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Abstract—We describe a technique that automatically generates plausible depth maps from videos using non-parametric depth

sampling. We demonstrate our technique in cases where past methods fail (non-translating cameras and dynamic scenes). Our

technique is applicable to single images as well as videos. For videos, we use local motion cues to improve the inferred depth maps,

while optical flow is used to ensure temporal depth consistency. For training and evaluation, we use a Kinect-based system to collect a

large data set containing stereoscopic videos with known depths. We show that our depth estimation technique outperforms the state-

of-the-art on benchmark databases. Our technique can be used to automatically convert a monoscopic video into stereo for 3D

visualization, and we demonstrate this through a variety of visually pleasing results for indoor and outdoor scenes, including results

from the feature film Charade.

Index Terms—Depth estimation, monocular depth, motion estimation, data-driven, 2D-to-3D

Ç

1 INTRODUCTION

SCENE depth is useful for a variety of tasks, ranging from
3D modeling and visualization to robot navigation. It

also facilitates spatial reasoning about objects in the scene,
in the context of scene understanding. In the growing 3D
movie industry, knowing the scene depth greatly simplifies
the process of converting 2D movies to their stereoscopic
counterparts. The problem we are tackling in this paper is:
given an arbitrary 2D video, how can we automatically
extract plausible depth maps at every frame? At a deeper
level, we investigate how we can reasonably extract depth
maps in cases where conventional structure-from-motion
and motion stereo fail.

While many reconstruction techniques for extracting
depth from video sequences exist, they typically assume
moving cameras and static scenes. They do not work for
dynamic scenes or for stationary, rotating, or variable focal
length sequences. There are some exceptions, e.g., [1], which
can handle some moving objects, but they still require cam-
era motion to induce parallax and allow depth estimation.

In this paper, we present a novel solution to generate
depth maps from ordinary 2D videos; our solution also
applies to single images. This technique is applicable to
arbitrary videos, and works in cases where conventional
depth recovery methods fail (static/rotating camera; change
in focal length; dynamic scenes). Our primary contribution
is the use of a non-parametric “depth transfer” approach
for inferring temporally consistent depth maps without

imposing requirements on the video (Sections 3 and 4),
including a method for improving the depth estimates of
moving objects (Section 4.1). In addition, we introduce a
new, ground truth stereo RGBD (RGB+depth) video data
set1 (Section 5). We also describe how we synthesize stereo
videos from ordinary 2D videos using the results of our
technique (Section 7). Exemplar results are shown in Fig. 1.

2 RELATED WORK

In this section, we briefly survey techniques related to our
work, namely 2D-to-3D conversion techniques (single image
and video, automatic and manual) and non-parametric
learning.

2.1 Single Image Depth Estimation and 2D-to-3D

Early techniques for single image 2D-to-3D are semi-
automatic; probably the most well-known of them is the
“tour-into-picture” work of Horry et al. [2]. Here, the user
interactively adds planes to the single image for virtual view
manipulation. Two other representative examples of interac-
tive 2D-to-3D conversion systems are those of Oh et al. [3]
(where a painting metaphor is used to assign depths and
extract layers) and Zhang et al. [4] (where the user adds sur-
face normals, silhouettes, and creases as constraints for
depth reconstruction).

One of the earliest automatic methods for single image
2D-to-3D was proposed by Hoiem et al. [5]. They created
convincing-looking reconstructions of outdoor images by
assuming an image could be broken into a few planar surfa-
ces; similarly, Delage et al. developed a Bayesian framework
for reconstructing indoor scenes [6]. Saxena et al. devised a
supervised learning strategy for predicting depth from a
single image [7], which was further improved to create real-
istic reconstructions for general scenes [8], and efficient
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1. Our data set and code are publicly available at http://
kevinkarsch.com/depthtransfer.
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learning strategies have since been proposed [9]. Better
depth estimates have been achieved by incorporating
semantic labels [10], or more sophisticated models [11].

Apart from learning-based techniques for extracting
depths, more conventional techniques have been used
based on image content. For example, repetitive structures
have been used for stereo reconstruction from a single
image [12]. The dark channel prior has also proven effective
for estimating depth from images containing haze [13]. In
addition, single-image shape from shading is also possible
for known (a priori) object classes [14], [15].

Compared to techniques here, we not only focus on
depth from a single image, but also present a framework for
using temporal information for enhanced and time-coherent
depth when multiple frames are available.

The approach closest to ours is the contemporaneous
work of Konrad et al. [16], [17], which also uses some form
of non-parametric depth sampling to automatically convert
monocular images into stereoscopic images. They make
similar assumptions to ours (e.g., appearance and depth are
correlated), but use a simpler optimization scheme, and
argue that the use SIFT flow only provides marginal
improvements (opposed to not warping candidates via SIFT
flow). Our improvements are two-fold: their depth maps
are computed using the median of the candidate disparity
fields and smoothed with a cross bilateral filter, while we
consider the candidate depths (and depth gradients) on a
per-pixel basis. Furthermore, we propose novel solutions to
incorporate temporal information from videos, whereas the
method of Konrad et al. works on single images. We also
show a favorable comparison in Table 2.

2.2 Video Depth Estimation and 2D-to-3D

A number of video 2D-to-3D techniques exist, but many of
them are interactive. Examples of interactive system include
those of Guttman et al. [18] (scribbles with depth properties
are added to frames for video cube propagation), Ward
et al. [19] (“depth templates” for primitive shapes are speci-
fied by the user, which the system propagates over the
video), and Liao et al. [20] (user interaction to propagate
structure-from-motion information with aid of optical flow).

There are a few commercial solutions that are automatic,
e.g., Tri-Def DDD, but anecdotal tests using the demo ver-
sion revealed room for improvement. There is even hard-
ware available for real-time 2D-to-3D video conversion,
such as the DA8223 chip by Dialog Semiconductor. It is not
clear, however, how well the conversion works, since

typically simple assumptions are made on what constitute
foreground and background areas based on motion estima-
tion. There are also a number of production houses special-
izing in 2D-to-3D conversions (e.g., In-Three [21] and
Identity FX, Inc.), but their solutions are customized and
likely to be manual-intensive. Furthermore, their tools are
not publicly available.

