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A grand challenge in fundamental physics and practical applications is over-

coming wave diffusion to deposit energy into a target region deep inside a dif-

fusive system. While it is known that coherently controlling the incident wave-

front allows diffraction-limited focusing inside a diffusive system, in many

applications targets are significantly larger than such a focus and the max-

imum deliverable energy remains unknown. Here, we introduce the “depo-

sition matrix”, which maps an input wavefront to its internal field distribu-
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tion, and theoretically predict the ultimate limitations on energy deposition at

any depth. For example, the maximum obtainable energy enhancement oc-

curs at 3/4 a diffusive system’s thickness: regardless of its scattering strength.

Experimentally we measure the deposition matrix and excite its eigenstates

to enhance/suppress the energy within an extended target region. Our theo-

retical analysis reveals that such enhancement/suppression results from both

selective transmission eigenchannel excitation and constructive/destructive in-

terference among these channels.

Introduction

Depositing energy into a target region deep inside an opaque system –by controlling random

wave scattering– is essential in a wide range of applications involving light, microwaves, and

acoustic waves (1, 2): such as deep-tissue imaging (3, 4), optogenetically controlling neu-

rons (5, 6), non-invasive ultrasound surgery (7), and optimization of photoelectrochemical pro-

cesses in strongly-scattering systems (8). The fundamental challenge to overcome in disor-

dered systems is the multiple scattering of waves, which results in a diffusive spread of the

wave energy. Controlling the incident wavefront of a coherent beam enables the suppression

of wave diffusion; which, has been used to focus light either inside or through a scattering

medium (9–15). The appropriate incident wavefront can be obtained via the time-reversal prin-

ciple (16): that the phase conjugate of an output field generated by a point source will focus back

to that point (14). Targets in many applications like neurons or early-stage tumors, however, are

much larger than an optical-diffraction-limited focal spot and therefore wavelength-scaled light

focusing does not corresponds to maximal energy deposition into an extended target. Since the

optimal spatial field distribution across the target is not known a priori, neither time reversal

nor phase conjugation can be used to find the optimal incident wavefront. Furthermore, while

2



feedback-based iterative optimization of the input wavefront (15) is efficient at reaching the

global maximum when focusing light (17); currently, this is not the case for energy delivery

into a target of arbitrary size and shape.

Over the years, various operators and matrices related to physical quantities of interest in

disordered systems have been introduced –and their eigenstates studied– in the search for the

global optima of the quantities. Examples include the field transmission matrix (18–28), the

energy density matrix (29), the photoacoustic transmission matrix (30), the generalized Wigner-

Smith operator (31,32), the time-gated reflection matrix (33,34), the acousto-optic transmission

matrix (35), the dwell-time operator (36), the distortion matrix (37,38), and the Fisher informa-

tion operator (39). None of them, however, provide the solution for maximal energy deposition

in an arbitrary-sized region at an arbitrary depth in a scattering medium. Furthermore, a general

framework for predicting and understanding the ultimate limit on targeted energy delivery into a

diffusive system is missing. As such, the following scientifically and technologically important

questions remain unanswered, “How can one systematically find the incident wavefront that

optimally deposits energy into a target region of arbitrary size and shape, deep inside a diffusive

medium?” and “What is the ultimate limit on the energy enhancement in a region?”

In this work, we address these questions by performing a comprehensive experimental, nu-

merical and theoretical study. First, we define the deposition matrix Z which relates input

waves to the corresponding regional field distributions at an arbitrary depth within a diffusive

system. The largest eigenvalue of Z†Z gives the maximal energy that can be deposited into

the designated region, and the associated eigenvector provides the input wavefront. Next, we

build a theoretical model which can analytically predict the probability density function of the

eigenvalues of Z†Z , and demonstrate how energy enhancement depends on the depth of the

region and the system parameters such as the transport mean free path ` and the sample thick-

ness L. While the largest possible energy enhancement scales as L/`, it always occurs at depth
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(3/4)L in a lossless diffusive medium: independent of the scattering strength. Using a unique

on-chip disordered-waveguide platform with an interferometric wavefront shaping setup, we ex-

perimentally measure the deposition matrix Z for regions at different depths inside a diffusive

system, and directly excite individual eigenstates to observe their spatial structures across the

entire system. Furthermore, we explore the relationship between deposition eigenchannels and

transmission eigenchannels; revealing that the regional energy enhancement results from both

selective excitation of high-transmission eigenchannels and constructive interference between

them.

Experimental Platform and Deposition Matrix

A schematic of our experimental setup for investigating energy deposition in a diffusive system

is presented in Fig. 1. We fabricate two-dimensional (2D) disordered structures, so that we can

probe the field anywhere inside the system from the third dimension: the top. We shape the

incident wavefront of a laser beam using a spatial light modulator (SLM), and extract the 2D

field distribution inside the diffusive system with an interferometric measurement. Our planar

samples are optical waveguides engraved into a silicon-on-insulator wafer (27). Light is con-

fined inside the waveguides by reflective photonic-crystal sidewalls. Randomly distributed air

holes are etched throughout a designated region in each waveguide to create optical scattering.

Light undergoes multiple scattering and diffusive transport within this disordered region be-

cause it is much longer than the transport mean free path ` of the scatterers. A small amount of

light is scattered out-of-plane from the holes and interferes with a reference beam. The inter-

ference patterns are recorded by a CCD camera, from which the associated field distributions

are extracted. Our experimental platform allows for a direct mapping of the incident field to the

internal fields at any depth.

Controlling energy deposition inside a disordered system requires introducing the deposition
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matrix Z of a target region that can have an arbitrary size, shape, and depth. The matrix relates

an orthonormal set of input wavefronts to the corresponding spatial field distributions within

the target region (see supplementary section 1). The eigenvalues ζ of Z†Z give the total energy

inside the target region when sending the corresponding eigenvectors into the system: with

proper normalization. Therefore, the eigenvector with the highest eigenvalue provides the input

wavefront which deposits the most energy into the target region.

As an example case, we consider a target region that is a thin slice inside the disordered

waveguide, at depth zD [see inset of Fig. 2(a)]. The width W of the slice is equal to that

of the waveguide, and the slice thickness ∆z is small enough that the field variation along z

(waveguide axis) is negligible. Therefore, only the field distribution along the y axis (waveg-

uide cross-section) needs to be sampled, with M evenly spaced points. For this target region

configuration, the elements of the deposition matrix are given by

Zmn(zD) ≡ (W∆z/M)1/2En(ym, zD), (1)

where En(ym, zD) is the electric field at position (ym, zD) for an incoming wave (of unit flux) in

the n-th mode of the empty waveguide (input). This definition for the elements of the deposition

matrix can easily be generalized to higher dimensions; however, restricting ourselves to a cross-

sectional target region facilitates comparison between the deposition matrix and the well-known

transmission matrix. Switching to the waveguide-mode basis, the deposition matrix becomes

Zmn(zD) =
∫W

0
χm(y)En(y, zD) dy, where χm(y) is the normalized transverse profile of the

m-th mode of a homogeneous waveguide with a refractive index equal to the average index

of the disordered region. Note that the waveguide modes include both propagating modes and

evanescent modes. If the evanescent waves are negligible, only the propagating modes are kept

and normalized by their propagation speed vm, we get

Zmn(zD) =
√
vm

∫ W

0

χm(y)En(y, zD) dy. (2)

5



In this form, the deposition matrix naturally reduces to the transmission matrix at the end of

the disordered region zD = L. In our disordered waveguides, the deposition matrices defined

by Eqs. (1) and (2) have nearly identical eigenvalues and eigenvectors for most depths except

when very close to the exit surface zD = L. More details are given in supplementary section 1.

