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Abstract. A ring extension A |B is depth two if its tensor-square sat-
isfies a projectivity condition w.r.t. the bimodules AAB and BAA. In
this case the structures (A ⊗B A)B and End BAB are bialgebroids over
the centralizer CA(B) and there is a certain Galois theory associated to
the extension and its endomorphism ring. We specialize the notion of
depth two to induced representations of semisimple algebras and charac-
ter theory of finite groups. We show that depth two subgroups over the
complex numbers are normal subgroups. As a converse, we observe that
normal Hopf subalgebras over a field are depth two extensions. A gen-
eralized Miyashita-Ulbrich action on the centralizer of a ring extension
is introduced, and applied to a study of depth two and separable exten-
sions, which yields new characterizations of separable and H-separable
extensions. With a view to the problem of when separable extensions are
Frobenius, we supply a trace ideal condition for when a ring extension
is Frobenius.

1. Introduction and Preliminaries

In noncommutative Galois theory we have the classical notions of Frobe-
nius extension and separable extension. For example, finitely generated
Hopf-Galois extensions are Frobenius extensions via a nondegenerate trace
map defined by the action of the integral element t in the Hopf algebra. Also
a Hopf-Galois extension is separable if its Hopf algebra is semisimple or if
the counit of t is nonzero.

There have been various efforts to define a notion of noncommutative
normal extension by Elliger and others. Recently a notion of depth two for
Bratteli diagrams of pairs of C∗-algebras has been widened to Frobenius ex-
tensions in [9] and to ring extensions in [12] for the purpose of reconstructing
bialgebroids of various types depending on the hypotheses that are placed
on the ring extension and its centralizer. For example, a depth two balanced
Frobenius extension of algebras with trivial centralizer is a Hopf-Galois ex-
tension (with normal basis property), since dual Hopf algebras with natural
actions are constructible on the step two centralizers in the first levels of
the Jones tower. At the other extreme, a depth two balanced extension
has dual bialgebroids over the centralizer with Galois actions. In between
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these two types of extensions we have extensions that have natural Galois
actions coming from Hopf algebroids or weak Hopf algebras (e.g., groupoid
algebras): dual antipodes appearing when we place the Frobenius condition
on a depth two extension. In Section 3, we extend the analogy of normal
subfields and their Galois correspondence with normal subgroups to show
that depth two subgroups of finite groups, over the complex numbers, are
normal subgroups. We also observe a converse more generally stated for
normal Hopf subalgebras (that they are depth two extensions).

There are intriguing problems in how to draw a Venn diagram for the
various ring extensions in noncommutative Galois theory. For example, are
split, separable extensions with conditions of finite generation and projectiv-
ity automatically Frobenius extensions or quasi-Frobenius (QF) extensions
[4, 12]? Or an H-separable extension is separable and of depth two, but
what extra condition do we need for a separable depth two extension to be
H-separable? In Sections 2, 4, and 5 we work towards a clarification of these
two questions by focusing on a generalized Miyashita-Ulbrich action on the
centralizer denoted by the module RT . In Hopf-Galois theory (or normal
subgroup theory) for a ring extension (or group ring extension) A |B with
centralizer R, this is a right action defined by

r / h := t1rt2 := r · t

where an element h of the Hopf algebra H corresponds to an element t :=
β−1(1⊗ h) in T := (A⊗B A)B under the Galois isomorphism β : A⊗B A

∼=→
A⊗H. The ring T is also an R-bialgebroid in the depth two theory [12]. We
will see in sections 3 and 4 that various conditions on the module RT thus
defined and a ternary product isomorphism involving this module lead to
depth two, separable or H-separable extensions. In section 5 we begin with
a brief introduction to Frobenius extensions and then create a small theory
of trace ideal condition and Morita context from the basic idea that an
extension A |B should be Frobenius if there is a bimodule map E : A→ B
and Casimir element e =

∑
i e

1
i ⊗ e2i such that

∑
iE(e1i )e

2
i = 1.

In this paper, a ring extension A |B is any unital ring homomorphism
B → A, called proper if the map is monic, subrings being the most important
case. This induces a B-B-bimodule structure on A via pullback denoted by
BAB. Given this object of study we fix a series of notations important to
the study of depth two. Denote its endomorphism ring S := End BAB.
Denote the group of homomorphisms Hom (BAB,BBB) := Â, a right S-
module with respect to ordinary composition of functions, or, if A |B is
proper, identifiable with a right ideal in S.

Recall that the centralizer R of the ring extension A |B above is defined
as the B-central elements of BAB with notations R := CA(B) := AB. Then
there are two ring mappings of R into S given by λ : R→ S, λ(r)(a) = ra,
a ring homomorphism, and ρ : R → S, ρ(r)(a) = ar, a ring antihomomor-
phism in our convention. Note that the two mapping commute at all pairs
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of image points in S:

λ(r)ρ(r′) = ρ(r′)λ(r) (r, r′ ∈ R) (1)

The two commuting maps induce two R-R-bimodule structures on S: a left
Re-structure denoted by λ, ρS and given by (α ∈ S, r, r′ ∈ R)

λ, ρS : r · α · r′ = λ(r)ρ(r′)α = rα(−)r′ (2)

and a right Re-structure on S denoted by Sλ, ρ and given by

Sλ, ρ : r · α · r′ := αλ(r′)ρ(r) = α(r′(−)r). (3)

We note that S itself forms an Re-Re-bimodule under these two actions.
In the tensor-square A⊗B A we draw the reader’s attention to the group

of so-called B-casimir elements T := (A ⊗B A)B within. T has a natural
ring structure induced from the isomorphism T ∼= End AA⊗BAA given by

t 7−→ (a⊗ a′ 7→ ata′)

for each t ∈ T, a, a′ ∈ A with inverse F 7→ F (1 ⊗ 1): the induced ring
structure has unity element 1T = 1⊗ 1 with multiplication

tt′ = t′
1
t1 ⊗ t2t′

2 (4)

where we suppress a possible summation t =
∑

i t
1
i ⊗ t2i . There is a natural

T -Ae-bimodule on A ⊗B A stemming from “inner” multiplication from the
left (as above) and “outer” multiplication from the right. We note the right
T -module structure on the centralizer R given by