If the video is mostly amenable to structure-from-motion
and motion stereo, such technologies can be used to com-
pute dense depth maps at every frame of the video. One
system that does this is that of Zhang et al. [22], which also
showed how depth-dependent effects such as synthetic fog
and depth-of-focus can be achieved. While this system (and
others [1], [23]) can handle some moving objects, there is
significant reliance on camera motion that induces parallax.

2.3 Non-Parametric Learning

As the conventional notion of image correspondences was
extended from different views of the same 3D scene to
semantically similar, but different, 3D scenes [24], the infor-
mation such as labels and motion can be transferred from a
large database to parse an input image [25]. Given an unla-
beled input image and a database with known per-pixel
labels (e.g., sky, car, tree, window), their method works by
transferring the labels from the database to the input image
based on SIFT flow, which is estimated by matching pixel-
wise, dense SIFT features. This simple methodology has
been widely used in many computer vision applications
such as image super resolution [26], image tagging [27] and
object discovery [28].

We build on this work by transferring depth instead of
semantic labels. Furthermore, we show that this “transfer”
approach can be applied in a continuous optimization
framework (Section 3), whereas their method used a dis-
crete MRFs.

3 NON-PARAMETRIC DEPTH ESTIMATION BY

CONTINUOUS LABEL TRANSFER

We leverage recent work on non-parametric learning [29],
which avoids explicitly defining a parametric model and
requires fewer assumptions as in past methods (e.g., [7], [8],
[10]). This approach also scales better with respect to the
training data size, requiring virtually no training time. Our
technique imposes no requirements on the video, such as
motion parallax or sequence length, and can even be
applied to a single image. We first describe our depth

Fig. 1. Our technique takes a video sequence (top row) and automatically estimates per-pixel depth (bottom row). Our method does not require any
cues from motion parallax or static scene elements; these videos were captured using a stationary camera with multiple moving objects.

KARSCH ET AL.: DEPTHTRANSFER: DEPTH EXTRACTION FROM VIDEO USING NON-PARAMETRIC SAMPLING 2145



estimation technique as it applies to single images below,
and in Section 4 we discuss novel additions that allow for
improved depth estimation in videos.

Our depth transfer approach, outlined in Fig. 2, has three
stages. First, given a database RGBD images, we find candi-
date images in the database that are “similar” to the input
image in RGB space. Then, a warping procedure (SIFT Flow
[24]) is applied to the candidate images and depths to align
them with the input. Finally, an optimization procedure is
used to interpolate and smooth the warped candidate depth
values; this results in the inferred depth.

Our core idea is that scenes with similar semantics
should have roughly similar depth distributions when
densely aligned. In other words, images of semantically
alike scenes are expected to have similar depth values in
regions with similar appearance. Of course, not all of these
estimates will be correct, which is why we find several can-
didate images and refine and interpolate these estimates
using a global optimization technique that considers factors
other than just absolute depth values.

3.1 RGBD Database

Our system requires a database of RGBD images and/or
videos. We have collected our own RGBD video data set, as
described in Section 5; a few already exist online, though
they are for single images only.2

3.2 Candidate Matching and Warping

Given a database and an input image, we compute high-
level image features (we use GIST [30] and optical flow fea-
tures) for each image or frame of video in the database as
well as the input image. We then select the top K (¼ 7 in
our work, unless explicitly stated) matching frames from
the database, but ensure that each video in the database con-
tributes no more than one matching frame. This forces
matching images to be from differing viewpoints, allowing

for greater variety among matches. We call these matching
images candidate images, and their corresponding depths
candidate depths.

Because the candidate images match the input closely in
feature space, it is expected that the overall semantics of
the scene are roughly similar. We also make the critical
assumption that the distribution of depth is comparable
among the input and candidates. However, we want pixel-
to-pixel correspondences between the input and all candi-
dates, as to limit the search space when inferring depth
from the candidates.

We achieve this pixel-to-pixel correspondence through
SIFT flow [24], which matches per-pixel SIFT features to
estimate dense scene alignment. Using SIFT flow, we esti-
mate warping functions ci; i 2 f1; . . . ; Kg for each candi-
date image; this process is illustrated in Fig. 3. These
warping functions map pixel locations from a given can-
didate’s domain to pixel locations in the input’s domain.
The warping functions can be one-to-many.

3.3 Features for Candidate Image Matching

In order to find candidate images which match the input
image/sequence semantically and in terms of depth distri-
bution, we use a combination of GIST features [30] and fea-
tures derived from optical flow (used only in the case of
videos, as in Section 4). To create flow features for a video,
we first compute optical flow (using Liu’s implementation
[31]) for each pair of consecutive frames, which defines a
warping from frame i to frame iþ 1. If the input is a single
image, or the last image in a video sequence, we consider
this warping to be the identity warp. Then, we segment the
image into b� b uniform blocks, and compute the mean and
standard deviation over the flow field in each block, for

Fig. 3. SIFT flow warping. (a) SIFT features are calculated and matched
in a one-to-many fashion, which defines c. (b) c is applied to achieve
dense scene alignment.

Fig. 2. Our pipeline for estimating depth. Given an input image, we find matching candidates in our database, and warp the candidates to match the
structure of the input image. We then use a global optimization procedure to interpolate the warped candidates (Eq. (2)), producing per-pixel depth
estimates for the input image. With temporal information (e.g., extracted from a video), our algorithm can achieve more accurate, temporally coherent
depth.

2. Examples: Make3D range image data set (http://make3d.cs.
cornell.edu/data.html), B3DO data set (http://kinectdata.com/),
NYU depth data sets (http://cs.nyu.edu/ silberman/datasets/),
RGB-D data set (http://www.cs.washington.edu/rgbd-dataset/),
and our own (http://kevinkarsch.com/depthtransfer).
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both components of the flow (horizontal and vertical warp-
ings), and for the second moments as well (each component
squared). This leads to eight features per block, for a total of
8b2 features per image. We use b ¼ 4 for our results.

To determine the matching score between two images,
we take a linear combination of the difference in GIST and
optical flow features described above. Denoting G1; G2 and
F1; F2 as the GIST and flow feature vectors for two images
respectively, we define the matching score as

ð1� vÞkG1 �G2k þ vkF1 � F2k; (1)

where v ¼ 0:5 in our implementation.

3.4 Depth Optimization

Each warped candidate depth is deemed to be a rough
approximation of the input’s depth map. Unfortunately,
such candidate depths may still contain inaccuracies and
are often not spatially smooth. Instead, we generate the
most likely depth map by considering all of the warped can-
didates, optimizing with spatial regularization in mind.

