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Dequantizing Image Orientation
Agnès Desolneux, Saïd Ladjal, Lionel Moisan, and Jean-Michel Morel

Abstract—We address the problem of computing a local orienta-
tion map in a digital image. We show that standard image gray level
quantization causes a strong bias in the repartition of orientations,
hindering any accurate geometric analysis of the image. In continu-
ation, a simple dequantization algorithm is proposed, which main-
tains all of the image information and transforms the quantization
noise in a nearby Gaussian white noise (we actually prove that only
Gaussian noise can maintain isotropy of orientations). Mathemat-
ical arguments are used to show that this results in the restoration
of a high quality image isotropy. In contrast with other classical
methods, it turns out that this property can be obtained without
smoothing the image or increasing the signal-to-noise ratio (SNR).
As an application, it is shown in the experimental section that,
thanks to this dequantization of orientations, such geometric al-
gorithms as the detection of nonlocal alignments can be performed
efficiently. We also point out similar improvements of orientation
quality when our dequantization method is applied to aliased im-
ages.

Index Terms—Alignment detection, dequantization, orientation
map.

I. INTRODUCTION

L ET be a gray level image, wheredenotes the pixel
and is a real value. Most natural (nonsynthetic)

images are generated in the following way: a source image
is assumed to be of infinite resolution. A band-limited optical
smoothing is performed on, yielding a smoothed version

. By Shannon–Whittaker theory, the band-limited image
can be sampled on a regular and fine enough grid. Let us
denote by the Dirac Comb of this grid. Then is roughly
obtained as , which yields the discrete, digital
image. According to Shannon–Whittaker Theorem, can be
recovered from by the so called Shannon interpolation, using
a basis of sinc functions. Actually, this model is significantly
idealized, since other operations result in a substantial image
degradation, namely a white photonic and/or electronic noise

, a windowing ( is not infinite, but restricted to a rectangle)
and, last but not least, a quantization. Thus, the realistic
image model is , in which we neglect the
windowing effect as affecting essentially the image boundary.
In this paper, we address the problem of computing accurately
and in an unbiased way the orientation of the gradient of,
a number such that , where

denotes the image gradient. When we refer
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to the gradient of , we wish to refer to the gradient of the
smooth subjacent image, in as much as we considerto be
Shannon interpolable. If we assume, which is realistic enough,
that and are isotropic, we are led to address the effect of
the quantization on the field of orientations. We discovered
recently that this effect is strong and leads to a very biased field
of orientations. It can hinder any faithful geometric analysis
of the image, unless some previous restoration is performed.
Before explaining how we shall address this restoration, let us
give an example where this restoration is crucial in order to
perform a correct geometric analysis in the image. This is a
particular instance, but let it be mentioned that all probabilistic
methods using local pixel interactions (e.g., Markov random
field models) would suffer, knowingly or not, the same effect.
We proposed recently a grouping, nonlocal, method for the
detection of alignments in an image. In a few words, the
principle of the method is the following [3]. We assume that
each point in the image has an orientation (equal to the
orientation of the gradient plus ). We consider a segment

of aligned points in the image, with length. Let denote
the orientation of this segment. Assume we have observed
points on (among the points) having their orientation equal,
according to a given precision, to the orientation of (i.e.,
such that ). If is large enough, then we
say that the segment is meaningful (more details about this
method are given in the last section). In Fig. 6(b), we show
all segments detected in a natural image by this method at
precision . It can be visually checked that no detected
segment seems to be artifactual, i.e., due to image generation.
Let us now choose a precision of orientation . This
precision may seem exaggerate, but can be successfully used
in an image with strong gradients. Fig. 6(c) shows the detected
alignments, which are, according to our definition, highly
noncasual. Clearly, such detections are artifactual and the result
of image generation. After some inquiry, it turned out that
the gray level quantization is responsible for such artifactual
detections. Actually, this does not mean that the alignment
detection is wrong, but only that the detected alignments are
image generation artifacts. In Fig. 6(d), we show the result
of alignment detection (at precision ) on the same
picture, after the dequantization we propose here has been
performed.