RT : r · t = t1rt2 (r ∈ R, t ∈ T ),

a cyclic module since 1⊗ r ∈ T for every r ∈ R. Finally the two mappings
σ, τ : R → T given by τ(r) = r ⊗ 1, an antihomorphism of rings, and
σ(r) = 1 ⊗ r, a ring homomorphism, commute as in Eq. (1), whence they
induce two commuting Re-bimodule structures denoted by σ,τT and Tσ,τ

given by
Tσ,τ : r · t · r′ := tσ(r′)τ(r) = rt1 ⊗ t2r′ (5)

which is the same as the restriction to R of the ordinary bimodule AA⊗BAA,
and the more exotic bimodule

σ,τT : r · t · r′ := σ(r)τ(r′)t = t1r′ ⊗ rt2. (6)

Within T is the (possibly zero) left ideal of Casimir elements C := (A⊗B

A)A satisfying a type of right integral condition (e, e′ ∈ C),

ee′ = eµ(e′) = µ(e′)e

where µ : A ⊗B A → A denotes the multiplication map µ(a ⊗ a′) := aa′

an A-B or B-A-split epimorphism. (Indeed, a right integral condition with
respect to the R-bialgebroid structure on T for a depth two extension A |B.)
We note that the restriction µ : T → R has image in the centralizer, the
restriction being denoted by the counit εT in section 2.
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In section 4 we make use of two R-bimodules on (A⊗B A)A and Â. The
Casimirs form an R-R-bimodule RCR as a submodule of (6) given by

r · e · r′ = e1r′ ⊗ re2. (7)

The bimodule dual of A forms an R-R-bimodule RÂR as a submodule of
(3).

We need a word about general modules as well. Given any ring Υ, a right
module MΥ is isomorphic to a direct summand of another right module NΥ

if we use the suggestive notation MΥ ⊕ ∗ ∼= NΥ. A bimodule ΥMΥ is of
course the same as the left or right Υe := Υ⊗Z Υop-module M .

Hirata extends Morita theory in an elegant way [5] by defining two mod-
ules MΥ and NΥ to be H-equivalent if both MΥ ⊕ ∗ ∼= Nn

Υ (which equals
N ⊕ N ⊕ · · · ⊕ N , n times) and NΥ ⊕ ∗ ∼= Mm

Υ for some positive inte-
gers n and m. A theory is outlined in [5], the main point being that
EndMΥ and EndNΥ are Morita equivalent rings with Morita context being
Hom (MΥ, NΥ) and Hom (NΥ,MΥ) with composition in either order [15].

2. Depth two theory

Any ring extension A |B satisfies the property A⊕ ∗ ∼= A⊗B A as either
B-A or A-B-bimodules, since µ : A ⊗B A → A is an epi split by either
a 7→ 1 ⊗ a or a 7→ a ⊗ 1, respectively. Its converse from the point of view
of Hirata’s theory is satisfied by special extensions introduced in [12] called
depth two extensions (due to their origins in subfactor theory). Thus a depth
two extension or D2 extension A |B is a ring extension where

A⊗B A⊕ ∗ ∼= An (8)

as natural B-A-bimodules (left D2 ) and as A-B-bimodules (right D2 ). Of
course, if some A |B satisfies the left and right conditions for different inte-
gers m and n, they both hold for the integer max{m,n}.

There are several classes of examples of depth two extension A |B; such as
an algebra that is finitely generated projective over its base ring, finite Hopf-
Galois extension, H-separable extension or centrally projective extension
[9, 12].

How do we recognize depth two in any extension? This is not always easy
from the definition we provided above: let us provide a theorem with several
equivalent conditions for left depth two extensions (a similar theorem is then
easily seen for right D2). The theorem will use the left and right sides of
the bimodules λ, ρS and Tσ, τ respectively, given in eqs. (2) and (5).

Theorem 2.1. The following are equivalent to the left depth two condi-
tion (8) on a ring extension A |B in (1)-(4), on a Frobenius extension in
(5) and on an algebra A with semisimple subalgebra B in (6):

(1) the bimodules BAA and BA⊗BAA are H-equivalent;
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(2) there are {βj}n
j=1 ⊂ S and {tj}n

j=1 ⊂ T such that

a⊗ a′ =
∑

j

tjβj(a)a′ ; (9)

(3) as natural B-A-bimodules A⊗B A ∼= Hom (RS,RA) and RS is a f.g.
projective module;

(4) as natural B-A-bimodules T⊗RA ∼= A⊗BA and TR is f.g. projective;
(5) the endomorphism ring Frobenius extension has dual bases elements

in T ;
(6) for each simple module VB,

IndA
BResB

AIndA
BV ⊕ ∗ ∼= IndA

BV ⊕ · · · ⊕ IndA
BV (10)

(finitely many times on the right side).

Proof. We have already remarked above that the right Bop ⊗A-modules A
and A⊗A are H-equivalent iff A |B is left D2. The second condition is called
the D2 quasibase condition and is noted in [12]. It is based on condition (8)
and the identifications Hom (BAA,BA⊗AA) ∼= T , Hom (BA⊗AA,BAA) ∼= S
and the existence of 2n maps fj , gj in these two Hom-groups satisfying∑

j fj ◦ gj = idA⊗A.

Next we note the B-A homomorphism χ : A⊗ A
∼=→ Hom (RS,RA) given

by
χ(a⊗ a′)(α) = α(a)a′.