Let L be the input image and D the depth map we wish
to infer. We minimize

� logðP ðDjLÞÞ ¼ EðDÞ
¼

X

i2pixels
EtðDiÞ þ aEsðDiÞ þ bEpðDiÞ þ logðZÞ; (2)

where Z is the normalization constant of the probability,
and a and b are parameters (a ¼ 10;b ¼ 0:5). For a single
image, our objective contains three terms: data (Et), spatial
smoothness (Es), and database prior (Ep).

Data cost. The data term measures how close the inferred
depth map D is to each of the warped candidate depths,
cjðCðjÞÞ. This distance measure is defined by f, a robust
error norm (we use an approximation to the L1 norm,
fðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ �
p

, with � ¼ 10�4). We define the data term as

EtðDiÞ¼
X

K

j¼1
w
ðjÞ
i

�

f
�

Di � cj

�

C
ðjÞ
i

��

þg
�

f
�

rxDi � cj

�

rxC
ðjÞ
i

��

þ f
�

ryDi � cj

�

ryC
ðjÞ
i

����

;

(3)

where w
ðjÞ
i is a confidence measure of the accuracy of the

jth candidate’s warped depth at pixel i, and K (¼ 7) is
the total number of candidates. We measure not only
absolute differences, but also relative depth changes, i.e.,
depth gradients (rx, ry are spatial derivatives). The lat-
ter terms of Eq. (3) enforce similarity among candidate
depth gradients and inferred depth gradients, weighted
by g (¼ 10).

Note that we warp the candidate’s gradients in depth,
rather than warping depth and then differentiating. Warp-
ing depth induces many new discontinuities, which would
result in large gradients solely due to the warping, rather
than actual depth discontinuities in the data. The downside
of this is that the warped gradients are not integrable, but
this does not signify as we optimize over depth anyhow
(ensuring the resulting depth map is integrable).

Some of the candidate depth values will be more reliable
than others, and we model this reliability with a confidence
weighting for each pixel in each candidate image (e.g., w

ðjÞ
i

is the weight of the ith pixel from the jth candidate image).
We compute these weights by comparing per-pixel SIFT
descriptors, obtained during the SIFT flow computation, of
both the input image and the candidate images:

w
ðjÞ
i ¼ ð1þ eðkSi�cjðS

ðjÞ
i
Þk�msÞ=ssÞ�1; (4)

where Si and SðjÞi are the SIFT feature vectors at pixel i in
candidate image j. We set ms ¼ 0:5 and ss ¼ 0:01. Notice
that the candidate image’s SIFT features are computed first,
and then warped using the warping function (cj) calculated
with SIFT flow.

Spatial smoothness. While we encourage spatial smooth-
ness, we do not want the smoothness applied uniformly to
the inferred depth, since there is typically some correlation
between image appearance and depth. Therefore, we
assume that regions in the image with similar texture are
likely to have similar, smooth depth transitions, and that
discontinuities in the image are likely to correspond to dis-
continuities in depth.

We enforce appearance-dependent smoothness with a
per-pixel weighting of the spatial regularization term
such that this weight is large where the image gradients
are small, and vice-versa. We determine this weighting
by applying a sigmoidal function to the gradients, which
we found to produce more pleasing inferred depth maps
than using other boundary detecting schemes such as
[32], [33].

The smoothness term is specified as:

EsðDiÞ ¼ sx;ifðrxDiÞ þ sy;ifðryDiÞ: (5)

The depth gradients along x and y (rxD;ryD) are modu-
lated by soft thresholds (sigmoidal functions) of image
gradients in the same directions (rxL;ryL), namely, sx;i ¼
ð1þ eðkrxLik�mLÞ=sLÞ�1 and sy;i ¼ ð1þ eðkryLik�mLÞ=sLÞ�1. We
set mL ¼ 0:05 and sL ¼ 0:01.

Prior. We also incorporate assumptions from our data-
base that will guide the inference when pixels have little or
no influence from other terms (due to weights w and s):

EpðDiÞ ¼ fðDi � PiÞ: (6)

We compute the prior P by averaging all depth images in
our database.

3.5 Numerical Optimization Details

Equation (2) requires an unconstrained, non-linear optimi-
zation, and we use iteratively reweighted least squares to
minimize our objective function. We choose IRLS because
it is a fast alternative for solving unconstrained, nonlinear
minimization problems such as ours. IRLS works by
approximating the objective by a linear function of the
parameters, and solving the system by minimizing the
squared residual (e.g., with least squares); it is repeated
until convergence.
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As an example, consider a sub-portion of our objec-

tive, the second term in Eq. (3) for candidate #1:
P

i2pixels fðrxDi � c1ðrxC
ð1Þ
i Þ. To minimize, we differenti-

ate with respect to depth and set equal to zero (letting

b ¼ ½c1ðrxC
ð1Þ
1 Þ; . . . ; c1ðrxC

ð1Þ
N Þ�

T , keeping in mind that

fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ �
p

, and rx is the horizontal derivative):

X

i2pixels

d

dD
fðrxDi � bÞ rxðrxDi � bÞ ¼ 0: (7)

We rewrite this using matrix notation as GT
xWðGxD�

bÞ ¼ 0, where Gx is the N �N linear operator correspond-

ing to a horizontal gradient (e.g., ½GxD�i ¼ rxDi), and W is

a diagonal matrix of “weights” computed from the non-lin-

ear portion of the derivative of f. By fixing W (computed

for a givenD), we arrive at the following IRLS solution:

W ¼ diag
d

dD
fðrxD

ðtÞ � bÞ
� �

D
ðtþ1Þ ¼

�

GT
xWGx

�þ�
GT

xWb
�

;

(8)

where ðÞþ is the pseudoinverse and DðtÞ is the inferred

depth at iteration t. We have found that thirty iterations typ-

ically approximates convergence. Extending IRLS to our full

objective follows the same logic.3

In the general case of videos, the size of this system can
be very large (number of pixels � number of frames
squared), although it will be sparse because of the limited
number of pairwise interactions in the optimization. Still,
given modern hardware limitations, we cannot solve this
system directly, so we also must use an iterative method to
solve the least squares system at each iteration of our IRLS
procedure; we use preconditioned conjugate gradient and
construct a preconditioner using incomplete Cholesky
factorization.