Numerical Simulation and Analytical Model

To reveal the full potential of the deposition matrix (DM) for energy deposition inside disor-

dered systems, we first carry out numerical simulations of wave propagation in 2D disordered

waveguides using the Kwant software package (40) (see supplementary section 1.1 for details).

For comparison with the transmission matrix (TM), we adopt the DM defined by Eq. (2) and

calculate its eigenvalues ζ for a thin slice at different depths zD inside a lossless disordered

waveguide. The probability density function (PDF) P (ζ), shown in Fig. 2(a), is very different

from the celebrated bimodal PDF of transmission eigenvalues P (τ) (41). At depths zD < L,

P (ζ) has a single peak at ζ = 0, but it develops a second peak at ζ = 1 near the exit surface

L− zd < ` (shaded area). We normalize the eigenvalues ζ by their mean 〈ζ〉, which represents

the typical energy within the slice at depth zD under random illumination conditions. Despite

the lack of a peak at the maximum eigenvalue ζmax, for most depths P (ζ/ 〈ζ〉) has a long tail

extending beyond the range of P (τ/ 〈τ〉) . Consequently, the maximal enhancement of energy

inside the diffusive system, given by ζmax/ 〈ζ〉, is noticeably larger than the maximum enhance-

ment of the transmission τmax/ 〈τ〉 for open channels (τmax = 1, 〈τ〉 ∼ `/L� 1).

To interpret these results quantitatively, we develop an analytical model for the PDF of

the deposition eigenvalues P (ζ). The DM Z(zD) cannot be treated as a random matrix with

uncorrelated matrix elements, because the eigenvalue PDF in Fig. 2(a) drastically differs from

the Marchenko-Pastur law (42). In particular, the latter predicts 〈ζmax〉 / 〈ζ〉 = 4, whereas

significantly larger values are obtained at almost all depths, indicating that correlations between
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elements of Z(zD) are beneficial for energy deposition. Since the DM and the TM coincide at

the exit, we build a model that captures the continuous evolution from P (ζ) at zD < L to the

bimodal PDF at zD = L. This is realized by using a filtered random matrix (FRM) ensemble

as initially introduced in Ref. (43). This theory amounts to assuming that Z(zD) has the same

spectrum as a filtered matrix drawn from a larger virtual TM (see supplementary section 2). The

advantage of this approach is that the full PDF P (ζ) can be inferred from the first two moments

〈ζ〉 and 〈ζ2〉. Here we use the numerical values of these two moments as input parameters of the

model. The good agreement between the numerical PDF and the FRM prediction in Fig. 2(a)

validates our ansatz.

Combining the FRM model with analytic predictions for the first two moments of P (ζ),

we get analytical expressions for the full PDF as well as the maximal enhancement. The first

moment decays linearly with depth, 〈ζ(zD)〉 ' 2(1−〈τ〉)(1−zD/L)+〈τ〉, as given by diffusion

theory (44). The second moment is given by the variance Var[ζ(zD)], which is related to the

fluctuation of the cross-section integrated intensity at depth zD generated by random wavefront

illumination (22): Var[ζ(zD)] ' 〈ζ〉2 [1 + N C2(zD)]. In this expression, N is the number

of waveguide modes in the disordered region and C2(zD) stands for long-range contributions

to the spatial intensity correlation function: whose analytic expressions are given in (45, 46).

Combining these with the FRM model, in the limit N � 1, we predict a finite support for

P (ζ) and thus a maximal energy enhancement given by the upper edge of P (ζ). Fig. 2(b)

shows a quantitative agreement between this prediction and 〈ζmax〉 / 〈ζ〉 evaluated numerically

for disordered waveguides of different sizes and scattering strengths: without any adjustable

parameter. The FRM predicts that 〈ζmax〉 / 〈ζ〉 depends only on C2(zD) for most depths zD,

confirming the crucial role of mesoscopic correlations in enhancing energy deposition. The

general expression for the energy enhancement is derived and presented in the supplementary
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(section 2), below we present a simplified form in the limit of L� `:

〈ζmax(zD)〉
〈ζ(zD)〉 '

3N C2(zD)

2
' 3(zD/L)− 2(zD/L)2

〈τ〉 . (3)

Two conclusions can be drawn from this result. First, the maximal energy enhancement is

inversely proportional to 〈τ〉 and thus grows linearly with L/`. In particular, it is independent of

the width W of the disordered waveguide as long as the dimensionless conductance g = N 〈τ〉

is sufficiently large. Second, apart from 〈τ〉, the energy enhancement depends on the reduced

depth zD/L only; reaching a maximal value of 9/8〈τ〉 ∼ L/` � 1 at z(max)
D /L ∼ 3/4. This

result holds for different transport mean free paths, as confirmed in Fig. 2(b). Hence, the largest

enhancement is not obtained at the output surface, but rather deep inside the diffusive medium

at depth 3L/4: independent of `.

Measurement of Deposition Eigenchannels

We experimentally measure different deposition matrices in disordered waveguides like the one

shown in Fig. 3(a). The disordered region of each waveguide is L = 50 µm long and W = 15

µm wide. The transport mean free path at the optical wavelength λ = 1.55 µm is ` = 3.2 µm.

The out-of-plane scattering loss is not negligible, however as in (47), it can be modeled through

an effective diffusive dissipation length ξa = 28 µm. We construct the deposition matrices

associated with four target regions inside the disordered waveguide: each is 10 µm × 10 µm.

They are centered at depths zD = 10, 20, 30, 40 µm.

We use a SLM to modulate the monochromatic laser beam incident on the waveguide, and

measure the field distribution within each target region (for details see supplementary section

3.3). From the data, we extract the DM and perform a singular value decomposition to ob-

tain the deposition eigenchannels’ input vectors. These vectors are the eigenvectors of Z†Z;

each is sorted by its corresponding eigenvalue, from high to low, and labeled by an index α.
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We sequentially shape the incident wavefront into each of the eigenvectors, thereby exciting

one eigenchannel at a time, and record the 2D intensity distribution over the entire disordered

waveguide. The cross-section integrated intensity I
(D)
α (z) depicts the depth profile of every

eigenchannel. We repeat this measurement for multiple disorder realizations –generated at

multiple wavelengths and with different hole configurations– and ensemble average the spa-

tial profiles of the eigenchannels with the same index α.