It is noted in [12] that χ has inverse χ−1(f) =
∑

j tjf(βj) if A |B is left D2.
For example, we check that χ ◦ χ−1 = id on an α ∈ S:∑

j

α(t1j )t
2
jf(βj) = f(

∑
j

α(t1j )t
2
jβj) = f(α)

for each α ∈ S, since α(t1j )t
2
j ∈ R for each j and a ⊗ 1 =

∑
j tjβj(a) from

Eq. (9) implies α =
∑

j α(t1j )t
2
jβj . We also note that RS is finite projective

with dual (projective) bases {ψ(bj)}, {βj} where ψ : TR
∼=→ Hom (RS,RR) is

defined by ψ(t)(α) = α(t1)t2.
Conversely, if RS ⊕ ∗ ∼= RR

m, then applying the functor Hom (−,RA)
from left R-modules into B-A-bimodules, we obtain from the isomorphism
of the A-dual of S with the tensor-square that A⊗B A⊕ ∗ ∼= BA

m
A .

The next condition follows from the D2 condition [12], since the B-A-
homomorphism

m : T ⊗R A
∼=−→ A⊗B A, m(t⊗ a) = ta (11)

has an inverse m−1(a ⊗ a′) =
∑

j tj ⊗ βj(a′)a according to Eq. (9). By the
same token, TR is finite projective with dual bases {tj}, {〈βj | −〉} from the
nondegenerate pairing given in Eq. (13) below.

Conversely, if TR ⊕ ∗ ∼= Rt
R for some positive integer t, then applying

the functor − ⊗R A from right R-modules into B-A-bimodules results in
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BA⊗BAA ⊕ ∗ ∼= BA
t
A, after applying the isomorphism of the tensor-square

with T ⊗R A.
The next-to-last condition depends on the fact that a Frobenius extension

A |B with Frobenius homomorphism E : A → B and dual bases xi, yi has
Frobenius structure on its endomorphism ring extension λ : A ↪→ EndAB

∼=
A⊗B A (isomorphism f 7→

∑
i f(xi)⊗ yi with inverse a⊗ b 7→ λ(a)Eλ(b)).

Denote the endomorphism ring structure induced on A⊗B A by A1; if e1 :=
1⊗ 1, its multiplication is the E-multiplication given by

(ae1b)(ce1d) = aE(bc)e1d = ae1E(bc)d.

A Frobenius homomorphism EA : A1 → A is given by the multiplication
mapping EA(ae1b) = ab, since xie1, e1yi are dual bases for this mapping.
Note that T = CA1(B), the centralizer of B in the composite ring extension
B → A ↪→ A1.

The forward implication is [12, Prop. 6.4]; viz., given a left D2 quasibase
as above ti ∈ T, βi ∈ S for A |B, then dual bases for EA in T are given by

{ti}, {
∑

j

βi(xj)e1yj}

as shown in its proof. (Also, A |B is necessarily right D2.)
For the reverse implication, we start with dual bases {cj} and {tj} in T

for EA, and note that for every a, b ∈ A

ae1b =
∑

j

c1je1c
2
jEA(tjae1b)

=
∑

j

cjt
1
jE(t2ja)b

=
∑

j

cjηj(a)b

where ηj = t1jE(t2j−) is clearly in S. Thus, {cj} and {ηj} form a left D2
quasibase. (Similarly, a right D2 quasibase is given by {tj} and {ρj :=
E(−c1j )c2j}.)

The last condition for left depth two follows in the forward implication by
tensoring the defining Eq. (8) by VB from the left and applying the definition
of induced module: IndA

BV := V ⊗B A, and Res denoting restriction of an
A-module to a B-module. The reverse implication follows from expressing
the regular representation as a direct sum of irreducible representations (or
simple modules),

BB
∼= V n1

1 ⊕ · · · ⊕ V nt
t .

If each Vi satisfies Eq. (10) with mi IndVi’s to the right, they satisfy Eq. (10)
with m = max{mi} to the right, and it follows that

B ⊗B A⊗B A⊕ ∗ ∼= ⊕t
i=1V

ni
i ⊗A⊗A⊕ ∗ ∼= ⊕t

i=1V
mni ⊗A

as B-A-bimodules. Then BA⊗B AA ⊕ ∗ ∼= ⊕m
i=1BAA. �
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In addition to their ring structures, the constructs S = End BAB and
T = (A⊗A)B introduced in the preliminaries carry R-bialgebroid structures
that are isomorphic to each others R-dual bialgebroids. (See [12, 2.4] for
definition of left and right R-dual bialgebroids over any ring R given a finite
projectivity condition). First, with respect to the R-R-bimodule λ, ρS in (2),
S satisfies

S ⊗R S ∼= Hom (BA⊗AB,BAB)

via
α⊗ β 7−→ (a⊗ a′ 7→ α(a)β(a′)).

It follows that S is an R-coring with coassociative comultiplication ∆ : S →
S ⊗R S given by

∆(α)(a⊗ a′) = α(aa′)

after identification, and counit εS : S → R given by

εS(α) = α(1),

(see [2] for the theory of corings). The ring-coring bimodule structure
(S,R, λ, ρ,∆, ε) satisfies the axioms of a left bialgebroid in [12] among which
we find the important axioms

∆(αβ) = ∆(α)∆(β)

since Im ∆ is contained in a subgroup of S ⊗R S where ordinary tensor
product multiplication makes sense; in addition, εS satisfies the following
alternative homomorphism property:

εS(αβ) = εS(αλ(εS(β))).

A left integral ` in S is an element in S satisfying

α ◦ ` = λ(εS(α))` = ρ(εS(α))`, (∀α ∈ S) (12)

For example, any element in Â is a left integral. A left integral ` is normalized
if εS(`) = 1, which for E ∈ Â is the case when E(1) = 1, i.e., E : BAB →
BBB is a bimodule projection onto B, or conditional expectation for the split
extension A |B. Note the following for any proper ring extension A |B:

Lemma 2.2. A |B is a split extension if and only if Â⊗S A ∼= B as B-B-
bimodules and ÂS is f.g. projective.

Proof. (⇒) Define Â⊗S A
∼=→ B via F ⊗ a 7→ F (a), with inverse b 7→ E ⊗ b.