Because we use iterative optimization, starting from a
good initial estimate is helpful for quick convergence
with fewer iterations. We have found that initializing
with some function of the warped candidate depths pro-
vide a decent starting point, and we use the median value
(per-pixel) of all candidate depths in our implementation
(i.e., D

ð0Þ
i ¼ medianff1ðCð1Þi Þ; . . . ; fKðCðKÞi Þg). The method

of Konrad et al. [16], [17] also uses the median of
retrieved depth maps, but this becomes their final depth
estimate. Our approach uses the median only for initiali-
zation and allows any of the warped candidate depths to
contribute and influence the final estimate (dictated by
the objective function). Fig. 4 shows the optimization pro-
cess for different initializations.

One issue is that this optimization can require a great
deal of data to be stored concurrently in memory (several
GBs for a standard definition clip of a few seconds). Solving
this optimization efficiently, both in terms of time and
space, is beyond the scope of this paper.

4 IMPROVED DEPTH ESTIMATION FOR VIDEO

Generating depth maps frame-by-frame without incorporat-
ing temporal information often leads to temporal disconti-
nuities; past methods that ensure temporal coherence rely
on a translating camera and static scene objects. Here, we
present a framework that improves depth estimates and
enforces temporal coherence for arbitrary video sequences.
That is, our algorithm is suitable for videos with moving
scene objects and rotating/zooming views where conven-
tional SfM and stereo techniques fail. (Here, we assume that
zooming induces little or no parallax.)

Our idea is to incorporate temporal information through
additional terms in the optimization that ensure (a) depth
estimates are consistent over time and (b) that moving
objects have depth similar to their contact point with the
ground. Each frame is processed the same as in the single
image case (candidate matching and warping), except that
now we employ a global optimization (described below)
that infers depth for the entire sequence at once, incorporat-
ing temporal information from all frames in the video. Fig. 5
illustrates the importance of these additional terms in our
optimization.

We formulate the objective for handling video by adding
two terms to the single-image objective function:

EvideoðDÞ ¼ EðDÞ þ
X

i2pixels
nEcðDiÞ þ hEmðDiÞ; (9)

where Ec encourages temporal coherence while Em uses
motion cues to improve the depth of moving objects. The
weights n and h balance the relative influence of each term
(n ¼ 100; h ¼ 5).

We model temporal coherence first by computing per-
pixel optical flow for each pair of consecutive frames in the

Fig. 4. Result of our optimization from different starting points (initializa-
tion methods on left). Our method typically converges to the same point
given any initialization, but the median method (see text) is usually the
most efficient. All depths are displayed at the same scale. The input
image and depth can be seen in Fig 2.

3. For further details and discussion of IRLS, see the appendix of
Liu’s thesis [31].
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video (using Liu’s publicly available code [31]). We define
the flow difference, rflow, as a linear operator which returns
the change in the flow across two corresponding pixels, and
model the coherence term as

EcðDiÞ ¼ st;ifðrflowDiÞ: (10)

We weight each term by a measure of flow confidence,
st;i ¼ ð1þ e�ðkrflowLik�mLÞ=sLÞ�1, which intuitively is a soft
threshold on the reprojection error (mL ¼ 0:05, sL ¼ 0:01).
Minimizing the weighted flow differences has the effect of
temporally smoothing inferred depth in regions where opti-
cal flow estimates are accurate.

To handle motion, we detect moving objects in the video
(Section 4.1) and constrain their depth such that these
objects touch the floor. Let m be the binary motion segmen-
tation mask and M the depth in which connected compo-
nents in the segmentation mask contact the floor. We define
the motion term as

EmðDiÞ ¼ mifðDi �MiÞ: (11)

4.1 Detecting Moving Objects

Differentiating moving and stationary objects in the scene
can be a useful cue when estimating depth. Here we
describe our algorithm for detecting objects in motion in
non-translating movies (i.e., static, rotational, and variable
focal length videos).4 Note that there are many existing tech-
niques for detecting moving objects (e.g., [34], [35]); we use
what we consider to be easy to implement and effective for
our purpose of depth extraction.

First, to account for dynamic exposure changes through-
out the video, we find the image with the lowest overall
intensity in the sequence and perform histogram equaliza-
tion on all other frames in the video. We use this image as
to not propagate spurious noise found in brighter images.
Next, we use RANSAC on point correspondences to

compute the dominant camera motion (modeled using
homography) to align neighboring frames in the video.
Median filtering is then used on the stabilized images to
extract the background B (ideally, without all the moving
objects).

In our method, the likelihood of a pixel being in motion
depends on how different it is from the background,
weighted by the optical flow magnitude which is computed
between stabilized frames (rather than between the original
frames). We use relative differencing (relative to back-
ground pixels) to reduce reliance on absolute intensity val-
ues, and then threshold to produce a mask:

mi;k ¼ 1 if kflowi;kk kWi;k�Bik2
Bi

> t

0 otherwise,

(

(12)

where t ¼ 0:01 is the threshold, and Wi;k is the kth pixel of
the ith stabilized frame (i.e., warped according to the
homography that aligns W with B). This produces a motion
estimate in the background’s coordinate system, so we
apply the corresponding inverse homography to each
warped frame to find the motion relative to each frame of
the video. This segmentation mask is used (as in Eq (11)) to
improve depth estimates for moving objects in our optimi-
zation. Fig. 6 illustrates this technique.

5 MSR-V3D DATA SET

In order to train and test our technique on image/video
input, we collected a data set containing stereo video clips
for a variety of scenes and viewpoints (116 indoor, 61 out-
door). The data set primarily contains videos recorded from
a static viewpoint with moving objects in the scene (people,
cars, etc.). There are also 100 indoor frames (single images)
in addition to the 116 indoor video clips within the database
(stereo RGB, depth for the left frame). These sequences come
from four different buildings in two cities and contain sub-
stantial scene variation (e.g., hallways, rooms, foyers). Each
clip is filmed with camera viewpoints that are either static or
slowly rotated. We have entitled our data set the Microsoft
Research Stereo Video + Depth (MSR-V3D), and it is avail-
able online at http://kevinkarsch.com/depthtransfer.

We captured the MSR-V3D data set with two side-by-
side, vertically mounted Microsoft Kinects shown in Fig. 7
(positioned about 5 cm apart). We collected the color images
from both Kinects and only the depth map from the left Kin-
ect. For each indoor clip, the left stereo view also contains
view-aligned depth from the Kinect. Due to IR interference,
depth for the right view was not captured indoors, and
depth was totally disregarded outdoors due to limitations
of the Kinect.