Let us therefore come back to the problem of computing a
reliable orientation. The first good answer to this problem is
known as the dithering method [5] which consists in adding a
noisebeforequantization and then subtracting the same noise
from the quantized image. This results in decreasing the SNR
of the image, but turns out to better maintain the image aspect
and its isotropy under strong quantization. Unfortunately, the
dithering method has been to the best of our knowledge fully
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abandoned in image generation devices. To summarize, image
isotropy can be restored by dithering to the cost of decreasing
the SNR, but this is a degradation and should anyway be per-
formed in the image generation process itself: this is not gener-
ally the case.

A second easy answer, much in use, consists in smoothing
the image by some convolution kernel, and only retaining
the orientation at points where the gradient is high and stable
across scales. This is the classical “edge detection” method (see
[2], [10], [15] and, for more up to date methods, [9]). There
is nothing to object to this method, since at the end it retains
edge points which are very local, though they are confirmed at
larger scales. Now, clearly, many orientations in the image can
be used to detect alignments, which are not computed at edge
points: the edge points simply are a particularly good selection,
but sparse. Another way, addressed recently and successfully
by several authors [12], [14] consists in defining an orientation
scale-space. Also, the affine scale space [1], [13] provides a
way to compute a multiscale orientation of level lines. In all
cases, the objective is different and wider than just computing
a local orientation: the aim of these methods is to compute
a multiscale orientation map which has to be considered by
itself as a nonlocal analysis of the image. These methods are
better than edge maps methods in the sense that they provide an
orientation at all points. They are all the same not appropriate
for image analysis models based on local observations (e.g.,
most probabilistic methods), as well as the one we outlined
before. Indeed, they do not preserve the independence of points
at Nyquist distance.

The solution we propose in order to dequantize the image
should, according to the preceding discussion, satisfy the fol-
lowing requirements:

maintain the “independence” of local observations (i.e., no
smoothing);

maintain all of the image information (thus the method
must be invertible);

give an unbiased orientation map, where quantization noise
has been made isotropic.

We shall actually prove that a simple and invertible opera-
tion, namely a Shannon (1/2, 1/2)-translation of the image, per-
mits to remove the quantization effects on the orientation map.
More precisely, we shall prove experimentally and mathemati-
cally that this translation transforms the quantization noise into a
nearby Gaussian white noise. We shall also prove that all reason-
able local computations of the gradient, applied to the dequan-
tized image, yield an unbiased orientation, even at points where
the gradient is small. This remains true even when the quantiza-
tion step is large. As a consequence, we point out the possibility
of performing the geometric analysis of an image with a very
local estimate of the gradient, using therefore the full image ac-
curacy.

Our plan is the following. In Section II, we consider a wide
set of classical local computation methods for the gradient and
show that they preserve an excellent isotropy, under the assump-
tion that the image noise is uniform or Gaussian. We also prove
a converse statement: the image orientation will be isotropic if
and only if the noise is Gaussian. We analyze the bias introduced
by quantization and show that its effect on orientation can be

Fig. 1. Four pixel values used to compute the discrete gradient.

disastrous. In Section III, we detail the proposed solution and
make an accurate mathematical and practical analysis of the de-
quantized noise. We show that it is nearby Gaussian, therefore
permitting the local computation of orientations. In Section IV,
we end with some experiments.

II. L OCAL COMPUTATION OFGRADIENT AND ORIENTATION

We consider a discrete gray-level imageof size . At
each point, we can compute the gradient on a 22 neighbor-
hood (we choose the smallest possible one to preserve locality).
It is defined by

(1)

where , ,
and (see Fig. 1).