Note that the conditional expectation E is a left identity.
(⇐) If ÂS ⊕ ∗ ∼= Sn

S , apply the functor −⊗S ABe , obtaining

BBB ⊕ ∗ ∼= BA
n
B.

Then there are Ei ∈ Â, λ(ri) ∈ Hom (BBB,BAB) ∼= R such that E :=∑
iEi ◦ λ(ri) is idB when restricted to B. �
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Dually, we have
S ∼= Hom (TR, RR)

via the nondegenerate pairing

〈α | t〉 = α(t1)t2 (13)

for depth two extension A |B. Consistent with this duality, T has the right
bialgebroid structure (T,R, σ, τ,∆T , εT ) coming from its ring structure and
maps σ, τ : R → T introduced in the preliminaries and R-coring structure
(T,∆T , εT ) with respect to the bimodule Tσ, τ given in (5), where comulti-
plication

∆(t) = t1 ⊗ 1A ⊗ t2

under the identification T ⊗R T ∼= (A⊗A⊗A)B by t⊗ t′ 7→ t1 ⊗ t2t′1 ⊗ t′2,
and counit

εT (t) = t1t2.

The details may be found in [12], but the bialgebroid structures are not very
important in the present paper.

A normalized right integral in T is an element u ∈ T such that for every
t ∈ T , ut = uσ(εT (t)) = uτ(εT (t)) with normalization condition εT (u) =
1A. We note the following easy proposition based on using the separability
element viewed in T or a conditional expectation viewed in Â ⊂ S:

Proposition 2.3. If A |B is a (resp., split) separable extension, then T
(resp., S) has a normalized right (resp., left) integral.

Given a depth two extension A |B, there are two measuring actions of S
and T . First, T acts on E := End BA via the right action f / t = t1f(t2−).
The invariants ET under / are defined to be

{f ∈ E | ∀ t ∈ T, f / t = λ(εT (t)) ◦ f}

It is shown in [12] that ET = ρ(A), the right multiplications by elements of
A (which is clear in one direction). Forming the smash product T n E , one
may show that it is isomorphic as rings to End AA⊗BA [7]. It is interesting
to note that if A additionally has a separability element e ∈ T , then the
mapping E → Aop defined by f 7→ f / e is a conditional expectation (a
known fact recovered).

Second, there is a very natural action of S on A given by α . a := α(a).
Using a similar definition of invariants, we easily see that AS ⊇ B. In
addition to the depth two condition on A |B, we need an extra condition on
AB to prove that B = AS : in [12] this is done by assuming AB a balanced
module, i.e., B ∼= End E ′A where E ′ = EndAB and we consider only natural
actions. (For example, if AB is a generator, it is balanced.) The smash
product Ao S is isomorphic to E ′ [12].

We end this section with a necessary condition for an extension A |B to
be left D2. Recall the left T -module A⊗BA and the module RT both defined
in the preliminaries. We let Z(A) denote the center subring of any ring A.
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Theorem 2.4. Suppose A |B is D2. Then R ⊗T (A ⊗B A) ∼= A as A-A-
bimodules and EndRT

∼= Z(A).

Proof. The mapping γ : R⊗T (A⊗B A) → A given by

γ(r ⊗ a⊗ a′) = ara′ (14)

is an A-A-bimodule epimorphism for every ring extension A |B (a type of
ternary product through which the multiplication mapping µ : A⊗B A→ A
factors).

We work with the bimodule TTR given by

t · t′ · r := tt′τ(r) = t′
1
t1 ⊗ t2t′

2
r

derived from the structures introduced in the preliminaries. Note that the
diagram on this page below is a commutative square, where the left vertical
and bottom horizontal arrows are both induced from canonical maps of the
type R⊗R A ∼= A, r⊗ a 7→ ra, while the top horizontal mapping is induced
from m : T ⊗R A ∼= A⊗ A given in Eq. (11). Both sides of the square send
r ⊗ t ⊗ a in the upper left-hand corner into t1rt2a ∈ A. It follows that the
fourth map γ is an isomorphism.

R⊗T T ⊗R A
∼=

id⊗m
- R⊗T (A⊗B A)

R⊗R A

∼=

? ∼= - A

γ

?

It follows that γ−1(a) = 1 ⊗T (1 ⊗ a), a fact that is directly checked as
follows:

1⊗T (1⊗ ara′) = 1⊗ (1⊗
∑

j

t1jrt
2
jβj(a)a′) =

∑
j

t1jrt
2
j ⊗T (1⊗ βj(a)a′)

=
∑

j

r ⊗T (tjβj(a)a′) = r ⊗ (a⊗ a′).

Clearly, Z(A) ↪→ EndRT via λ. Conversely, if f ∈ EndRT , we note that
f(1) satisfies a type of left integral condition,

t1t2f(1) = f(1) · (t1t2 ⊗ 1) = f(1 · t) = f(1) · t = t1f(1)t2.

Next we recall the right action of T on E = End BA outlined above: we
see that RT ↪→ ET is a submodule via λ since for every t ∈ T ,

λ(r) / t = λ(t1rt2) = λ(r · t).

Then f(1) ∈ R is in the invariants ET = ρ(A), since

λ(f(1)) / t = λ(t1f(1)t2) = λ(εT (t))λ(f(1)),
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whence λ(f(1)) = ρ(a) ∈ ET . Now a = f(1) by evaluating at 1, and
a ∈ Z(A) by evaluating at any b ∈ A. �

Example 2.5. We have identified examples of depth two extensions coming
from centrally projective, H-separable or finite Hopf-Galois extensions of
rings or algebras. Let us see by means of the theorem an easy example of an
algebra extension which is not D2. If A is the algebra of upper triangular
2 × 2 matrices over any field, B the subalgebra of diagonal matrices, then
R = B, T is spanned by {e11 ⊗ e11, e22 ⊗ e22} in terms of matrix units eij
and it is easy to see that

dim End (RT ) = dim EndRR = dimR = 2

while dimZ(A) = 1. There are also nonexamples of depth two extensions
coming from various natural subalgebras of finite dimensional exterior alge-
bras (where condition (4) in Theorem 2.1 is useful as well as the fact that
split depth two extensions are f.g. projective by eq. 9, therefore free over
local rings).