We also collected outdoor data with our stereo device.
However, because the Kinect cannot produce depth maps
outdoors due to IR interference from the sunlight, we could
not use these sequences for training. We attempted to
extract ground truth disparity between stereo pairs, but the
quality/resolution of Kinect images were too low to get
decent estimates. We did, however, use this data for testing
and evaluation purposes.

Because the Kinect estimates depth by triangulating a
pattern of projected infrared (IR) dots, multiple Kinects can

Fig. 5. Importance of temporal information. Left: input frames. Mid-left:
predicted depth without temporal information. Note that the car is practi-
cally ignored here. Mid-right: predicted depth with temporal information,
with the depth of the moving car recovered. Right: detected moving
object.

4. In all other types of videos (e.g., those with parallax or fast mov-
ing objects/pose), we do not employ this algorithm; equivalently we
set the motion segmentation weight to zero (h ¼ 0).
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interfere with each other, causing noisy and inaccurate
depth. Thus, we mask out the depth sensor/IR projector
from the rightmost Kinect, and only collect depth corre-
sponding to the left views. This is suitable for our needs, as
we only need to estimate depth for the input (left) sequence.

Kinect depth is also susceptible to “holes” in the data
caused typically by surface properties, disoccluded/inter-
fered IR pattern, or because objects are simply too far away
from the device. For training, we disregard all pixels of the
videos which contain holes, and for visualization, we fill the
holes in using a na€ıve horizontal dilation approach.

6 EXPERIMENTS

In this section, we show results of experiments involving
single image and video depth extraction. We also discuss the
importance of scale associated with training and the effect
of the number of candidates used for depth hypothesis.

6.1 Single Image Results

We evaluate our technique on two single image RGBD data
sets: the Make3D Range Image Data Set [8], and the NYU
Depth Data Set [36].

6.1.1 Make3D Range Image Data Set

Of the 534 images in the Make3D data set, we use 400 for

testing and 134 for training (the same as was done before,

e. g., [7], [8], [10], [11]). We report error for three common

metrics in Table 1. Denoting D as estimated depth and D
�

as ground truth depth, we compute relative (rel) error jD�D
�j

D� ,

log10 error jlog10ðDÞ � log10ðD�Þj, and root mean squared

(RMS) error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1ðDi �D

�
i Þ

2=N
q

. Error measures are aver-

aged over all pixels/images in the test set. Our estimated

depth maps are computed at 345� 460 pixels (maintaining

the aspect ratio of theMake3D data set input images).

Our method is as good as or better than the state-of-the-
art for each metric. Note that previously no method
achieved state-of-the-art results in more than one metric.
We show several examples in Fig. 8. Thin structures (e.g.,
trees and pillars) are usually recovered well; however, fine

Fig. 7. Our stereo-RGBD collection rig consists of two side-by-side
Microsoft Kinects. The rig is mobile through the use of an uninterruptible
power supply, laptop, and rolling mount.

TABLE 1
Comparison of Depth Estimation Errors on the

Make3D Range Image Data Set

Using our single image technique, our method achieves state of the art
results in each metric (rel is relative error, RMS is root mean squared
error; details in text).

Fig. 6. Example of our motion segmentation applied to a rotating sequence. We first estimate homographies to stabilize the video frames and create
a clean background image using a temporal median filter. We then evaluate our estimate of motion thresholding metric on the stabilized sequences,
and unwarp the result (via the corresponding inverse homography) to segment the motion in the original sequence. We can then improve our inferred
depth using this segmentation. Note that this technique is applicable to all video sequences that do not contain parallax induced from camera motion.
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structures are occasionally missed due to spatial regulariza-
tion (such as the poles in the bottom-right image of Fig. 8).

6.1.2 NYU Depth Data Set

We report additional results for the NYU Depth Data Set
[36], which consists of 1449 indoor RGBD images captured
with a Kinect. Holes from the Kinect are disregarded during
training (candidate searching and warping), and are not
included in our error analysis.

Quantitative results are shown in Table 2, and Fig. 9
shows qualitative results. For comparison, we train our
algorithm in two different ways and report results on each.
One method trains (e.g., selects RGBD candidates) from the
NYU depth data set (holding out the particular example
that is being tested), and the other method trains using all
RGBD images found in MSR-V3D. We observe a significant
degradation in results when training using our own data set
(MSR-V3D), likely because our data set contains many fewer
scenes than the NYU data set, and a less diverse set of exam-
ples (NYU contains home, office, and many unique interi-
ors, a total of 464; ours is primarily office-type scenes from
four different buildings). This also suggests that generaliza-
tion to interior scenes is much more difficult than outdoor,
which coincides with the intuition that indoor scenes, on
average, contain more variety than outdoor scenes.

Additionally, we compare our method to the single-
image approaches of Konrad et al. [16], [17]. Both of these
methods choose candidate RGBD images using global
image features (as in our work), but dissimilar from our
optimization, they compute depth as the median value of
the candidate depth images (per-pixel), and post-process
their depths with a cross-bilateral filter. Konrad et al. [16]
applies SIFT flow to warp/align depth (similar to our
method), while [17] opts not to for efficiency (their main
focus is 2D-to-3D conversion rather than depth estimation).
We show improvements over both of these methods, but
more importantly, our depth and 2D-to-3D conversion
methods apply to videos rather than only single images.

Finally, we compare all of these results to two baselines:
the average depth value over the entire NYU data set (y),
and the per-pixel average of the NYU depth (yy). We observe
that our method significantly outperforms these baselines in
three metrics (relative, log10, and RMS error) when trained
on the NYU data set (hold-one-out). Our error rates increase
by training on our data set (MSR-V3D), but this training
method still outperforms the baselines in several metrics.
Note that these baselines do use some knowledge from the
NYU data set, unlike our method trained on MSR-V3D.

One concern of our method may be its reliance on
appearance. In Fig. 10, we demonstrate that although
appearance partially drives our depth estimates, other fac-
tors such as spatial relationships, scale, and orientation nec-
essarily contribute. For example, photographing the same
scene with objects in different configurations will lead to
different depth estimates, as would be expected.

