gaussian distribution N �p̄; cp̄2�
with c � 0.0025, and p̄ denotes the mean value of the
detected hologram signal amplitude.

The real part of the FZP of an ideal OSH system
and that of a realistic system using the simulator
for the first section are shown in Fig. 2. One can
see from this figure that the fringe patterns of the
FZP using the simulator is different from the one in
the ideal system. This is due to the fact that the lat-
ter case is using a numerical aperture, NA ≈ D∕2f ,
less than that of the ideal case where NA � 1. Also,
the other aperture is not an ideal pinhole but finite.

The two sections together with the real part of the
FZPs for each scan are shown in Fig. 3. We can see
that the FZP changes according to the distance from
the scanning mirror. Comparing Figs. 3(c) with 3(e),
or Figs. 3(d) with 3(f), we observe that as zi increases,

the transition between opaque and transparent
zones becomes slower, which indicates that the
spatial sampling rate of these FZPs are slower.
The complex holograms g1�x; y� and g2�x; y� are
shown in Fig. 4.

To reconstruct the two sections, we compare three
methods: (1) conventional method with OSH data
for one scan, which we call single-detection OSH
(SD-OSH) hereafter, (2) conjugate-gradient-based
reconstruction method with SD-OSH, and (3)
conjugate-gradient-based method with DD-OSH.
For SD-OSH, we simply use only the hologram g1

for reconstruction, as opposed to both g1 and g2 for
DD-OSH. Figure 5 shows the reconstructed sections.
We see that neither the conventional method nor the
conjugate-gradient-based inverse imaging method
provides acceptable sectioning results, because the
depth of focus, which is approximately given by
2λ∕�NA�2, is 7.5 μm. The two sections are basically
in focus simultaneously as evident from the results.
On the other hand, with DD-OSH, the two sections
are clearly separated, which indicates that the depth
resolution in DD-OSH is equal to or smaller than
1 μm. The measured signal to the defocus noise ratio
(SNR) is 37.17 dB in this case. For the discussions
below, we define the depth resolution as the mini-
mum sectional separation between image sections
to retrieve an SNR equal to or better than this value.

The increase of the depth resolution is based on the
additional information provided by the second scan,
which is highly related to the displacement Δz be-
tween the two scans. To quantify such information,
we analyze both the relationship between Δz and
the depth resolution, as well as the relationship be-
tween Δz and the correlation of the matrices H and
H0. The results are shown in Fig. 6. First, we see that
the correlation between the two matrices decreases
as Δz increases, which is to be expected because
the FZPs are highly related to the axial distance.
A larger Δz leads to more changes in the FZPs, re-
sulting in less similarity between H and H0. Second,
we observe that the depth resolution of the DD-OSH
system increases from 7.5 to 1 μm as Δz increases
from 0.1 to 20 mm. However, as Δz goes beyond
20 mm, the depth resolution would decrease. We con-
jecture that this is because as z increases, the tran-
sition between the opaque and transparent zones of
the FZPs is slower, which indicates that their spatial
sampling rate becomes smaller (see Fig. 3 for

Fig. 6. Relationship between Δz and resolution, and the relation-
ship between Δz and correlation of H and H0.

Fig. 7. Third section together with the real part of the FZPs of each scan.
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reference). This means that less information can be
captured. For the DD-OSH system, the enhancement
of the depth resolution is based on the extra informa-
tion of the object provided by the second scan. There-
fore, there is a tradeoff between Δz and the depth
resolution. If Δz is too small, then the transfer ma-
trices H and H0 are highly correlated, which means
less additional information can be obtained from
the second scan. One extreme example is to set
Δz � 0, where the second set of data provides no
extra information other than permitting noise reduc-
tion by averaging the two holograms. On the other
hand, if Δz is too big, the two matrices are less corre-
lated, but the sampling rate of the FZPs becomes
smaller as well. This would also result in less
additional information from the second scan. One
extreme example for this case is to set Δz � ∞,
where no information would be generated during the
second scan. In this case, we cannot expect to have
any increase in the depth resolution.

B. Reconstruction with Three Sections

Next, we consider an object with three sections
located at z1 � 34 mm, z2 � 34.001 mm, and
z3 � 34.002 mm, respectively. As such, the section

Fig. 8. Holograms containing three sectional images of the object
under double-location detection.

Fig. 9. Sectioning results using (a)–(c) the conventional method with SD-OSH, (d)–(f) conjugate-gradient-based method with SD-OSH,
and (g)–(i) conjugate-gradient-based method with DD-OSH.
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distance is again 1 μm. The experiment setup is the
same as the one for the two-section object, as shown
in Fig. 1. In this DD-OSH system, we also scan the
object twice, with Δz � 15 mm. The first two sections
and the real part of the FZPs are the same as shown
earlier in Fig. 3; the third section and the correspond-
ing real part of the FZPs for the two scans are shown
in Fig. 7.