3. Depth two as normality for subgroups and Hopf
subalgebras

In this section we show that depth two subgroup algebras and Hopf subal-
gebras are closely related to normal subgroups and normal Hopf subalgebras.
For subgroups of finite groups over the complex numbers we have a definitive
result in Theorem 3.1 and its corollary.

Character theory [1]. Let H ≤ G denote a subgroup pair of finite index.
We are interested in when the corresponding group algebras over the complex
numbers are of depth two. First, we note the fact in [12, 3.9] that a normal
subgroup is D2. If ψ is a character of H and φ is a character of G, we
let ψG denote its induced character IndG

H(ψ) and φH the character ResG
Hφ

restricted to H. For example, if H is normal in G, then ψG(g) = 0 if g 6∈ H
and φG

H(g) = [G : H]φH(g) if g ∈ H, since for general subgroups we have

ψG(g) =
t∈T∑

t−1gt∈H

ψ(t−1gt)

for T a left transversal of H in G. By evaluating again on g 6∈ H and g ∈ H,
we see that ((ψG)H)G = [G : H]ψG. If V denotes the underlying H-module
of ψ, then equality of characters implies isomorphism of modules as follows:

IndG
HResH

G IndG
HV

∼= ⊕[G:H]
i=1 IndG

HV.

Hence, A := C [G] is depth two extension over B := C [H] if H / G.
Suppose χ1, . . . , χn are the irreducible characters of G, while ψ1, . . . , ψm

are the irreducible characters of a subgroup H. Suppose ai
j are nonnegative
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integers in an induction-restriction table for H ≤ G such that

ψG
i =

n∑
j=1

ai
jχj ,

and crs are nonnegative integers satisfying

(((ψr)G)H)G =
n∑

s=1

crsχs.

Then the group algebra extension A |B is D2 if and only if there is a positive
integer N such that cij ≤ Nai

j for all i = 1, . . . ,m and j = 1, . . . , n.
In particular, A |B is not D2 if ai

j = 0 while cij 6= 0. For example,
the induction-restriction table (based on Frobenius reciprocity (ψG

i , χj)G =
(ψi, (χj)H)H) for the permutation groups S2 ≤ S3 is given by

S2 ≤ S3 χ1 χ2 χ3

ψ1 1 0 1
ψ2 0 1 1

where ψ1, χ1 denote the trivial characters, ψ2, χ2 the sign character, and χ3

the two-dimensional irreducible character of S3. It follows that ψG
1 = χ1+χ3,

while
((ψG

1 )H)G = 2ψG
1 + ψG

2 = 2χ1 + χ2 + 3χ3.

Hence, ((φG
1 )H)G is not even a subcharacter of ψG

1 or any of its integral
multiples.

The last example and results from operator algebras raise the question
whether subgroups of finite groups that are depth two as complex group
subalgebras are necessarily normal subgroups. The next theorem answers
this affirmatively.

Theorem 3.1. Let H be a subgroup of a finite group G such that CG |CH
is a depth two ring extension. Then H is normal in G.

Proof. The depth two hypothesis implies that there exists a positive integer
n such that

〈IndG
H(ResG

H(IndG
H(ψ))) |χ〉G ≤ n〈IndG

H(ψ) |χ〉G
for χ ∈ Irr(G) and ψ ∈ Irr(H). We choose χ = 1G and 1H 6= ψ ∈ Irr(H).
Then, by Frobenius reciprocity, we have

〈IndG
H(ψ) | 1G〉G = 〈ψ | 1H〉H = 0.

Hence, we have

0 = 〈IndG
H(ResG

H(IndG
H(ψ))) | 1G〉G = 〈ResG

H(IndG
H(ψ)) | 1H〉H

=
∑

HgH∈H\G/H

〈IndH
H∩gHg−1(ResgHg−1

H∩gHg−1(gψ)) | 1H〉H ,
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by Frobenius reciprocity and Mackey’s formula. We conclude that, for g ∈
G,

0 = 〈IndH
H∩gHg−1(ResgHg−1

H∩gHg−1(gψ)) | 1H〉H

= 〈ResgHg−1

H∩gHg−1(gψ) | 1H∩gHg−1〉H∩gHg−1

= 〈ResH
g−1Hg∩H(ψ) | 1g−1Hg∩H〉g−1Hg∩H

= 〈ψ | IndH
g−1Hg∩H(1g−1Hg∩H)〉H ,

again by Frobenius reciprocity and conjugation. On the other hand, we have

〈1H | IndH
g−1Hg∩H(1g−1Hg∩H)〉H = 〈1g−1Hg∩H | 1g−1Hg∩H〉g−1Hg∩H = 1,

using Frobenius reciprocity one more time. Thus

IndH
g−1Hg∩H(1g−1Hg∩H) = 1H .

Comparing degrees we get H = g−1Hg ∩H. Hence H is normal in G. �

We summarize the theorem with its converse proven above using charac-
ters (and group-theoretically in [12] for finite index normal subgroups over
general fields).

Corollary 3.2. Let H be a subgroup of a finite group G. Then CG |CH is
a depth two ring extension if and only if H is a normal subgroup of G.

It is well-known that a finite group algebra is a Hopf-Galois extension of
a normal subgroup algebra: see our next subsection for an exposition of this
fact in a more general setting. Theorem 3.1 implies a converse, since a finite
Hopf-Galois extension is a depth two extension.

Corollary 3.3. Let H be a subgroup of a finite group G. If CG |CH is a
Hopf-Galois extension, then H is a normal subgroup of G.