In Fig. 3(b,c), we show the depth profiles of example eigenchannels with enhanced or sup-

pressed energy deposition, for two different target regions. Both strong energy enhancement

and suppression are observed experimentally in the target region –when compared to the av-

erage depth profile 〈I(z)〉 of random illumination patterns– and reproduced numerically. Si-

multaneously the energy outside the target region is enhanced or suppressed, reflecting the

non-local effects in the energy deposition. Quantitatively, we compute the energy enhance-

ment factor in the target region ηt =
∫
z⊂R Iα(z)dz/

∫
z⊂R〈I(z)〉dz, and in the surrounding area

ηs =
∫
z 6⊂R Iα(z)dz/

∫
z 6⊂R〈I(z)〉dz. Figure 3(d) shows that ηt increases with depth zD, while ηs

remains nearly constant. The depth variation of the regional enhancement ηt(zD) is captured by

the long-range correlation function C2(zD), in agreement with our theoretical model. Due to

the presence of loss in the diffusive waveguide, the depth of the maximal energy enhancement

–which coincides with the maximum of C2(zD)– is slightly shifted from zD = (3/4)L towards

the output end. Figure 3(e) shows that the suppression of energy within the target region gets

stronger for larger depths, but the suppression in the surrounding area is independent of depth.

Two mechanisms for energy deposition

To gain physical insight into the formation of deposition eigenchannels and how they enhance

or suppress energy within local regions inside a diffusive system, we decompose them into the

transmission eigenchannels, whose spatial profiles have been studied extensively (19, 24, 27,
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48–52). At the entrance of the system z = 0, the transmission eigenvectors form a complete

basis, and the input wavefront of a deposition eigenchannel can be expressed as a linear su-

perposition of the transmission eigenchannels. The linear mapping from the incident field to

the internal field carries the decomposition to the entire field distribution inside the disordered

waveguide: E(D)
α (y, z) =

∑N
β=1 dαβE

(T )
β (y, z). In this expression E(D)

α (y, z) [E(T )
β (y, z)] de-

notes the field distribution of the α-th deposition (β-th transmission) eigenchannel and N is the

number of transmission eigenchannels (equal to the number of propagating modes in the input

waveguide). The depth profile of a deposition channel, given by the cross-section integrated

intensity I(D)
α (z) =

∫W
0
|E(D)

α (y, z)|2 dy, consists of two terms:

I(D)
α (z) = I(i)

α (z) + I(c)
α (z)

=
N∑
β=1

|dαβ|2 I(T )
β (z) +

∑
β 6=β′

dαβ d
∗
αβ′ I

(T )
β β′(z).

The first term I
(i)
α (z) is an incoherent sum of the constituent transmission eigenchannel depth

profiles, I(T )
β (z) =

∫W
0
|E(T )

β (y, z)|2 dy, studied in (19, 24, 27, 48–52). The second term I
(c)
α (z)

is the result of interference between different transmission eigenchannels inside the diffusive

waveguide, which we observe for the first time. Although the transmission eigenchannels are or-

thogonal at z = 0 and z = L, this is not the case inside: I(T )
β β′(z) =

∫W
0
E

(T )
β (y, z)E

(T )∗
β′ (y, z) dy 6=

0 for 0 < z < L.

To find how much these two terms contribute to the energy enhancement, we numerically

decompose the maximal energy deposition eigenchannels (α = 1) for the four target regions

inside our disordered waveguide. As shown in Fig. 4(a), each is composed of multiple high-

transmission eigenchannels (higher transmission corresponds to lower index β). With increas-

ing depth zD, the number of constituent transmission eigenchannels decreases, and the maximal

decomposition coefficient |dαβ|2 shifts to β = 1 (the highest-transmission eigenchannel). Fig-

ure 4(b) shows the incoherent contribution I(i)
1 (z) and coherent contribution I(c)

1 (z) to energy
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deposition in the target region. When the target region is located at a shallower depth, more

transmission eigenchannels participate in constructing the deposition eigenchannel, and their

constructive interference plays an important role in enhancing energy deposition in the target re-

gion. As the number of participating transmission eigenchannels becomes progressively smaller

with increasing depth, the interference effect is weakened and the incoherent contribution from

selective excitation of transmission eigenchannels becomes dominant.

We also investigate the deposition eigenchannels that reduce energy within the target re-

gions. As shown in Fig. 4(c), the α = 25 deposition eigenchannels consist of multiple trans-

mission eigenchannels with indices β close to 25. The suppression of energy within the target

region results from selective excitation of lower-transmission eigenchannels and their destruc-

tive interference [see Fig. 4(d)]. The deeper the target region, the lower the number of con-

stituent transmission eigenchannels, the weaker their destructive interference effect. Thanks to

the destructive interference, the total transmission is less than the energy inside the target re-

gion. Thus, when sending light through a diffusive system it is possible to avoid certain regions

inside.

Discussion and conclusions

In conclusion, we have delineated the fundamental limits on depositing energy into a finite re-

gion, located at any depth, inside a diffusive system. In contrast to the bimodal distribution of

transmission eigenvalues, the PDF of deposition eigenvalues P (ζ) has only one peak at ζ = 0

and a long tail for most depths: ζ/ 〈ζ〉 � 1. Our theoretical model, based on a filtered ran-

dom matrix ensemble, can analytically predict P (ζ) for regions anywhere inside a diffusive

medium. The long-range correlations present in the intensity of the field, induced by the mul-

tiple scattering of light and characterized by C2(zD), facilitate optical energy deposition. In a

diffusive waveguide of length L much larger than the transport mean free path `, the largest
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possible energy enhancement 〈ζmax〉 / 〈ζ〉 at a depth zD depends only on two parameters: L/`

and zD/L. With increasing depth zD, 〈ζmax〉 / 〈ζ〉 rises and reaches a global maximum ∼ L/`

at z(max)
D /L ∼ 3/4. Because z(max)

D is dependent on L and independent of `, when L � `, the

depth of the maximal enhancement is deep inside the sample rather than near the front or back

surfaces. Although our experimental and numerical studies are conducted on 2D systems, the

above scaling results follow from filtered matrix theory, e.g. Eq. 3, which also applies in three

dimensions.

Additionally, we discovered the relationship between deposition eigenchannels and trans-

mission eigenchannels. We found that it is impossible to construct the intensity profile of a

deposition eigenchannel from the intensity profiles of the transmission eigenchannels alone.