Aside from a classical finite differences estimate of the gra-
dient of , (1) can be interpreted as the exact gradient

, where is the bilinear interpolate of defined
in by

From (1), we write and define the orientationby

(2)

Note that is not defined when . Our aim will be to
study the behavior of as a function of the four values , ,

, and . The question is to decide whether such a way of
computing the orientation is valid or not (i.e., whether it gives
some privilege to particular directions or not). In this section, we
prove that if the image is a Gaussian white noise, then there
is no bias on the orientations (this means that, at each point,
all orientations have an equal probability), and that, ifis a
uniform white noise, there is a small bias (orientations multiple
of are slightly favored).

A. Gaussian Noise

We first show that if the image is a Gaussian white noise,
then there is no bias on the orientations.

Proposition 1: Let , , , and be independent iden-
tically Gaussian distributed random variables. Then
is uniformly distributed on .

Proof: The first point is to notice that if we denote
and , then and are independent and

and . Thus, from (2)

(3)
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Now, is Gaussian with mean 0 and variance because it
is the sum of two independent Gaussian random variables (with
mean 0 and variance ). And is also Gaussian for the same
reason. Since and are independent, the law of the couple

is given by the density function

which shows that is almost surely defined. Last, sinceis
isotropic (it only depends on the squared radius ), we
deduce that the distribution ofis uniform on .

Proposition 2 (Converse Proposition):Let , , , and
be four independent identically distributed random vari-

ables. Assume that their common law is given by a probability
density , where is square integrable and even. If the law
of is uniform on , then the probability density is
Gaussian.

Proof: As we did in the proof of Proposition 1, we denote
and . and are independent

and identically distributed. They have the same density func-
tion given by the convolution of with itself, i.e.,

. Since is square integrable, the
function is continuous. We also notice that

(because is a density function). Since the law
of is uniform on , we know that the law of , given
by the density , only depends on , which can
be written . In addition, is even
and never vanishes since it is a continuous function such that

and . Hence, we can consider
the function defined for by .
Then, we get for all , .
Since is continuous and , this shows that is linear.
Consequently, there exists such that for all in ,

where the constant is defined
by the property . Thus, the law of (and also ) is the
Gaussian distribution . We now prove that the law of
the is also Gaussian. Since , considering the Fourier
Transform, we get . Thus,
is Gaussian. Since the inverse Fourier transform of a Gaussian
distribution is also Gaussian, it shows thatis the Gaussian dis-
tribution with mean 0 and variance .

This result has a strong practical consequence: if we wish
to have a nonbiased orientation map for digital image, we
must process the image in such a way that its noise becomes
as Gaussian as possible. We shall see that it is feasible with
quantization noise.

The following proposition is the generalization of Proposition
1, when the gradient is computed on a larger neighborhood (the
proof of this proposition is given in the Appendix).

Proposition 3 (Generalization):Assume that the com-
ponents of the gradient are computed on neigh-
boring pixels , i.e., and

, where and are real numbers such
that and . If the are
independent identically Gaussian distributed, then
the angle is uniformly distributed on .

Fig. 2. Law of � on [��; �] when the image is a uniform noise, and
comparison with the uniform distribution on[��; �] (dotted line).

B. Computation of Orientation on Nonquantized Images

In this section, we address the effect on the orientation his-
togram of applying the former described computation of the
gradient. We shall see that the bias introduced by the method
is small. It is not always realistic to assume that the local repar-
tition of the gray levels of an image is Gaussian. Instead, we
can roughly assume that the values at neighboring points differ
by a uniform random variable. Thus it is licit, or at least very
indicative, to compute the orientation map of a uniform white
noise, in order to have an estimate of the bias on orientation
provoked by this gradient computation. Let us therefore per-
form the computations in the following framework: consider an
image whose values at pixels are independent random variables,
identically uniformly distributed on [ (1/2), 1/2]. We then get
a small bias on the orientation. More precisely, we have the
following proposition (the proof is given in the Appendix).