Normal Hopf subalgebras [16] are depth two. Consider any finite-
dimensional Hopf algebra H over a field k with antipode S : H → H, counit
ε : H → k and comultiplication notation ∆(a) = a(1) ⊗ a(2) for each a ∈ H.
A Hopf subalgebra K is normal if S(a(1))xa(2) ∈ K and a(1)xS(a(2)) ∈ K

for each a ∈ H and x ∈ K. Form the subset K+ := ker ε ∩K and the left
ideal HK+ in H. Note that HK+ = K+H since given x ∈ K+ and a ∈ H

xa = ε(a(1))xa(2) = a(1)S(a(2))xa(3) ∈ HK+,

the converse HK+ ⊆ K+H being shown similarly. It follows that HK+ is
a Hopf ideal and H := H/HK+ is a Hopf algebra. There is the natural
surjective Hopf algebra homomorphism H → H denoted by a 7→ a.

Proposition 3.4. Let H be a finite-dimensional Hopf algebra and K a nor-
mal Hopf subalgebra in H. Then H |K is an H-Galois extension, therefore
of depth two.
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Proof. The natural coaction H → H ⊗k H given by a 7→ a(1) ⊗ a(2) makes
H into an H-comodule algebra with coinvariants K [16, 3.4.3]. The H-
extension A |B is Galois [16, p. 30] (with Galois mapping β : H ⊗K H →
H ⊗H given by β(x⊗ y) = xy(1) ⊗ y(2)).

Finally recall from [12, 8] that any finite Hopf-Galois extension A |B is a
depth two extension. �

For example, let G be a finite group with normal subgroup N . Then
H = kG and K = kN is a normal Hopf subalgebra pair with Galois mapping
β : H ⊗K H → H ⊗ k[G/N ] given by β(g ⊗ g′) = gg′ ⊗ g′N for g, g′ ∈ G.

We ask whether a converse of the proposition holds; e.g. if a depth two
Hopf subalgebra or depth two semisimple Hopf subalgebra pair is normal.

4. A fresh look at separability

In this section we meet a new criterion for separability which is very close
to the necessary condition in Theorem 2.4 for depth two extensions. We
will work with a separable extension A |B which is defined to be a ring
extension where µ : A ⊗B A → A is split as an A-A-epimorphism. The
image of 1A under any splitting is called a separability element e ∈ A⊗B A
which of course satisfies µ(e) = 1 and e ∈ (A⊗B A)A. Fix this (nonunique)
separability element e = e1⊗ e2 (suppressing a possible summation) for any
separable extension below.

Theorem 4.1. A ring extension A |B is separable if and only if RT is f.g.
projective and R⊗T (A⊗B A) ∼= A as natural A-A-bimodules.

Proof. (⇒) An inverse to the A-A-homomorphism γ defined in Eq. (14) is
given by γ−1(a) = 1⊗ ea ∈ R⊗T (A⊗B A). We compute γ ◦ γ−1 = id from
e1e2a = a, and γ−1 ◦ γ = id from

1⊗T eara
′ = 1⊗T er · (a⊗ a′) = 1 · er ⊗ (a⊗ a′) = r ⊗ (a⊗ a′).

RT is finite projective ⇔ there are finite dual bases {ri ∈ R}, {fi ∈
Hom (RT , TT ) ∼= T ′} via f 7→ f(1) and where the subring T ′ areR-centralizing
left integral-type elements, i.e.,

T ′ = {p ∈ T | p · t = t1pt2 = pt1t2 = t1t2p, ∀t ∈ T} (15)

⇔ there are {pi ∈ T ′}, {ri ∈ R} such that

r =
n∑

i=1

p1
i rip

2
i r =

∑
i

rp1
i rip

2
i (r ∈ R) (16)

But n = 1, r1 = 1 and p1 = e will do.
(⇐) If RT⊕∗ ∼= Tm

T , then tensoring by−⊗T (A⊗BA), we obtain AAA⊕∗ ∼=
AA⊗BA

m
A . It follows by a simple argument using split epimorphism, canon-

ical maps between a product and its components, and the identifications
Hom (AAA,AA⊗BAA) ∼= (A ⊗B A)A and Hom (AA⊗BAA,AAA) ∼= R (via
f 7→ f(1⊗ 1)) that there are m Casimir elements ei and m elements ri ∈ R
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such that
∑m

i=1 ri · ei = 1A. Then e :=
∑m

i=1 e
1
i ⊗ rie

2
i is a separability

element. �

We next recall a special case of separable extension which has been exten-
sively studied by Ikehata, Sugano, Szeto and others. A ring extension A |B
is said to be H-separable (after Hirata [5]) if A⊗BA⊕∗ ∼= An as Ae-modules.
Equivalently, there are n Casimir elements ei and n elements ri ∈ R, called
an H-separability system, such that 1⊗ 1 =

∑n
i=1 riei. Hirata [5] shows that

R is f.g. projective over Z := Z(A), therefore RZ is a generator module,

A⊗Z A
op ∼= Hom (RZ , AZ) (17)

via a ⊗ a′ 7→ λ(a)ρ(a′), and so a separability element for A |B corresponds
to a splitting map for Z ↪→ R, which exists by the generator property.
It follows that A and A ⊗B A are H-equivalent A-A-bimodules, another
characterization of an H-separable extension A |B.

Theorem 4.2. A ring extension A |B is H-separable if and only if RT is a
generator and R⊗T (A⊗B A) ∼= A as natural A-A-bimodules.

Proof. (⇒) Since A |B is also a separable extension, R ⊗T (A ⊗B A) ∼= A
by Theorem 4.1. Also RT is f.g. projective, but we need to see that it is a
generator (of the category of T -modules). But RT generator ⇔ there are
finite {ri ∈ R}, {gi ∈ Hom (RT , TT ) ∼= T ′} where T ′ is given by (15) such
that ∑

i

gi(ri) = 1T ⇔
∑

i

qiri = riqi = 1⊗ 1 (qi = gi(1)) (18)

which is satisfied by an H-separability system qi = ei, {ri} as defined above.
(⇐) If TT ⊕ ∗ ∼= Rn

T , which is the generator condition in one of its equiv-
alent forms [15], then tensoring by −⊗T (A⊗B A) and applying the isomor-
phism, we obtain AA⊗BAA⊕∗ ∼= AA

n
A, which shows A |B is H-separable. �

Corollary 4.3. If A |B is H-separable, then ZRT is a faithfully balanced
bimodule with Z and T Morita equivalent rings.