Constructive or destructive interference between transmission eigenchannels inside the disor-

dered system plays a prominent role in enhancing or suppressing energy within the target re-

gion. Therefore, our analysis reveals two distinct mechanisms for energy deposition: selective

excitation of transmission eigenchannels and interference between them. Their contributions

are characterized by the amplitudes and phases of the coefficients obtained when decomposing

a deposition eigenchannel into a summation of transmission eigenchannels.

Although our studies are conducted on planar waveguides with narrow widths and trans-

verse confinement, we believe the conclusions can be extended to wide slabs with open bound-

aries and to volumetric diffusive systems. They are also applicable to other types of waves

such as microwaves and acoustic waves. Targeted energy delivery opens the door to numerous

applications, e.g., optogenetic control of cells, photothermal therapy, as well as probing and

manipulating photoelectrochemical processes deep inside nominally opaque media.
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Deposition Matrix

SLM

CCD Image of Intensity Distribution

Disordered Waveguide

Figure 1: Schematic experimental platform for investigating energy deposition in a diffu-
sive system. A spatial light modulator (SLM) shapes the incident wavefront of a monochro-
matic laser beam, and the field distribution inside a two-dimensional disordered waveguide is
probed from above. This setup allows measurement of the deposition matrix that relates the
incoming field pattern to the spatial field distribution inside a target region (marked by the cyan
box). Selective coupling of light into the deposition eigenchannels can enhance or suppress
energy inside the target region, as confirmed by the CCD camera image of the spatial intensity
distribution.
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Figure 2: Numerical simulation and analytic prediction of deposition eigenvalues. (a)
Probability density function of normalized deposition eigenvalues ζ/ 〈ζ〉 for a thin slice at vary-
ing depths zD inside a diffusive waveguide (see inset). Analytical FRM predictions (solid lines)
agree with numerical simulations (dots) averaged over 1000 disorder configurations. For most
depths, P (ζ/ 〈ζ〉) is very different from the bimodal distribution of the transmission eigenval-
ues P (τ/ 〈τ〉), although it converges to bimodal at the end (shaded area at zD/L = 1). The
theoretical prediction for the upper edge of P (ζ), which sets the limit for energy enhancement
〈ζmax〉 / 〈ζ〉, is marked by dashed purple line in the horizontal plane. (b) Energy enhancement
in two diffusive waveguides (WG1, WG2), given by the ratio of the largest ensemble-averaged
deposition-eigenvalue 〈ζmax〉 over the mean eigenvalue 〈ζ〉, increases with depth zD and reaches
its maximum at zD/L ∼ 3/4. Analytical predictions for the upper edge of P (ζ/ 〈ζ〉) (solid
lines) are compared to numerical data (symbols). The energy enhancement 〈τmax〉 / 〈τ〉 ex-
ceeds the transmission enhancement 〈ζmax〉 / 〈ζ〉 (horizontal dotted line) at most depths. In (a),
the waveguide (WG1) has a length L = 50µm, width W = 15µm, and transport mean free
path ` = 3.3µm. (b) includes a second waveguide (WG2) of L = 50µm, W = 30µm, and
` = 1.6µm.
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Figure 3: Experimental measurement of deposition eigenchannels. (a) A composite scan-
ning electron microscope (SEM) image of a disordered waveguide of width W = 15 µm. Ran-
domly distributed air holes (each 100 nm in diameter) are etched throughout a designated
L = 50 µm long region. Superimposed are four target regions used for energy deposition;
each is 10 µm × 10 µm. (b,c) Depth profiles (cross-section integrated intensities) of two de-
position eigenchannels with enhanced and suppressed energies in the target region R1 centered
at depth zD = 10 µm (b), and R2 at zD = 20 µm (c). Experimental data (red circle, purple dia-
mond) agree with numerical simulations (red solid line, purple dotted line). Black dashed line
is the intensity profile averaged over random input wavefronts. Each experimental data point is
averaged over ∆z = ` to reduce fluctuations. (d,e) Experimentally measured energy enhance-
ment in the target region ηt (blue-circles) and in the surrounding area ηs (brown-diamonds) of
two deposition eigenchannels α = 2 (d) and α = 24 (e) are compared with numerical data
(light-blue and orange lines): for the case of energy deposition into four target regions centered
at 10, 20, 30, and 40 µm. In (d) the green line corresponds to 35C2(zD), and its agreement with
the experimental/numerical results of ηt(zD) confirms the essential contribution of long-range
intensity correlation to energy deposition, as predicted by our analytic model.
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Figure 4: Relation between deposition eigenchannels and transmission eigenchannels.
(a,c) Projection of a deposition eigenchannel with index α = 1 (a) or 25 (c) onto transmission
eigenchannels with index β gives the coefficients dαβ . Four curves denote |dαβ|2 for four target
regions R1 − R4 [inset of (a)] in the same disordered waveguide as in Fig. 3. (b,d) Compar-
ison of depth profiles between coherent sum (red/purple) and incoherent (green) sum of the
transmission eigenchannels with coefficients given in (a,c). While the coherent sum repro-
duces the deposition eigenchannel profile, the incoherent sum falls short, and their difference is
attributed to interference between transmission eigenchannels. For each deposition region, en-
hancement/suppression above/below the random input intensity profile (black dashed line) has
two distinct contributions from selective excitation of transmission eigenchannels (green areas)
and constructive/destructive interference between them (cyan areas).
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Supplementary materials

Supplementary Text

Figs. S1 to S6

1 Numerical simulations

We use the Kwant simulation package (40) to perform numerical simulations of wave transport

in a two-dimensional (2D) rectangular waveguide geometry, see Refs. (27, 48, 50). The geome-

try of the numerical simulations is chosen to match the experimental parameters of W/λ (width

of the waveguide normalized by wavelength), L/λ (length of the waveguide), and N (number

of waveguide modes). The refractive index in the input (empty) waveguide matches the average

index in the disordered region, thus the number of propagating modes in the disordered waveg-

uide is also N . Furthermore, the strength of the disorder and (spatially uniform) absorption

coefficient are selected (27, 48) to match the macroscopical physical parameters in the exper-

iment: specifically the transport mean free path ` and diffusive absorption length ξa. We also

simulate the disordered waveguides without loss by setting ξa = ∞. Statistical averaging over

1000 disorder configurations is performed for all numerical results shown in Figs. 2-4 of the

main text.

1.1 Transmission eigenchannels

We calculate the field transmission matrix t in the basis of the empty (input) waveguide modes.

t is normalized so that when light with a unit flux in the n-th waveguide mode is incident on

the disordered region, |tmn|2 is equal to the amount of flux carried away by the m-th waveguide

mode in transmission. We also compute the wavefunctionEn(y, z) describing the complex field

23



distribution throughout the system, when excited via the n-th waveguide mode.