Proposition 4: Let , , , and be independent
random variables, identically uniformly distributed on [(1/2),
1/2]. Then the law of is given by the density function,

-periodic and whose restriction to is

(see Fig. 2).
Proposition 4 shows that if the pixels of the image have inde-

pendent uniformly distributed values, then the orientations are
not uniformly distributed. The law of the orientationis given
by Fig. 2. It shows that the orientations multiple of are fa-
vored. If we want to measure the bias, we can compute the rela-
tive deviation from the uniform distribution on . We get

. This shows, how-
ever, that the bias is small, about 4.7%.

C. Bias of Quantization

We saw in the previous section that the way we compute the
orientation at a point of the image from the gradient does not
create artifacts. Now, on the contrary, we will see that the his-
togram of orientations in the image is very sensitive to a quan-
tization of gray levels. Let us first consider the simplest case:
a binary image. We assume that the gray level at each pixel is
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Fig. 3. Probability distribution of� for ��=2 � �=2, when the gray levels are respectively uniformly distributed inf0; 1; . . . ; 5g (left figure), in
f0; 1; . . . ; 8g (middle figure) and inf0; 1; . . . ; 256g (right figure).

0 (black) or 1 (white). Then, the orientationof the gradient
only takes a finite number of possible values: the multiples of

. The binary case is an extreme case. Let us now consider
the case of an image quantized on a finite numberof gray
levels: . Again, we denote
and . Then and have discrete values in

. If , is unde-
fined. If and , then or . In the
other cases, we have and consequently
only takes a finite number of values.

Let us compute the distribution law ofwhen the image is a
uniform discrete noise (i.e., the are independent and for all

in , ). First, we compute the
probability distribution of (and )

Hence, with probability , and is not defined.
Let us now compute the probability distribution of , when

. For each possible discrete value (with and
mutually prime) of , we have

(4)

In particular, we can compute the probability of the event
(it corresponds to the event and ). Notice that,

thanks to symmetries, this probability also is the probability of
the events , or . We get

Moreover, we have

This shows that the orientations multiple of are highly fa-
vored. In Fig. 3, we plot the probability distribution ofwhen

the number of gray levels is , , and .
These three cases correspond respectively to prime, and

of the form . Equation (4) shows that the probability
distribution of is directly related to a known problem of
arithmetic: how many distinct irreductible fractions of the form

can you make with the constraint ? This
problem has already been addressed, in a very similar way, in
some papers of Lopez-kraheet al. (see [7] and [8]) for the de-
tailed study of the effects induced by lattice quantization on the
histogram of the slopes of straight lines joining two points of
the lattice. The main difference with our study is that we have
in addition a probability distribution on the values ofand .

Most quantized images are not binary images, but the effect
of quantization on the computation of the gradient orientation is
always very significant. The reason for this is that in an image,
there are usually many “flat” regions. In these regions, the gray
levels take a small number of values, and consequently the ori-
entation is very quantized.

III. ORIENTATION DEQUANTIZATION

A. Proposed Solution: Fourier Translation

We assume that the original signal (before quantization) is a
Shannon signal (i.e., we can reconstruct the whole signal from
the samples). We denote this signal byif it is a one-dimen-
sional (1-D) signal and by if it is a two-dimensional (2-D)
image

and

The function is classically defined by ,
with the convention that . Now, we do not know the
exact values of the [resp. of the ]. We only have the
quantized signal (resp. ). Thus, at each point,

or

where (resp. ) is the quantization noise. In the fol-
lowing, we assume that the (resp. ) are independent,
and uniformly distributed on [ (1/2), 1/2]. This independence
assumption is correct above the Nyquist distance.
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Fig. 4. Left: distribution ofY and comparison with the Gaussian distribution with mean value 0 and variance 1/12 (dotted curve). Right: distribution ofY and
comparison with the Gaussian distribution.