Proof. By restricting A-modules to B-modules (or pullback in case of ring
arrow B → A) we see from the defining conditions for H-separability and
depth two that an H-separable extension A |B is depth two. Then EndRT

∼=
Z from Theorem 2.4 and End ZR ∼= T from taking the B-centralizer of
(17). Note that we have already seen in this section that ZR and RT are
progenerators. It follows that the rings T and Z are Morita equivalent.

We may alternatively see this last point from the fact noted above that A
and A⊗BA are H-equivalent Ae-modules, whence their endomorphism rings
are Morita equivalent. Hirata theory also shows handily that the Morita
context bimodules here are R as before, (A ⊗B A)A with T -module as left
ideal in T and trivial Z-module, and associative pairings 〈e | r〉 = er ∈ T ,
[r | e] = e1re2 ∈ Z. �



DEPTH TWO, NORMALITY AND A TRACE IDEAL CONDITION 15

Example 4.4. Suppose A |B is an H-separable right K-Galois extension
for some Hopf algebra K. Then T op ∼= R oKop as algebras, where K acts
on the centralizer R via the Miyashita-Ulbrich action [8]. Then the module
RT

∼= RoKopR is a generator. But this module is a generator iff R is a right
Kop ∗-Galois extension over RK = Z by [16, p. 133], which shows [6, 3.1] by
other means.

Example 4.5. A result of Sugano states that given an algebra Λ over a
commutative base ring R with center C = Z(Λ), then Λ is H-separable
over R iff Λ is separable over C and C ⊗R C ∼= C via c1 ⊗ c2 7→ c1c2. In
other words, Azumaya algebras are H-separable over their centers, while H-
separable algebras are Azumaya algebras with center not much larger than
the base ring. A depth two, separable extension A |B that is not H-separable
is then given by letting K be any field, the direct product algebra A = Kn

for integer n > 1, B = K1A.

5. A trace ideal condition for Frobenius extensions

Recall that a ring extension A |B is Frobenius if BAA
∼= BHom (AB, BB)A

(via a Frobenius isomorphism, say ψ) and AB is f.g. projective. Thus the
right B-dual A∗ of A is a free rank one right A-module. A free generator
E : A → B is called a Frobenius homomorphism, and E ∈ Â since it is an
image of an invertible element in R under ψ: of course, we take E = ψ(1).
Projective bases {xi ∈ A}n

i=1, {fi ∈ A∗}n
i=1 for AB convert to dual bases

{xi}, {yi := ψ−1(fi)} satisfying
n∑

i=1

xiE(yia) = a =
n∑

i=1

E(axi)yi. (19)

The first equation follows immediately from the dual bases equation for AB,
while the second will follow from the first and injectivity of ψ by evaluating
ψ(a−

∑
iE(axi)yi) on any x ∈ A. From the equations above, one computes

that
∑n

i=1 xi ⊗ yi is a Casimir element:∑
i

axi ⊗ yi =
∑
i,j

xj ⊗ E(yjaxi)yi =
∑

j

xj ⊗ yja.

There are various questions dating back to Nakayama and Eilenberg of
the type, to what extent separable extensions are Frobenius [4]? The most
important theorem in this area to date is the one of Endo-Watanabe estab-
lishing that a separable algebra A over a commutative ring k is a symmetric
algebra (in particular, Frobenius algebra) if A is faithful, f.g. projective as
k-module. This theorem has been brought to bear on the centralizer by
Sugano to show that various H-separable and centrally projective separable
extensions are Frobenius extensions.

The next proposition gives necessary conditions for an extension to be
Frobenius, properties that could rule out various separable extensions from
being Frobenius.
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Proposition 5.1. Suppose A |B is a Frobenius extension. Then ÂR and
(A⊗B A)A are both free right R-modules of rank one.

Proof. First apply the functor (−)B, the B-centralizer to both sides of B-A-
isomorphism A ∼= A∗, obtaining R ∼= Â (since the B-A-bimodule structure
on A∗ is given by b · f · a = λ(b) ◦ f ◦ λ(a), so f ∈ (A∗)B ⇔ λ(b)f = fλ(b)
for each b ∈ B). This isomorphism of right R-modules (cf. preliminaries and
module structure (3)) is given by r 7→ E · r, with inverse F 7→

∑
i F (xi)yi.

We next note that

A⊗B A
∼=−→ EndAB, a⊗ a′ 7→ λ(a) ◦ E ◦ λ(a′) (20)

Its inverse is given by f 7→
∑

i f(xi)⊗ yi where E, xi, yi are defined above.
Taking the A-centralizer of this A-A-isomorphism, we see that

(A⊗B A)A ∼= End AAB
∼= Rop (21)

where the composed isomorphism comes out as e 7→ e1E(e2) with inverse
r 7→

∑
i xir⊗yi. These maps are right R-module isomorphisms with respect

to the natural right R-module and module (7). �

Example 5.2. The full n × n matrix algebra A over a field is a separable
algebra, therefore Frobenius algebra, and so (A⊗A)A ∼= A. Indeed,

∑
i eij⊗

eri where j, r = 1, . . . , n form a basis of n2 Casimir elements. (n of these are
separability elements in µ−1(1), and their average, if the characteristic does
not divide n, is the unique symmetric separability element.)