Transmission eigenchannels are computed by performing a singular value decomposition

of the transmission matrix so that tmn =
∑N

α=1 U
(T )
mα · τ 1/2

α · V (T )∗
αn . Here, Û (T ) and V̂ (T ) are

unitary matrices and τα are the transmission eigenvalues. The disorder-specific incident wave-

front given by the α-th column of the matrix V̂ (T ) excites the α-th transmission eigenchannel

with the field distribution E(T )
α (y, z) =

∑N
n=1 V

(T )
αn En(y, z) inside the system with the trans-

mittance given by τα. The depth intensity profile is computed by integrating over the transverse

coordinate y followed by averaging over disorder realizations: denoted by angular brackets

I
(T )
α (z) =

〈∫W
0

∣∣∣E(T )
α (y, z)

∣∣∣2 dy〉.

1.2 Deposition matrix

We provide two definitions for the deposition matrix Z in Eqs. (1) and (2) of the main text.

While the first definition is more general, the second one reduces to the transmission matrix

at the output. For both definitions, the deposition eigenchannels are introduced based on the

singular value decomposition of the deposition matrix

Zmn(zD) =
N∑
α=1

U (D)
mα (zD) ζ1/2

α (zD)V (D)∗
αn (zD). (S1)

The spatial structure of α-th deposition eigenchannel inside the system is given byE(D)
α (y, z; zD) =∑N

n=1 V
(D)
αn (zD)En(y, z). The depth intensity profile is computed by integrating over the trans-

verse coordinate y as well as the disorder realizations I(D)
α (z; zD) =

〈∫W
0

∣∣∣E(D)
α (y, z; zD)

∣∣∣2 dy〉.

Numerically we compare the eigenvalues ζ(zD) of the deposition matrices Z(zD) defined

by Eqs. (1) and (2) for a thin slice at depth zD inside the disordered waveguide. As shown

in Fig. S1, the probability density function (PDF) of deposition eigenvalues P (ζ) is almost

identical for the two definitions at most depths inside the disordered waveguide. Only close to

the very end L − zD < ` do the two PDFs differ; one remains single peaked while the other
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becomes bimodal and converges to the PDF of the transmission eigenvalues.

To illustrate the close relationship between the two definitions of the deposition matrix, we

compare the trace of Z†Z , which corresponds to the sum of their eigenvalues, Tr[Z†Z] =∑
m ζm. For the first definition, we switch to the waveguide mode basis and find the trace

Tr[Z(zD)†Z(zD)] =
∑N

n=1

∑∞
m=1 |Zmn(zD)|2, where Zmn(zD) =

∫W
0
χm(y)En(y, zD) dy is

obtained by projecting the internal field distribution, excited by a unit flux input to the n-th

waveguide mode, onto the m-th waveguide mode at the cross-section z = zD. With the second

definition of Z(zD), the trace Tr[Z†(zD)Z(zD)] =
∑N

n=1

∑N
m=1 vm |Zmn(zD)|2 differs from

the first one in two ways: (i) the summation over m runs only over the propagating modes of

the waveguide, and (ii) the prefactor vm introduces a weight for different modes. Using the

Fisher-Lee formula (53), one can show that the trace for the second definition at zD = L is

equal to the dimensionless conductance g =
∑

m τm.

2 Analytical predictions

2.1 Filtered random matrix (FRM) model

In the main text, we make the ansatz that Z(zD) has the same spectrum as a filtered matrix

t̃ drawn from a larger virtual transmission matrix t0. The matrix t̃ is obtained by keeping

a fraction m < 1 of rows and columns in t0. In Ref. (43), it is shown that the eigenvalue

distribution of the matrix t̃†t̃ is given by pt̃† t̃(x) = − limη→0+ Imgt̃† t̃(x+iη), where the resolvent

gt̃† t̃(w) is solution of the implicit equation:

gt̃† t̃(w) =
wmgt̃† t̃(w) + 1−m

wm2 gt̃† t̃(w)
gt†0t0

[
[wmgt̃† t̃(w) + 1−m]2

wm2 gt̃† t̃(w)2

]
. (S2)

Since t0 represents the transmission matrix of a virtual opaque and disordered medium, the

resolvent gt†0t0(w) is (43):

gt†0t0
(w) =

1

w
− τ̄0

w
√

1− wArctanh
[

Tanh(1/τ̄0)√
1− w

]
, (S3)

25



where τ̄0 is the mean of pt†0t0(x). Hence, the eigenvalue distribution p(ζ) of Z†(zD)Z(zD) is

parametrized by m and τ̄0 only. In particular, the variance of p(ζ) is

Var(ζ)

〈ζ〉2
= m

(
2

3τ̄0

− 1

)
+ 1−m. (S4)

In our model, we take m = 〈ζ(L)〉 / 〈ζ(zD)〉 = 〈τ〉 / 〈ζ(zD)〉 ≤ 1 and τ̄0 solution of Eq. (S4).

In this way, the full distribution p(ζ) becomes parametrized by its first two moments, 〈ζ〉 and

〈ζ2〉. To obtain the FRM predictions in Fig.2(a) of the main text and Fig. S2 here, we solve

Eq. (S2) with 〈ζ〉 and 〈ζ2〉 as input parameters evaluated numerically. The good agreement

between the FRM prediction and numerical distributions validates our model.

In Ref. (43), it is also shown that the edges x∗ of the distribution pt̃† t̃(x) are given by x∗ =

ξ∗
[
1 + (m− 1)/ξ∗gt†0t0

(ξ∗)
]2

, where ξ∗ is the solution of

dgt†0t0(ξ)

dξ

∣∣∣∣∣
ξ∗

=
gt†0t0

(ξ∗)

2ξ∗

−(1−m)2 + ξ∗2gt†0t0
(ξ∗)2

(1−m)2 − (1−m)ξ∗gt†0t0
(ξ∗)

. (S5)

We solve this equation to find the values of the upper edge x∗ represented in Fig. 2(b) of the

main text, where it is compared to 〈ζmax〉. In the limit of large matrix size (N → ∞), we

expect that the upper edge of p(ζ) and 〈ζmax〉 coincide. This is illustrated in Fig. S2, where

we present the distributions p(ζ) and p(ζmax) for three waveguide widths W , at a fixed depth

zD = 0.8L. As W increases, p(ζ) is almost unaffected because Var(ζ) marginally depends on

W , whereas the distribution p(ζmax) shrinks and 〈ζmax〉 converges towards the upper edge from

below. Convergence is reached for all depths zD in the limit of large conductance (g = N 〈τ〉 �

1), as illustrated in Fig. S3.