The proposed solution for dequantization is the following
one. We replace the quantized values of the signal by the
Shannon interpolates and obtain

For the quantized image , this formula becomes

Remark: For a finite image of size , we have

where is the discrete version of the function, defined
by (with the convention that

for ).

B. Study of the Dequantized Noise

By the dequantization method, we aim at replacing the struc-
tured quantization noise by a noise as Gaussian as possible. We
will see that, the Shannon translation being an isometry, we do
not reduce or enlarge the variance of the noise. Thus, we can
already claim that the method is at any rate harmless. We can
of course reconstruct the original digital image by the inverse
translation.

Our aim in this subsection will be to study the dequantized
noise (in 1-D) and (in 2-D) defined by

and

(5)

where the (resp. the ) can be assumed, in a first approxi-
mation, to be independent and uniformly distributed on [(1/2),
1/2].

Let us introduce some notations. For , we set

(6)

We thus have and .
If is a random variable uniformly distributed on [(1/2),
1/2], then the mean and the variance ofare and

. Since is convergent (it is equal to 1),
the random variable series (5) defining and are conver-
gent in , and we moreover have and

. The variance of (and of ) is
the same as the variance of (this can also be explained by
the fact that the Fourier 1/2-translation is an isometry of) and
thus, we do not reduce or enlarge the variance of the noise.

In Fig. 4, we show the distributions of and . In the same
figure, we plot the Gaussian distribution which has mean 0 and
variance 1/12. These probability distributions seem to be very
close. We shall measure this. We also notice on this figure that
the distribution of looks “more Gaussian” than the one of.
This can be qualitatively explained by the Central Limit The-
orem and by the fact that a larger sum of independent random
variables is involved in the definition of .

1) Kurtosis Comparison:One way to compare the distribu-
tion of and to the Gaussian distribution is to compare their
fourth-order moment (notice that they have already same mean
0, same variance 1/12 and same third-order moment 0). More
precisely, we will now compare their normalized fourth-order
moment (called the kurtosis, see [11]).

Definition 1 (Kurtosis): The kurtosis of a random variable
with mean and variance is defined by

A classical result is that any Gaussian distribution has a kur-
tosis equal to 3 (it is independent of the mean and variance).
We will now compute the kurtosis of the distributions ofand

. This is a very useful way to check whether a distribution is
Gaussian like.

Proposition 5: Let be the kurtosis of and be the
kurtosis of , then

and
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Proof: One way to compute the fourth-order moment of
is to compute its characteristic function, denoted by

(which is defined as the Fourier transform of the probability dis-
tribution of ), and then to compute the fourth-order derivative
of at 0. We first compute

where is the characteristic function of the uniform distribution
on [ (1/2), 1/2], which is given by . Conse-
quently, we get

(7)

For close to 0, we have the Taylor expansion
. Thus, for close to 0, using also

the Taylor expansion of the function, we get

where and . Finally,
since for close to 0, we have the Taylor expansion

, we get

The fourth-order moment of is then,

On the other hand, we can computeand using Bernouilli
numbers and the zeta function (see [4] for example), and get

and . Finally, we obtain

and

In the same way, we can compute the fourth-order moment of

The variance of is also 1/12, and thus the kurtosisof is

2) Estimating the Distance to the Gaussian Dis-
tribution: Let (resp. ) be the probability density of

(resp. ), and let be the Gaussian distribution with
mean 0 and variance 1/12. In Fig. 4, we noticed that the
probability densities and seem, on the average, to
be very “close” to the Gaussian distribution. The aim
of the following proposition is to give upper-bounds for
the distances and

.

Proposition 6: We have the following estimates:

and

The proof of Proposition 6 is given in the Appendix. It combines
exact inequalities and numerical estimates.