The noisy holograms for each scan of this three-
section object are shown in Fig. 8, which are more
complex than the holograms for two-section objects.
To reconstruct the three sections, we also compare
the results from three different methods as above,
namely, the former one, that is: (1) conventional
method with SD-OSH measurements, (2) conjugate-
gradient-based reconstruction method with SD-
OSH, and (3) conjugate-gradient-based method with
DD-OSH. Figure 9 shows the reconstructed sections
by the three different methods. We can see that the
proposed DD-OSH method again outperform the
other two methods in terms of suppressing signal
from other sections.

C. Measurement Error Analysis

In the proposed DD-OSH system, we need to move
the object along the z axis between the two scans,
causing inevitable errors in aligning the image data.
In practice, the resolution of the available motorized
translation stage is around 0.625 μm (Zolix, TSA30-
C) which means the maximum error along the z axis
would be 0.625 μm. To test the effect of measurement
error, we use the same two-section object with the
proposed DD-OSH method, in which the object is
moved away from the scanning mirror with Δz �
15 mm for the second scan. However, as we incorpo-
rate the measurement error δz along the z axis, the
object is actual moved Δz0 away from the scanning
mirror, where Δz0 � Δz� δz.

In the experiment, we test three different situa-
tions: (1) δz � 0 mm, z1 � 34 mm, z2 � 34.001 mm;
(2) δz � 0.625 μm, z1 � 34 mm, z2 � 34.001 mm;
(3) δz � 0.625 μm, z1 � 34 mm, z2 � 34.008 mm.
The sectioning results are shown in Fig. 10. One
can observe from Figs. 10(a)–10(d) that as the meas-
urement error increases, the defocus noise grows as
well. When there is no measurement error (i.e.,
δz � 0), the two sections are clearly separated; how-
ever, as the measurement error δz increases to
0.625 μm, the sectioning results are too bad to distin-
guish the different sections. This indicates that
the depth resolution decreases as the measurement
error increases.

We then enlarge the section separation between
the two sections to 8 μm (z1 � 34 mm, z2 �
34.008 mm). The sectioning results with a measure-
ment error of δz � 0.625 μm and is shown in
Figs. 10(e) and 10(f). One can observe that with a
larger section separation, the measurement error
δz � 0.625 μm can be tolerated more. This indicates
that the minimum section separation degrades to
around 8 μm.

We also analyze the relationship between the
measurement error δz and the depth resolution.
The results are shown in Fig. 11. One can see that
the depth resolution decreases as the measurement

Fig. 10. Sectioning results using the DD-OSH method with
(a),(b) δz � 0 mm, z1 � 34 mm, z2 � 34.001 mm; (c),(d) δz �

0.625 μm, z1 � 34 mm, z2 � 34.001 mm; (e),(f) δz � 0.625 μm,
z1 � 34 mm, z2 � 34.008 mm.

Fig. 11. Relationship between measurement error δz and the
depth resolution.
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error δz increases. When δz reaches the maximum
value 0.625 μm, the depth resolution would degrade
to 8 μm.

D. Analysis on the Finite Diameter of Aperture

In a real OSH system, the FZPs of the OSH system
are highly related to the finite diameter of the aper-
tures, which in turn affect the sectioning results. We
further investigate its effect with the simulator. In
the simulation, both the diameter of the collimated
beam D and the focal length of the lens f are

analyzed. The real part of the FZP for the first sec-
tion and the sectioning results with a different colli-
mated beam diameter are shown in Fig. 12. One can
see that decreasing the diameter of the collimated
beam D from 40 to 25 mm would result in more de-
focus noise in the sectioning process. This is also the
case when increasing the focal length of the lens f
from 50 to 100 mm, as can be seen in Fig. 13.

It can be deduced from Figs. 12 and 13 that to im-
prove the system performance we should use high
numerical aperture in the optical setup. Further

Fig. 12. Real part of the FZPs and sectioning results using simulator with (a)–(c) D � 40 mm and f � 50 mm and (d)–(f) D � 25 mm and
f � 50 mm.

Fig. 13. Real part of the FZPs and sectioning results using simulator with (a)–(c) D � 40 mm and f � 50 mm and (d)–(f) D � 40 mm and
f � 100 mm.
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improvement can be achieved by increasing the
sampling step size or the area for the recording
holograms [18].

4. Conclusions

In the reconstruction of sectional images from a holo-
gram generated by OSH, the difficulty lies in the sup-
pressing of the defocus noise, i.e., the residual signals
from the other sections. In this paper, we propose a
way to increase the depth resolution with double-
location detection. By moving the object away from
the scanning mirror by Δz and scanning for a second
time,we can get two different sets of FZPs of the same
object. Simulation results demonstrate that with
proper values of Δz, the depth resolution can be in-
creased up to 1 μm. It is worth noting that due to this
double-location detection scheme, the total data ac-
quisition time for theDD-OSHsystem is doubled com-
pared to the SD-OSH system, which hinders its
applications to in vivo imaging or applications in
which the sample exposure time is strictly limited.
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