2.2 First two moments of p(ζ)

The first moment 〈ζ(zD)〉 of the distribution p(ζ) is proportional to the mean intensity 〈I(zD)〉

deposited at depth zD under random wavefront illumination. We can approximate it by the
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steady state solution of the diffusion equation with an isotropic source located at an injection

depth zin ∼ ` away from the front surface of the disordered waveguide boundary, ∂2
z 〈ζ(z)〉 =

Aδ(z− zin), where A is a constant to be evaluated below. This equation must be complemented

with boundary conditions: 〈ζ(z = 0)〉 = z0∂z 〈ζ(z = 0)〉 and 〈ζ(z = L)〉 = −z0∂z 〈ζ(z = L)〉,

where z0 is the extrapolation length (z0 = π`/4 in 2D and z0 = 2`/3 in 3D). The solution is a

linear function of zD,

〈ζ(zD)〉 = A
(zin + z0)(L+ z0 − zD)

L+ 2z0

, (S6)

for zD > zin. The constant A being fixed by our choice of normalization 〈ζ(z = L)〉 = 〈τ〉 =

2z0/(L+ 2z0), we get

〈ζ(zD)〉 = 2(1− 〈τ〉)
(

1− zD
L

)
+ 〈τ〉 , (S7)

which is independent of the precise value of zin. The agreement of this prediction with numerical

simulations is excellent, as shown in Fig. S4(a).

The variance Var(ζ) = 〈ζ(zD)2〉 − 〈ζ(zD)〉2 of the eigenvalue distribution p(ζ) can be

related to intensity fluctuation 〈I(zD)2〉 − 〈I(zD)〉2. Using the singular value decomposition of

the deposition matrix Z = U (D)ζ̂1/2V (D) †, the cross-section integrated intensity deposited by

a waveguide mode n is In(zD) =
∑

α |V
(D)
nα |2ζα(zD). The evaluation of the first two moments

of In(zD) is straightforward using the isotropy hypothesis for the disordered waveguide (41,

54). This amounts to considering that V is uniformly distributed over the unitary group and is

independent of ζ̂ . We find

〈In(zD)〉 =
1

N

〈
Tr(ζ̂)

〉
, (S8)〈

I2
n(zD)

〉
=

1

N2 − 1

(
1− 1

N

)[〈
Tr(ζ̂)2

〉
+
〈

Tr(ζ̂2)
〉]
. (S9)
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In the limit N � 1, the leading order is

Var[In(zD)] ' 1

N2

[〈
Tr(ζ̂2)

〉
− 1

N

〈
Tr(ζ̂)2

〉]
' 1

N2

[〈
Tr(ζ̂2)

〉
− 1

N

〈
Tr(ζ̂)

〉2
]
. (S10)

This result is independent of the waveguide mode index n, and also holds for random wavefront

illumination. We conclude that

Var[ζ(zD)]

〈ζ(zD)〉2
' N

Var[I(zD)]

〈I(zD)〉2
. (S11)

Finally, the intensity fluctuations at depth zD are computed by decomposing the field E(zD)

involved in I(zD) = |E(zD)|2 as a sum of propagators along all possible scattering trajec-

tories (44). The intensity fluctuations are composed of a small Gaussian field contribution

C1 = 1/N , and dominated by the non-Gaussian contribution C2(zD),

Var[I(zD)]

〈I(zD)〉2
= C1 + C2(zD), (S12)

with

C2(z) =
2

gL 〈I(z)〉2
∫ L

0

dz′ 〈I(z′)〉2 [∂z′K(z, z′)]
2
. (S13)

The mean intensity is 〈I(z)〉 =
∫ L

0
dz′e−z

′/`K(z, z′), where K(z, z′) is the Green’s function

of the diffusion equation ∂2
zK(z, z′) = δ(z − z′), with boundary conditions ∂zK(0, z′) =

K(0, z′)/z0 and ∂zK(L, z′) = −K(L, z′)/z0. The solution is

K(z, z′) =
(z− + z0)(L+ z0 − z+)

L+ 2z0

, (S14)

with z− = min(z, z′) and z+ = max(z, z′). In the limit L � `, the correlator C2(z) takes the

simple form (46)

C2(z) ' 2

3g

z(3L− 2z)

L2
, (S15)

where g = N 〈τ〉 is the dimensionless conductance of the disordered waveguide.
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By combining Eqs. (S11) and (S12), we finally obtain an analytical expression for the nor-

malized variance of the eigenvalues of the deposition matrix,

Var[ζ(zD)]

〈ζ(zD)〉2
' 1 +NC2(zD). (S16)

Figure S4(b) shows a good agreement between the simulation results and our prediction based

on Eq. (S13).

When comparing with the experimental data in Fig. 3(d), the effect of absorption is included

in Eq. (S13). This is accomplished by substitution of the Green’s function which accounts for

absorption

∂2
zK(z, z′)− K(z, z′)

ξ2
a

= δ(z − z′), (S17)

where ξa is the diffusive absorption length.

2.3 Upper edge of p(ζ)

In the main text, we argue that the maximal enhancement of energy deposition 〈ζmax〉 / 〈ζ〉

depends, for most depths zD, only on the long-range intensity-intensity correlation function

C2(zD). To prove this property, we first note that m = 〈τ〉 / 〈ζ(zD)〉 becomes quickly smaller

than unity for zD < L, as long as 〈τ〉 � 1 [see Fig. S4(a)]. This allows us to perform an

expansion of the FRM solution in the limit m→ 0. Using

gt†0t0
(w) ' 1− τ̄0

w
− iπτ̄0

2w
√

1− w, (S18)

and expanding Eq. (S5) to leading order, we find

〈ζmax(zD)〉
〈ζ(zD)〉 '

[(γ − 1)2/3 + (π/2)2/3]2[γ − 1 + (π/2)2/3(γ − 1)1/3]

γ(γ − 1)1/3
+O(m), (S19)

which depends on γ = m/τ̄0 only. According to Eq. (S4),

γ ' 3

2

(
Var[ζ(zD)]

〈ζ(zD)〉2
− 1

)
' 3NC2(zD)

2
. (S20)
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Hence, 〈ζmax〉 / 〈ζ〉 depends only on C2(zD) only. Since γ ∼ NC2(zD) � 1 for 〈τ〉 ∼ `/L �

1, we can further expand Eq. (S19) as

〈ζmax(zD)〉
〈ζ(zD)〉 ' γ + 3

(π
2

)2/3

γ1/3 − 2 +O(γ−1/3). (S21)

This shows that the energy enhancement slowly converges to γ in the limit L/`� 1.