C. Posterior Independence

In our study of the dequantized noise, we made the assump-
tion that the (resp. the ) are independent and uniformly
distributed on [ (1/2), 1/2]. Here we address the problem of
the posterior independence of the dequantized noise, i.e. for ex-
ample if we consider the dequantized noiseat two different
points and

and

we are then interested in the correlation of and .
The result, which shows that we do not increase the correlation,
is given by Proposition 7. We recall that the correlation coeffi-
cient of two random variables and is defined by

For simplicity, the following proposition is stated and proved for
the dequantized noise . The result for is the exact analogs.

Proposition 7: Let the , for , be random variables
uniformly distributed on [ (1/2), 1/2]. Assume that for all

, the correlation coefficient between and is the same
for all , and let us denote it by . Then, the correlation
coefficient between and is

. In particular, this shows that if the are independent,
then the correlation coefficient of and is 0 when

.
Proof: Since, for all , we have , this implies

that . We also have, for all ,
. Thus, if we

compute the “posterior” correlation coefficient, we get

For , we have . On the other
hand, for , we already saw that .
Notice that these properties of the are explained by
the fact that the 1/2 Fourier translation is an isometry
of . Finally, we obtain the announced result, which is

.

D. Flat Regions Model: Final Explanation of the
Dequantization Effect

Let us summarize. We had written the “dequantized” signal
as

(8)
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where is the original signal computed by Shannon
interpolate at point , is the dequantized
signal at the same point and is the
so-called “dequantized noise.” We have proven that is
nearby Gaussian. Since in Proposition 1 we also prove that the
addition of a Gaussian noise to the signal does not create any
bias in the orientation map, we might be satisfied with this re-
sult. Now, we claim that the above explanation does not give an
account of the change in the orientation histogram obtained by
dequantization. Indeed, we prove in Proposition 4 that the addi-
tion to the signal of a uniformly distributed noise on an interval
does not create a bias on the orientation larger than 4.7%. Thus
something must be inaccurate in our assumptions. Actually, we
notice that when the gradient ofis small at a given point, then
the quantized values of around this point are a very dis-
crete signal. In other terms, assuming for simplicity that this
point is 0 and that , we have that

where the first integer values are very
majoritary. This means that and are highly correlated
when the gradient is small. Thus, our model (8) explaining the
good behavior of original signal Gaussian
noise will make sense only if we can
point out that the dequantization process implies: and

decorrelated. Now, using the same proof as in Propo-
sition 7, we can show that this is not true. In fact, more precisely,
by this result we have
under the sound assumption of stationarity. Thus, we gain or
lose no independence of the signal and the noise obtained by de-
quantization. The final explanation will however arise from the
technique developed above. We first point out [see Fig. 5(c) and
(d)] that all the bias in orientation histogram is due to low values
of the quantized gradient, namely . The reason for this
is the following: at a point of an image where the gra-
dient is large, the orientation is not much affected by the quanti-
zation. In fact, the angle error between the “true” orientation at
the point and the orientation computed after the quantization of
the image is proportional to . Let us show this. We denote
by the original image, then ,
where is the direction of the gradient. Letdenote the quan-
tized image, and let denote the quantization step. Ifdenotes
the direction of the gradient of the quantized image, we obtain

, where is a complex
number (it represents the gradient of the difference between the
true image and the quantized image) with modulus smaller than
. Thus, we get . This shows that the

points where the gradient is large are not much affected by the
quantization effect.

The points with small gradient are majoritary [about 60%, see
Fig. 5(b)] in the gradient norm histogram. Thus, we must focus
on the points where . We notice that in a neigh-
borhood of such a point, the histogram of values of are a
discrete uniform process centered at . Taking, without lost
of generality, , we can model the values around these
points as discrete independent random values. See Fig. 5(e) and
(f) for the histogram and correlations. In flat regions, the gra-
dient is quantized on a small number of values and we will see
that the proposed Fourier translation has a strong dequantiza-
tion effect. Let denote the quantized signal. At a point, we

replace the quantized value , by the Shannon interpolate
, and then, we compute the gradient by

In flat regions, we can assume that the difference
takes a small number of discrete values. For example, if we

assume that it only takes the values 0, 1, or1, then the fol-
lowing proposition shows in particular that

is no longer quantized.
Proposition 8: Let be the random variable defined by

where the are independent discrete random variables, taking
the values 0, 1, or 1, each one with probability 1/3. Then
follows the same probability distribution as

where the are independent, uniformly distributed on
[ (1/2), 1/2]. Thus, for all ,

.
In fact, is nearby Gaussian. In particular, we have a nearby

perfect dequantization since the previous proposition implies
that for all , then .