6.2 Video Results

Our technique works well for videos of many types
scenes and video types (Figs. 1, 5, 6, 11, 12, and 13). We
use the data set we collected in Section 5 to validate our
method for videos (we know of no other existing meth-
ods/data sets to compare to). This data set contains
ground truth depth and stereo image sequences for four
different buildings (referred to as Buildings 1, 2, 3, and
4), and to gauge our algorithm’s ability to generalize, we

Fig. 8. Single image results obtained on test images from the Make3D data set. Each result contains the following four images (from left to right): orig-
inal photograph, ground truth depth from the data set, our inferred depth, and our synthesized anaglyph image. The depth images are shown in
log scale. Darker pixels indicate nearby objects (black is roughly 1m away) and lighter pixels indicate objects farther away (white is roughly 80 m
away). Each pair of ground truth and inferred depths are displayed at the same scale.

TABLE 2
Quantitative Evaluation of Our Method and the Methods

of Konrad et al. on the NYU Depth Data Set

All methods are trained on the NYU data set using a hold-one-out
scheme, except for Depth Transfer ðMSR-V3DÞ which is trained using our
own data set (containing significantly different indoor scenes). Each
method uses seven candidate images ðK ¼ 7Þ. It is interesting that the
per-pixel average ðyyÞ performs worse than a single depth value ðyÞ,
evidencing that these metrics are likely not very perceptual.
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only use data from Building 1 for training. We still generate
results for Building 1 by holding each particular example
out of the training set during inference.

We show quantitative results in Table 3 and qualitative
results in Fig. 12. We calculate error using the same metrics
as in our single image experiments, and to make these
results comparable with Table 1, we globally rescale the
ground truth and inferred depths to match the range of the
Make3D database (roughly 1-81 m). As expected, the results
from Building 1 are the best, but our method still achieves
reasonable errors for the other buildings as well.

Fig. 12 shows a result from each building in our data
set (top left is Building 1). As the quantitative results sug-
gest, our algorithm performs very well for this building.
In the remaining examples, we show results of videos
captured in the other three buildings, all which contain
vastly different colors, surfaces and structures from the
Building 1. Notice that even for these images our algo-
rithm works well, as evidenced by the estimated depth
and 3D images.

We demonstrate our method on videos containing paral-
lax in Fig. 13. Such videos can be processed with structure
from motion (SfM) and multi-view stereo algorithms; e.g.,
the dense depth estimation method of Zhang et al. [23]. We
visually compare our method to the method of Zhang et al.,
as well as a version of our method where the depth prior
comes from a sparse SfM point cloud. Specifically, we solve
for camera pose, track and triangulate features using pub-
licly available code from Zhang et al. Then, we project the

triangulated features into each view and compute their
depth; this sparse depth map is used as the prior term in
Eq. (6), and for videos with parallax, we increase the prior
weight (b ¼ 103) and turn off motion segmentation (h ¼ 0).
We note that in most cases of parallax, a multi-view stereo
algorithm is preferable to our solution, yet in some cases
our method seems to perform better qualitatively.

As further evaluation, a qualitative comparison between
our technique and the publicly available version of
Make3D is shown in Fig. 14. Unlike Make3D, our technique
is able to extract the depth of the runner throughout the
sequence, in part because Make3D does not incorporate
temporal information.

Our algorithm also does not require video training data
to produce video results. We can make use of static RGBD
images (e.g., Make3D data set) to train our algorithm for
video input, and we show several outdoor video results in
Figs. 1, 5, 6, and 13. Even with static data from another loca-
tion, our algorithm is usually able to infer accurate depth
and stereo views.

Since we collected ground truth stereo images in our data
set, we also compare our synthesized right view (from our
2D-to-3D algorithm, see Section 7) with the actual right
view. We use peak signal-to-noise ratio (PSNR) to measure
the quality of the reconstructed views, as shown in Table 3.
We could not acquire depth outdoors, and we use this met-
ric to compare our outdoor and indoor results.

6.3 Importance of Training Scale

One implicit hypothesis our algorithm makes is that training
with only a few “similar” images is better than training with a
large set of arbitrary images . This is encoded by our nearest
neighbor candidate search: we choose k similar images (in
our work, based on GIST features), and use only these
images to sample/transfer depth from. Conversely, Saxena
et al. [8] train a parametric model for predicting depth using
their entire data set (Make3D); Liu et al. [10] found that
training a different models for each semantic classes (tree,
sky, etc.) improves results. The results in Table 4 are good
evidence that training on only similar scenes improves
results (rather than only similar semantic classes as in [10],
and on the entire data set [8]).

We verify this further with another experiment: we
created a sub-data set by randomly choosing 64 images

Fig. 9. Single image results obtained on the NYU depth data set. Each result contains the following four images (from left to right): original photo-
graph, ground truth depth from the data set, our inferred depth trained on the NYU depth data set ($), holding out the particular image), and our
inferred depth trained on our MSR-V3D data set ($$). The top left result is in the fifth percentile (in terms of log10 error), the top right is in the bottom
fifth percentile, and both bottom results are near the median. Notice how the NYU-trained results are much better; this is likely due to the high varia-
tion of indoor images (MSR-V3D images appear very dissimilar to the NYU ones), and is also reflected in the quantitative results (Table 1). Holes in
the true depth maps have been filled using the algorithm in [36], and each pair of ground truth and inferred depths are displayed at the same scale.

Fig. 10. Demonstration of our method on scenes where objects have
been repositioned. The chairs and couch in (a) are moved closer in
(b) and furniture in (c) are repositioned in (d). Although the depth maps
contain noticeable errors, it is evident that our estimates are influenced
by factors other than appearance. For example, although the chairs and
couch in (a-b) have the same appearance, the estimated depth of (b) is
noticeably closer in the chair/couch regions, as it should be.
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from the Make3D data set, then we compared the results
of our method using only similar images for training (7
nearest neighbors) and the results of our method trained
using the entire data set (64 nearest neighbors) during
inference. As the results in Table 4 suggest, training using
only similar scenes greatly improves quantitative results.
In addition, since our “training” is simply a nearest

neighbor query (which can be done quickly in seconds), it
can be orders of magnitude faster than retraining
parametric models.

6.4 Effect ofKKK (Number of Candidates)

We also evaluate how our technique behaves given different
values of K, i.e., how many candidate images are selected

Fig. 12. Video results obtained on test images for each building in our stereo-RGBD data set (buildings 1-4, from left to right and top to bottom). For
each result (from left to right): original photograph, ground truth depth, our inferred depth, ground truth anaglyph image, and our synthesized
anaglyph image. Because the ground truth 3D images were recorded with a fixed interocular distance (roughly 5 cm), we cannot control the amount
of “pop-out,” and the 3D effect is subtle. However, this is a parameter we can set using our automatic approach to achieve a desired effect, which
allows for an enhanced 3D experience. Note also that our algorithm can handle multiple moving objects (top).