3 Experimental Measurements

3.1 Sample fabrication

We fabricate the two-dimensional (2D) waveguide structures on a silicon-on-insulator wafer

with electron-beam lithography and reactive ion etching. The entire structure includes an ridge-

waveguide and a tapered waveguide for light injection, a buffer region and the primary disor-

dered section. The spatially modulated light is injected from the side/edge of the wafer into the

ridge waveguide (width = 300 µm, length = 15 mm). It then enters the tapered waveguide (taper-

ing angle = 15◦). The tapered waveguide width decreases gradually from 300 µm to 15 µm. The

tapering results in waveguide mode coupling and conversion (48). To avoid light leakage, from

the tapered waveguide onward the sidewalls are photonic crystals, with a complete 2D bandgap,

to confine light in the waveguides. Specifically, the photonic-crystal boundaries consist of 16-

layered triangle-lattices of air holes (radius = 155 nm, lattice constant = 440 nm). They provide

a 2D complete bandgap for TE polarized light (used in the experiment) within the wavelength

range of 1120 nm to 1580 nm (47). The tapered waveguide is followed by a weakly-scattering

region (25 µm long), denoted the ‘buffer’, followed by the multiple-scattering region (50 µm

long). The out-of-plane scattering from the buffer region provides information about the light

incident upon the diffusive region without altering the overall diffusive transport of light in our

system (27). Randomly distributed air holes (diameter = 100 nm) with a minimum (edge-to-

edge) distance of 50 nm, are fabricated in the silicon top-layer to induce light scattering in the
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buffer and diffusive regions. The diffusive region has 5250 holes, which results in an air filling

fraction in the Si of 5.5%. The number of air holes in the buffer region is 260, and the air filling

fraction is 0.55%.

3.2 Optical setup

A detailed schematic of our experimental setup is presented in Fig. S5. A wavelength tunable

laser (Keysight 81960A) outputs a linearly-polarized continuous-wave (CW) beam with a wave-

length around 1554 nm. The collimated beam is split with a 50/50 beam splitter into two beams.

One is used as a reference beam, while the other illuminates the phase modulating surface of

a phase-only SLM (Hamamatsu LCoS X10468). Displayed on the SLM is an one-dimensional

(1D) phase-modulation pattern consisting of 128 macropixels. Each micropixel has 4 × 800

SLM pixels. We image the field reflected from the SLM plane onto the back focal plane of

a long-working-distance objective Obj. 1 (Mitutoyo M Plan APO NIR HR100×, Numerical

Aperture = 0.7) using two lenses with focal lengths of f1 = 400 mm and f2 = 75 mm. To

prevent the unmodulated light from entering the objective lens, we display a binary diffraction

grating within each macropixel to shift the modulated light away from the unmodulated light

in the focal plane of the first lens f1. With a slit in the focal plane, we block all light except

the phase-modulated light in the first diffraction order. Right after the slit and before the sec-

ond lens f2, we insert a half-wave (λ/2) plate to rotate the polarization of light so that it is

transverse-electric (TE) polarized relative to our waveguide sample. The waveguide entrance at

the edge of our SOI wafer is placed at the front focal plane of Obj. 1, so that it is illuminated

with the Fourier transform of the phase-modulation pattern displayed on the SLM. From the

top of the wafer, another long-working-distance objective (Obj. 2 (Mitutoyo M Plan APO NIR

HR100×) collects light scattered out-of-plane from the waveguide. We use a third lens with a

focal length of f3 = 100 mm together with Obj. 2 to image the sample. In conjunction, the
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lens and the objective magnify the sample image by 50 times. Using a second beam splitter,

we combine the light collected from the sample with the reference beam. Their interference

patterns are recorded with an IR CCD camera (Allied Vision Goldeye G-032 Cool).

3.3 Deposition matrix measurement

With the interferometric setup described in the last subsection, we can determine the field dis-

tribution of light within the disordered region of the waveguide from the out-of-plane scattered

light: for any phase-modulation pattern displayed on the SLM. To do this, for a given phase

modulation pattern on the SLM, we first measure the 2D intensity distribution of light inside

the waveguide by blocking the reference beam with a shutter. Then after unblocking the refer-

ence beam, we retrieve the phase profile of the scattered light with a four-phase measurement.

In this measurement, the global phase of the pattern displayed on the SLM is modulated four

times in increments of π/2 rad (55).

For a given disordered waveguide configuration, we sequentially apply a complete set of or-

thogonal phase-fronts to the SLM and record the 2D field distribution throughout the waveguide

for each input. Based on these field measurements, we construct a linear matrix that relates the

field pattern at the SLM to the field distribution anywhere inside the waveguide. In particular,

we create two matrices ZSLM→Buff and ZSLM→R, which map the field from the SLM surface to

the buffer region in front of the main disordered region and to the deposition area of interest R

inside it, respectively.

With these two matrices, we build the deposition matrix relating the field in the buffer region

to the field in the deposition region: ZBuff→R ≡ ZSLM→RZ−1
SLM→Buff . To calculate the inverse of

ZSLM→Buff , we use Moore-Penrose matrix inversion. The inverse matrix is calculated using the

the 55 highest singular values of ZSLM→Buff and the remaining singular values set to zero. This

restriction is imposed because our diffusive waveguide only has 55 transmission eigenchannels,
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and the remaining singular values are dominated by experimental noise.

As shown in Fig. 3(a) of the main text, the energy deposition regions are four 10 µm × 10

µm areas inside the disordered waveguide. To avoid artifacts from light scattered out-of-plane

from the photonic-crystal sidewalls, the deposition regions are kept away from the waveguide

boundaries. Since each deposition area is relatively large and contains many speckle grains,

the effect of incident wavefront shaping on increasing/decreasing out-of-plane scattered light

into the camera is reduced. Therefore, optimizing the input wavefront to the waveguide pre-

dominantly enhance/suppress the amount of energy deposited into the target region. This is

confirmed by our numerical simulation with realistic parameters, as detailed in the next subsec-

tion.

3.4 Deposition eigenchannel characterization

To experimentally excite a single deposition eigenchannel, we first calculate the singular vec-

tors of the deposition matrix, ZBuff→R, using a singular value decomposition. We then convert

the singular vectors ofZBuff→R into SLM phase-modulation patterns by multiplying each vector

by the pseudoinverse of the matrix from the SLM to the buffer region, Z−1
SLM→Buff , and retain

the resulting phase-modulation patterns. By displaying one of the phase patterns on the SLM,

we excite the corresponding deposition eigenchannel in the diffusive waveguide. For a given

disorder configuration and the region of interest, we record the 2D spatial intensity profiles of

every deposition eigenchannel of ZBuff→R. From each eigenchannel measurement, we inte-

grate the 2D intensity pattern over the waveguide cross-section along y to obtain the deposition

eigenchannel’s depth profile. While our waveguide structure has a width of 15 µm, we only use

the central 10 µm region of the waveguide’s out-of-plane-scattered light to avoid artifacts from

out-of-plane scattering by the photonic-crystal boundaries.

After measuring 55 of the deposition eigenchannel profiles of ZBuff→R with the highest
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eigenvalues, for a given disorder configuration, we need to mitigate the influence of ‘noisy

eigenchannels’ and properly normalize the eigenchannel profiles. While our waveguides have

55 deposition eigenchannels, for a given region of interest, the limited dynamic range of our

CCD camera makes the deposition eigenchannels with small eigenvalues experimentally in-

accessible. The missing information needed to reconstruct these deposition eigenchannels is

replaced with measurement noise, and therefore the corresponding ‘noisy eigenchannels’ are

equivalent to random inputs. Additionally, this effect leads to a slight shuffling in the order of

the measured eigenchannels based on their eigenvalues.