We recall from section 1 that C := (A⊗BA)A denotes the Casimir elements
of A |B, viewed below as a submodule of the R-R-bimodule σ, τT ; also recall
the B-valued bimodule homomorphisms Â, viewed below as a submodule of
Sλ, ρ. Next define two R-R-homomorphisms on the tensor product of the
R-R-bimodules Â and C in either order:

Ψ : Â⊗R C → R, Ψ(F ⊗ e) = e1F (e2), (22)

a well-defined R-R-homomorphism since r ·F · r′ = F ◦ λ(r′) ◦ ρ(r) (F ∈ Â)
and r · e · r′ = e1r′ ⊗ re2 (e ∈ (A⊗A)A, r, r′ ∈ R), whence

Ψ(rF ⊗ er′) = e1r′F (e2r) = re1F (e2)r′.

Similarly,
Φ : C ⊗R Â −→ R, Φ(e⊗ F ) = F (e1)e2 (23)

defines an R-R-homomorphism.
We first see that a necessary condition for Φ and Ψ to be surjective is that

Â and C be left and right R-generators (by the trace ideal characterization
of generator).

Theorem 5.3. The datum (R, R, Â, C, Φ, Ψ) is a Morita context [15] where
Φ and Ψ are surjective if any one of the conditions below are satisfied

(1) A |B is a Frobenius extension;
(2) R is a simple ring and either Φ 6= 0 or Ψ 6= 0;



DEPTH TWO, NORMALITY AND A TRACE IDEAL CONDITION 17

(3) one of Â and C is an R-progenerator while the other is isomorphic to
its corresponding R-dual with Ψ and Φ corresponding to evaluation
and co-evaluation.

Proof. We first show that the two associativity squares below are commu-
tative. First, the commutativity of the square,

C ⊗R Â⊗R C
1⊗Ψ

- C ⊗R R

R⊗R C

Φ⊗ 1

?

can
- C

can

?

corresponds to the equality (e, f ∈ (A⊗A)A; E,F ∈ Â)

e ·Ψ(F ⊗ f) = e · (f1F (f2)) = e1f1F (f2)⊗ e2

= f1 ⊗ F (f2e1)e2 = (F (e1)e2) · f = Φ(e⊗ F ) · f.
The commutativity of the other square,

Â⊗R C ⊗R Â
1⊗ Φ

- Â⊗R R

R⊗R Â

Ψ⊗ 1

?

can
- Â

can

?

follows from:

E · Φ(e⊗ F ) = F (e1)E(e2−) = F (−e1)E(e2) = Ψ(E ⊗ e) · F.

If A |B is a Frobenius extension, then there is E ∈ Â and e ∈ C such that
Φ(e⊗ E) = 1 = Ψ(E ⊗ e), as outlined above. But Im Ψ and Im Φ are both
two-sided ideals in R, since both maps are R-R-homomorphisms.

By the same token, if either map is nonzero and R is simple, the map is
surjective. The following is an elementary fact from [13]:

Φ(e⊗ Â) 6= 0 ⇔ Ψ(Â⊗ e) 6= 0

and similarly
Ψ(E ⊗ C) 6= 0 ⇔ Φ(C ⊗ E) 6= 0.

The last item is a consequence of the well-known theorem of Morita that if
PR is a progenerator, then R and EndPR are Morita equivalent with context
P and its R-dual P ∗ with evaluation and coevaluation as the associative
bimodule isomorphisms. �
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If we consider Picard groups for noncommutative rings as the group of
auto-equivalences of the corresponding full module category, we see via
Morita theory that Φ and Ψ are surjective iff Â and (A ⊗ A)A represent
inverse elements in the Picard group of R, which coalesce by Proposition 5.1
to the neutral element in case A |B is Frobenius.

The theorem provides a criterion for ring extensions to be Frobenius in
analogy with the trace ideal condition for modules to be generators. The
images of Ψ or Φ are two-sided ideals, which we check to see if the maps are
surjective; if so, we can apply the next Frobenius result to right f.g. projective
extensions with centralizer R satisfying xy = 1 for x, y ∈ R implies yx = 1
(i.e., R is Dedekind-finite [15]).

Theorem 5.4. Suppose A |B is a ring extension where AB is f.g. projective
and its centralizer is Dedekind-finite. If the R-bimodule pairings Ψ and Φ
on Â and C defined above are surjective, then A is a Frobenius extension of
B.

Proof. If the pairings above are surjective, there are e, f ∈ C and E,F ∈ Â
such that

E(e1)e2 = 1 = f1F (f2).
Then the homomorphism BAA → BA

∗
A given by a 7→ Ea (where Ea(x) =

E(ax) as usual) is injective, for

Ea = 0 ⇒ 0 = (Ea)(e1)e2 = E(e1)e2a = a.

But the homomorphism BAA → BA
∗
A given by a 7→ Fa is onto since

a = af1F (f2) = f1F (f2a) ⇒ ∀φ ∈ A∗ : φ(a) = φ(f1)F (f2a) = Fx(a)

where x = φ(f1)f2. It follows that b = E(f1)f2 ∈ R satisfies Fb = E. Then

1 = E(e1)e2 = F (be1)e2 = F (e1)e2b

implies b is invertible by Dedekind-finiteness of R. Hence our map a 7→ Ea
is 1-1 and onto, since x 7→ Fx is onto and Fx = Eb−1x for any x ∈ A. It
follows that BAA

∼= BHom (AB, BB)A and AB is finite projective, whence
A |B is a Frobenius extension. �

Let k be a commutative ring below. Note that Ψ is surjective iff the ideal
{e1F (e2)|F ∈ Â, e ∈ C} = R.

Corollary 5.5. If A |B is a right free k-algebra extension of finite rank
where A and B are f.g. projective as k-modules, and Ψ is surjective, then
A |B is a Frobenius extension.

Proof. From the proof above we see that there is an epi ϑ : BAA →
BHom (AB, BB)A given by a 7→ Fa for some F ∈ Â. But ϑ is an epi
between f.g. projective k-modules of the same P -rank with respect to local-
izations at prime ideals P in k, since AB is free. It follows from a well-known
fact that ϑ is bijective. (For similar reasons, a f.g. projective k-algebra is
Dedekind-finite.) Hence A |B is a free Frobenius extension. �
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