Fig. 11. Results obtained on four different sequences captured with a rotating camera and/or variable focal length. We show the input frames (top),
inferred depth (middle) and inferred 3D anaglyph (bottom). Notice that the sequences are time-coherent and that moving objects are not ignored.

Fig. 13. Comparison of our method on videos containing parallax. For each input, we show the depth estimated using our method with no modifica-
tion, and the depth estimated when our method is bootstrapped with SfM (e.g., a sparse depth map, calculated using SfM, is used as the prior). We
also compare these results to the dense depth estimates of Zhang et al. [23], whose method works only for videos with parallax. When SfM estimates
are poor (left sequence), multi-view stereo methods may perform worse than our method, but can be quite good given decent SfM estimates and
mostly Lambertian scenes (right sequence). Overall, SfM seems to help estimate relative depth near boundaries, whereas our method seems to bet-
ter estimate global structure.
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prior to inference. On the Make3D data set, we evaluate
three error metrics (same as above: relative, log10, and rms)
averaged over the entire data set using different values of
K. Fig. 15 shows the results, and we see that K ¼ 7 is opti-
mal for this data set, but we still achieve comparable results
withK � 7.

Empirically, we find that K acts as a smoothing
parameter. This fits with the intuition that more candi-
date images will likely lead to diversity in the candidate
set, and since the inferred depth is in some sense sam-
pled from all candidates, the result will be smoother as
K increases.

7 APPLICATION: 2D-TO-3D

In recent years, 3D5 videos have become increasingly
popular. Many feature films are now available in 3D,
and increasingly more personal photography devices are
now equipped with stereo capabilities (from point-and-
shoots to attachments for video cameras and SLRs). Dis-
tributing user-generated content is also becoming easier.
Youtube has recently incorporated 3D viewing and
uploading features, and many software packages have
utilities for handling and viewing 3D file formats, e.g.,
Fujifilm’s FinePixViewer.

As 3D movies and 3D viewing technology become
more widespread, it is desirable to have techniques that

can convert legacy 2D movies to 3D in an efficient and
inexpensive way. Currently, the movie industry uses
expensive solutions that tend to be manual-intensive. For
example, it was reported that the cost of converting (at
most) 20 minutes of footage for the movie “Superman
Returns” was $10 million.6

Our technique can be used to automatically generate the
depth maps necessary to produce the stereoscopic video (by
warping each input frame using its corresponding depth
map). To avoid generating holes at disocclusions in the
view synthesis step, we adapt and extendWang et al.’s tech-
nique [37]. They developed a method that takes as input a
single image and per-pixel disparity values, and intelli-
gently warps the input image based on the disparity such
that highly salient regions remain unmodified. Their
method was applied only to single images; we extend this
method to handle video sequences as well.

7.1 Automatic Stereoscopic View Synthesis

After estimating depth for a video sequence (or a single
image), we perform depth image-based rendering (DIBR)
to synthesize a new view for stereoscopic display. A typi-
cal strategy for DIBR is simply reprojecting pixels based
on depth values to a new, synthetic camera, but such
methods are susceptible to large “holes” at disocclusions.
Much work has been done to fill these holes (e.g., [38],
[39], [40], [41]), but visual artifacts still remain in the case
of general scenes.

We propose a novel extension to a recent DIBR technique
which uses image warping to overcome problems such as

TABLE 3
Error Averaged over Our Stereo-RGBD Data Set

�Building used for training (results for Building 1 trained using a hold-
one-out scheme). ��No ground truth depth available.

Fig. 14. Comparison between our technique and the publicly available
version of Make3D (http://make3d.cs.cornell.edu/code.html). Make3D
depth inference is trained to produce depths of resolution 55� 305 (bili-
nearly resampled for visualization), and we show results of our algorithm
at the input native resolution. The anaglyph images are produced using
the technique in Section 7. Depths displayed at same scale.

TABLE 4
Importance of Training Set Size

We select a subset of 64 images from the make3D data set, and com-
pare our method using only seven candidate images (selected using
GIST features) versus using the entire data set (64 candidates). The
results suggest that selectively re-training based on the target image’s
content can significantly improve results.

Fig. 15. Effect of the number of chosen candidates (K). Errors are
reported on the Make3D data set with varying values of K. For this data
set, K ¼ 7 is optimal, but increasing K beyond 7 does not significantly
degrade results.

5. The presentation of stereoscopic (left+right) video to convey the
sense of depth. 6. See http://en.wikipedia.org/wiki/Superman_Returns.
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disocclusions and hole filling. Wang et al. [37] developed a
method that takes as input a single image and per-pixel dis-
parity values, and intelligently warps the input image based
on the disparity such that highly salient regions remain
unmodified. This method is illustrated in Fig. 16. The idea is
that people are less perceptive of errors in low saliency
regions, and thus disocclusions are covered by “stretching”
the input image where people tend to not notice artifacts.
This method was only applied to single images, and we
show how to extend this method to handle video sequences
in the following text.

Given an input image and depth values, we first invert
the depth to convert it to disparity, and scale the disparity
by the maximum disparity value:

W0 ¼
Wmax

Dþ �
; (13)

where W0 ¼ fW1; . . . ;Wng, D ¼ fD1; . . . ; Dng is the initial
disparity and depth (resp) for each of the n frames of the
input, and Wmax is a parameter which modulates how
much objects “pop-out” from the screen when viewed
with a stereoscopic device. Increasing this value enhan-
ces the “3D” effect, but can also cause eye strain or prob-
lems with fusing the stereo images if set too high. We set
� ¼ 0:01.