To account for redundant eigenchannel measurements, induced by measurement noise, as

well as the inability to experimentally control the norm of the input flux, we conduct numerical

simulations in order to normalize and sort the measured deposition eigenchannel depth profiles.

The simulated waveguides have identical parameters and dimensions to the experimental ones.

We compute the deposition matrices that map the incident fields to the fields within four tar-

get regions R1 − R4. Since 2N points are chosen randomly inside each region, the deposition

matrix is rectangular with dimensions 2N × N . We compute the ensemble-averaged eigen-

channel profiles from the numerical simulations to normalize and determine the correct order

of measured eigenchannel profiles. First, we normalize all of the experimental and numerical

profiles to have a mean value of one, and spatially overlap them. Then, for each experimental

profile, we calculate its absolute difference from every numerical profile and assign the correct

order based on the minimum difference. Once we have the correct order of the experimental

eigenchannel, we renormalize it according to the unit input flux. In this process, we remove the

‘noisy eigenchannels’ with the intermediate eigenvalues, whose depth profiles resemble those

of random input wavefronts. In this way, we are able to sort out the deposition eigenchannels

of a single realization.

We repeat this process for multiple disorder realizations -generated using different wave-
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lengths and random hole configurations- and ensemble-average the depth profiles of deposition

eigenchannels with same indices. In total, we measure the deposition eigenchannel profiles of

13 independent system realizations: for each of four target regions at different spatial locations

in the waveguide. We obtain these measurements from two waveguides with different random

arrays of air holes. To generate independent system realizations from the same hole configu-

ration, we vary the wavelength of the input light beyond the spectral correlation width of the

diffusive light, which is estimated to be 0.4 nm. Over a wavelength span of 3 nm, we vary the

input wavelength of our laser in increments of 0.5 nm. We choose the specific wavelength range

of the measurement -for each random hole configuration- such that the effective dissipation by

out-of-plane scattering is minimal and nearly constant over the probe wavelength range. Be-

cause of minor structural differences, pertaining to the fabrication process, one sample has a

smaller acceptable wavelength range.

In Figures S6 (b-e), the maximal enhancing/suppressing energy deposition eigenchannel

profiles (red-dots/purple-diamonds), measured experimentally, are juxtaposed with numerically

simulated profiles (red-solid and purple-dashed lines): for all four target regions centered at 10,

20, 30 and 40 µm. The cross-section integrated intensities are averaged axially (along z) over

one transport mean free path to reduce fluctuations. The black dashed line represents the cross-

section integrated intensity profile of random illumination patterns in our system, 〈I(z)〉. The

depth profiles of the maximal energy deposition eigenchannels (with the largest eigenvalues)

are well above 〈I(z)〉: both within the target region and beyond. Similarly, the depth profiles of

the minimal energy deposition eigenchannels (with the smallest eigenvalues) are notably lower

than 〈I(z)〉, both inside and outside the target region.
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(⇣

)

zD/L = 0.3 zD/L = 0.5 zD/L = 0.7

zD/L = 0.9 zD/L = 0.95 zD/L = 1

Eq. (1)

Eq. (2)

Figure S1: Comparison of the eigenvalue distributions p(ζ) of the operators Z†Z defined
by Eq. (1) and Eq. (2), evaluated at different depths zD/L of a disordered waveguide (length
L = 50µm, width W = 30µm, transport mean free path ` = 3.3µm). Noticeable differences
are observed only at zD very close to L, where p(ζ) converges to the bimodal distribution of
transmission eigenvalues for the operator Z†Z defined by Eq. (2) only. The two distributions
still coincide for zD/L = 0.95 (panel 5), which corresponds to L− zD < `.
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Figure S2: Deposition eigenvalue distribution p(ζ) at depth zD = 0.8L of a disordered
waveguide of length L = 50µm and width W = 15, 30, 50µm. Analytical FRM predictions
(solid black lines) are compared with numerical results (dots) obtained from the solution of the
wave equation for 103 realizations of the disordered waveguide with a transport mean free path
` = 3.3µm. The distribution of the largest eigenvalue p(ζmax) is superimposed (red dots con-
nected by red line) to reveal the convergence of ζmax towards the upper edge of p(ζ) in the limit
g = N 〈τ〉 � 1 (W = 15, 30, 50µm correspond to g = 5, 10, 15). The value 〈ζmax〉 is indicated
with dashed vertical line.
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Figure S3: Symbols (circles, squares, triangles) represent the ensemble average of the largest
deposition eigenvalue 〈ζmax〉 at different depth zD/L for three waveguide width W = 10, 30, 60
µm. Other parameters are identical to the paremeters in Fig. S2. Solid lines of matched colors
are analytical predictions for the upper edge of p(ζ) evaluated with the numerical mean 〈ζ〉
and variance Var[ζ]. The agreement between the numerical data and the analytical predictions
improves with increasing waveguide width.
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Figure S4: (a) Effective filtering ratio m = 〈τ〉 / 〈ζ(zD)〉 of the FRM model versus
depth zD/L. Numerical results (dots) are compared with the analytical prediction m =
1/ [2(1/ 〈τ〉 − 1)(1− zD/L) + 1] (solid lines with matched colors); (b) Variance var[ζ/〈ζ〉] =
〈ζ2〉 / 〈ζ〉2 − 1 of the eigenvalue distribution p(ζ) vs. depth zD/L. Numerical results (dots) are
compared with intensity fluctuationsNC2(zD)+1 evaluated analytically (solid lines of matched
colors) for two values of transport mean free path ` = 1.6, 3.3 µm. The disordered waveguide
dimensions are L = 50µm and W = 15µm.
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Figure S5: A detailed schematic of our experimental setup Monochromatic light from our
CW laser is linearly polarized and split into two beams. One beam illuminates the phase mod-
ulating region of a spatial light modulator (SLM). The other beam is used as a reference. The
SLM controls the input wavefront injected into our diffusive waveguides. A beam splitter
merges the light collected from the top of our sample with the reference beam and their in-
terference pattern is recorded by an IR CCD. The focal length of the three lenses used in this
setup are: f1 = 400 mm, f2 = 75 mm, and f3 = 100 mm.
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Figure S6: Experimental measurement of deposition eigenchannels. A composite SEM
image of an on-chip disordered waveguide is presented in (a) with a delineation of the buffer
region and a deposition region superimposed. In (b-e) the maximally enhancing/suppressing
(red-dots/purple-diamonds) deposition eigenchannel profiles, measured experimentally, are jux-
taposed with numerical simulated profiles (red-solid and purple-dashed lines): for four target
regions centered at 10, 20, 30, and 40 µm.
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