The previous proposition can be extended to the case of a
2-D image in the following way. Let denote the quantized
image. Using the same notations as in Section II, the gradient of

, before the 1/2-translation, has componentsand [in the
referential defined by the -axes rotated by ], where

and
. After 1/2-Shannon translation,

we obtain

Now, if we define for all ,
and

, we may assume that in flat regions all these variables
are independent. Then, we can prove an analogous result as the
one given by Proposition 8. More precisely, we can prove that

and after translation have both the same nearby Gaussian
distribution, which is the one of the random variabledefined
by

where the are independent, uniformly distributed on
[ (1/2), 1/2].
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Fig. 5. Empirical observations on histograms and correlation. First row: left, the original image; right, histogram of the norm of the gradient. Second row: left,
histogram of the gradient orientation for all points of the image; right, histogram of the gradient orientation for points with gradient norm larger than 5. Third row:
left, local histogram (window of size 3� 3) of u(x) � u(x ) for pointsx such thatjru(x )j < 3; right, correlation coefficient ofu(x + d) � u(x ) and
u(x � d) � u(x ) as a function of the distanced, for pointsx such thatjru(x )j < 3.

IV. EXPERIMENTS AND APPLICATION TO

THE DETECTION OFALIGNMENTS

In this section, we present some applications of the proposed
solution for dequantization. The first application is the detec-

tion of alignments in an image. In [3], we proposed a statis-
tical criterion for the detection of meaningful alignments in an
image. At each point of the image (with size ), we com-
pute an orientation which is orthogonal to the gradient
at the considered point. Then, we consider a segmentin the
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Fig. 6. Effect of quantization on the detection of alignments. First row: left, the original painting image, quantized on 32 gray levels, right, the meaningful
alignments for precisionp = 1=16. Second row: left, the meaningful alignments for precisionp = 1=64; right, the meaningful alignments for precisionp = 1=64,
after (1/2, 1/2)-translation.

image made of points at distance 2 (thus, the gradients are
computed on neighborhoods that do not intersect, and we there-
fore make the assumption that they are independent). Letbe
the number of points (among the) which have their orienta-
tion aligned with the direction of the considered segment, at
a given precision [i.e., such that , where

denotes the orientation of the segment]. The probability
of observing at least such points on a length segment is

(because of the assumption
that the orientations are independent and uniformly distributed
on ). When this probability is very small, the event is
highly noncasual and therefore meaningful. Generally, we com-
pute meaningful alignments with the precision . But,

sometimes, we are interested in alignments at a better preci-
sion, say for example . In Fig. 6, we first present the
original image (upper left): this is a result of the scan of Uc-
cello’s painting: “Presentazione della Vergine al tempio” (from
the bookL’opera completa di Paolo Uccello,Classici dell’arte,
Rizzoli). This image is quantized on 32 gray levels. We first
compute (upper right) the meaningful alignments at precision

. Then, we compute (bottom left) the meaningful
alignments at precision : it shows many diagonal
alignments. These alignments are artifacts, their explanation is
the quantization effect on the computation of orientations: direc-
tions multiple of are highly favored. Last, we show the de-
tection of meaningful alignments at precision (bottom
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Fig. 7. Effect of the Fourier translation on an aliased image. First row: left, the aliased image; right, the image after (1/2, 1/2) Fourier translation. Second row:
left, the histogram of the gradient orientation in the aliased image; right, the histogram of the gradient orientation after translation.

right), after the proposed solution for dequantization: (1/2, 1/2)
Fourier translation. The result shows that artifactual diagonal
alignments are no longer detected.