Then, to implement the saliency-preserving warp (which
in turn defines two newly synthesized views), minimize the
following unconstrained, quadratic objective:

QðWiÞ ¼
X

i2pixels
QdataðWiÞ þQsmoothðWiÞ;

QdataðWiÞ ¼ liðWi �W0;iÞ2;
QsmoothðWiÞ ¼ �ðsx;ikrxWik2 þ sy;ikryWik2Þ

þ mst;ikrflowWik2;

(14)

where li is a weight based on image saliency and initial

disparity values that constrains disparity values corre-

sponding to highly salient regions and very close objects

to remain unchanged, and is set to li ¼ W0;i

Wmax
þ ð1 þ

e�ðkrLik�0:01Þ=0:002Þ�1. The Qsmooth term contains the same

terms as in our spatial and temporal smoothness func-

tions in our depth optimization’s objective function, and

� and m control the weighting of these smoothness terms

in the optimization; we set � ¼ m ¼ 10. As in Eq. (4), we

set sx;i¼ð1þ eðkrxLik�0:05Þ=:01Þ�1, sy;i¼ð1þ eðkryLik�mLÞ=sLÞ�1,
and st;i ¼ ð1þ e�ðkrflowLik�mLÞ=sLÞ�1, where rxLi and ryLi

are image gradients in the respective dimensions (at

pixel i), and rflowLi is the flow difference across neigh-

boring frames (gradient in the flow direction). We set

mL ¼ 0:05 and sL ¼ 0:01. With this formulation, we

ensure spatial and temporal coherence and most impor-

tantly that highly salient regions remain intact during

view warping.
After optimization, we divide the disparities by two

(W W

2 ), and use these halved values to render the input
frame(s) into two new views (corresponding to the stereo
left and right views). We choose this method, as opposed
to only rendering one new frame with larger disparities,
because people are less perceptive of a many small arti-
facts when compared with few large artifacts [37]. For
rendering, we use the anisotropic pixel splatting method
described by Wang et al. [37], which “splats” input pixels
into the new view (based on W) as weighted, anisotropic
Gaussian blobs.

With the two synthesized views, we can convert to any
3D viewing format, such as anaglyph or interlaced stereo.
For the results in this paper, we use the anaglyph format as
cyan/red anaglyph glasses are more widespread than
polarized/autostereoscopic displays (used with interlaced

Fig. 16. Summary of the view synthesis procedure for a single image, as
described by Wang et al. [37]. Given an image and corresponding depth,
we compute salient regions and disparity, and compute stereoscopic
images by warping the input image. We extend this method to handle
videos, as in equation (14).

Fig. 17. Several clips from the feature film Charade. Each result contains (from top to bottom): the original frames, estimated depth, and estimated
anaglyph automatically generated by our algorithm. Some imperfections in depth are conveniently masked in the 3D image due to textureless
or less salient regions.
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3D images). To reduce eye strain, we shift the left and the
right images such that the nearest object has zero disparity,
making the nearest object appear at the display surface, and
all other objects appear behind the display. This is commonly
known as the “window” metaphor [42].

7.2 2D-to-3D Results

Our estimated depth is good enough to generate compelling
3D images, and representative results are shown in (Figs. 11
and 12). We also demonstrate that our algorithm may be
suitable for feature films in Fig. 17. More diverse quantities
of training are required to achieve commercial-quality con-
version; however, even with a small amount of data, we can
generate plausible depth maps and create convincing 3D
sequences automatically.

Recently, Youtube has released an automatic 2D-to-3D
conversion tool, and we compared our method to theirs on
several test sequences. Empirically, we noticed that the
Youtube results have a much more subtle 3D effect. Both
results are available online at http://kevinkarsch.com/
depthtransfer.

Our algorithm takes roughly one minute per 640� 480
frame (on average) using a parallel implementation on a
quad-core 3.2 GHz processor.

8 DISCUSSION

Our results show that our depth transfer algorithm works
for a large variety of indoor and outdoor sequences using

a practical amount of training data. Note that our algo-
rithm works for arbitrary videos, not just those with no
parallax. However, videos with arbitrary camera motion
and static scenes are best handled with techniques such
as [1]. In Fig. 18, we show that our algorithm requires
some similar data in order to produce decent results (i.e.,
training with outdoor images for an indoor query is likely
to fail). However, our algorithm can robustly handle large
amounts of depth data with little degradation of output
quality. The only issue is that more data requires more
comparisons in the candidate search.

This robustness is likely due to the features we use when
determining candidate images as well as the design of our
objective function. In Fig. 19, we show an example query
image, the candidates retrieved by our algorithm, and their
contribution to the inferred depth. By matching GIST fea-
tures, we detect candidates that contain features consistent
with the query image, such as building facades, sky, shrub-
bery, and similar horizon location. Notice that the depth of
the building facade in the input comes mostly from another
similarly oriented building facade (teal), and the ground
plane and shrubbery depth come almost solely from other
candidates’ ground and tree depths.

In some cases, our motion segmentation misses or
falsely identifies moving pixels. This can result in inaccu-
rate depth and 3D estimation, although our spatio-tempo-
ral regularization (Eqs. (5), (10)) helps to overcome this.
Our algorithm also assumes that moving objects contact
the ground, and thus may fail for airborne objects (see
Fig. 20).

Due to the serial nature of our method (depth estima-
tion followed by view synthesis), our method is prone to
propagating errors through the stages. For example, if an
error is made during depth estimation, the result may be
visually implausible. It would be ideal to use knowledge
of how the synthesized views should look in order to cor-
rect issues in depth.

Fig. 19. Candidate contribution for depth estimation. For an input image (left), we find top-matching candidate RGBD images (middle), and infer
depth (right) for the input using our technique. The contribution image is color-coded to show the sources; red pixels indicate that the left-most candi-
date influenced the inferred depth image the most, orange indicates contribution from the right-most candidate, etc.

Fig. 20. Example failure cases. Left: thin or floating objects (pole and
basketball) are ignored. Right: input image is too different from training
set.

Fig. 18. Effect of using different training data for indoor and outdoor
images. While the results are best if the proper data set is used, we also
get good results even if we combine all of the data sets.
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9 CONCLUDING REMARKS

We have demonstrated a fully automatic technique to esti-
mate depths for videos. Our method is applicable in cases
where other methods fail, such as those based on motion
parallax and structure from motion, and works even for sin-
gle images and dynamics scenes. Our depth estimation
technique is novel in that we use a non-parametric
approach, which gives qualitatively good results, and our
single-image algorithm quantitatively outperforms existing
methods. Using our technique, we also show how we can
generate stereoscopic videos for 3D viewing from conven-
tional 2D videos. Specifically, we show how to generate
time-coherent, visually pleasing stereo sequences using our
inferred depth maps. Our method is suitable as a good start-
ing point for converting legacy 2D feature films into 3D.
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