We also noticed (but we have no theoretical argument to jus-
tify it) that the same method yields a significant improvement
in orientation map of aliased images: see Fig. 7. This is particu-
larly true for aliasing due to direct undersampling, a barbaric but
usual zoom-out method in many image processing softwares.

APPENDIX

Proof of Proposition 3: Every linear combination of and
is Gaussian because it is also a linear combination of the,

which are independent and Gaussian distributed. Thus,
is a Gaussian vector. Since , this implies that the
correlation between and is 0. Since is a Gaussian
vector, this shows (see [6] for example) thatand are in-
dependent. Moreover, the property shows that

and are Gaussian with same mean and same variance.
Finally, as in the proof of Proposition 1, the law of the couple

is given by a density function which depends
only on the radius and not on the angle. Thus, is
almost surely defined and uniformly distributed on .

Proof of Proposition 4: We use the same notations as in the
proof of Proposition 1. The random variables
and are independent and have the same density

, given by the convolution of the characteristic function of the
interval [ (1/2), 1/2] with itself, that is for

, and otherwise. Now we compute the law of
, knowing from (3) that . Thanks

to symmetries, we first consider the case . The
distribution function of is , that
is

Hence, the law of is given by the density function

Finally, since and by symmetries, we obtain the
announced law for .

Proof of Proposition 6: The are symmetric around ,
i.e., . Thus, we can write .
Let us denote
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and let be the probability density of . We then have
, where is the probability density of

. We first prove the following proposition.
Proposition 9: For all , we have

Proof: For , we have , where is
the probability density of . We notice that
is a positive even function, with compact support
and satisfying . Thus

We now compute . For , using the definition
of and the integral Taylor formula, we get, being
odd

Then, we can estimate the distance, and obtain

We add these inequalities and thus obtain the announced
result.

Using the previous Proposition, in order to have a numer-
ical estimate of , we can use a computational soft-
ware to compute numerically the first terms

and on the other hand compute an upper-bound for the tail
. We first compute . For , we

have , where is the
variance of . Thus, using an integration by parts and the proper-
ties and , we get

. Then, we compute the rest of the sum , using a com-
parison with an integral, and get . Thus,
we obtain

We can now compute an upper-bound for thedistance be-
tween the density function of and the Gaussian distribution.
We can also do this in a similar way for the random variable
(dequantized noise in dimension 2). The numerical estimates
given in Proposition 6 are obtained using Proposition 9 for

, and the numerical computation of .
Proof of Proposition 8: Let denote the Dirac function.

Then, the probability distribution of the is
. The main point is to notice that

the result of the convolution of with the uniform distri-
bution on [ (1/2), 1/2], is the uniform distribution on [(3/2),
3/2]. This means that has the same probability dis-
tribution as . And consequently, has the
same probability distribution as . We now consider the
Fourier transform of the previous distributions (it will convert

the convolution into a product). Let denote the Fourier
transform of . From (7), we know that

We denote by the Fourier transform of . We
then have . On the other hand, the Fourier trans-
form of is . Thus, if we denote by the
Fourier transform of the law of , we have

where in both cases the convergence of products is uniform
on every compact subset of. Since has
the same probability distribution as , this shows that

for any real . We now show that there
exists a continuous function such that for all ,

. In fact, we have
, and we decompose this product into two products: the first

one is the product over all such that , and the second
is for all such that . Now, for , we can write

, and thus . This shows
that

and consequently, we have , where

and it may be shown that is continuous on . Thus, we have
for all , . Since the zeros of are
discrete, and and are continuous, this shows that

And thus, has the same probability distribution
as . Moreover, thanks to Levy Theorem, we have
a convergence in law of the partial sums to .
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