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Abstract

Based on the notion of excedances of type B introduced by Brenti, we give a
type B analogue of the derangement polynomials. The connection between the de-
rangement polynomials and Eulerian polynomials naturally extends to the type B

case. Using this relation, we derive some basic properties of the derangement poly-
nomials of type B, including the generating function formula, the Sturm sequence
property, and the asymptotic normal distribution. We also show that the derange-
ment polynomials are almost symmetric in the sense that the coefficients possess
the spiral property.

1 Introduction

In this paper, we define a type B analogue of the derangement polynomials by q-counting
derangements with respect to the number of excedances of type B introduced by Brenti
[3]. We give some basic properties of these polynomials. It turns out that the connection
between the derangement polynomials and the Eulerian polynomials naturally extends to
the type B case, where the type B analogue of Eulerian polynomial has been given by
Brenti [3], and has been further studied by Chow and Gessel in [7].

Let us now recall some definitions. Let Sn be the set of permutations of [n] =
{1, 2, . . . , n}. For each σ ∈ Sn, the descent set and the excedance set of σ = σ1σ2 · · ·σn

are defined as follows,

Des(σ) = {i ∈ [n − 1] : σi > σi+1},

Exc(σ) = {i ∈ [n − 1] : σi > i}.
The descent number and excedance number are defined by

des(σ) = |Des(σ)|, exc(σ) = |Exc(σ)|.
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The Eulerian polynomials [10, 14, 16] are defined by

An(q) =
∑

σ∈Sn

qdes(σ)+1 =
∑

σ∈Sn

qexc(σ)+1, n ≥ 1,

for n = 0, we define A0(q) = 1. The Eulerian polynomials have the following generating
function ∑

n≥0

An(q)
tn

n!
=

(1 − q)eqt

eqt − qet
. (1.1)

A permutation σ = σ1σ2 · · ·σn is a derangement if σi 6= i for any i ∈ [n]. The set of
derangements on [n] is denoted by Dn. Brenti [1] defined the derangement polynomials
of type A by

dn(q) =
∑

σ∈Dn

qexc(σ), n ≥ 1,

and d0(q) = 1. It has been shown that dn(q) is symmetric and unimodal for n ≥ 1. The
following formula (1.2) is derived by Brenti [1].

Theorem 1.1 For n ≥ 0,

dn(q) =

n∑

k=0

(−1)n−k

(
n

k

)
Ãk(q), (1.2)

where

Ãn(q) =





1, if n = 0,

1
q
An(q), otherwise.

The generating function of dn(q) has been obtained by Foata and Schützenberger [10],
see, also, Brenti [1].

Theorem 1.2 We have

∑

n≥0

dn(q)
tn

n!
=

1

1 −
∑

n≥2(q + q2 + · · ·+ qn−1)tn/n!
. (1.3)

A combinatorial proof of the above formula is given by Kim and Zeng [11] based
on a decomposition of derangements. Brenti further proposed the conjecture that dn(q)
has only real roots for n ≥ 1, which has been proved independently by Zhang [17], and
Canfield as mentioned in [2].

Theorem 1.3 The polynomials {dn(q)}n≥1 form a Sturm sequence. Precisely, for n ≥ 2,
dn(q) has n − 1 distinct non-positive real roots, separated by the roots of dn−1(q).

The following recurrence relation is given by Zhang [17], which has been used to prove
Theorem 1.3.
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Theorem 1.4 For n ≥ 2, we have

dn(q) = (n − 1)qdn−1(q) + q(1 − q)d′
n−1(q) + (n − 1)qdn−2(q).

This paper is motivated by finding the right type B analogue of the derangement
polynomials. We find that the notion of excedances of type B introduced by Brenti
serves the purpose, although there are several possibilities to define type B excedances,
see [3, 6, 15]. It should be noted that the type B derangement polynomials are not
symmetric compared with type A case. On the other hand, we will be able to show that
they are almost symmetric in the sense that their coefficients have the spiral property.

This paper is organized as follows. In Section 2, we recall Brenti’s definition of type
B excedances, and present the definition of derangement polynomials of type B, denoted
by dB

n (q). Section 3 is concerned with the connection between the derangement poly-
nomials of type B and the Eulerian polynomials of type B. We derive a generating
function formula for type B derangement polynomials, and then extend the U -algorithm
and V -algorithm given by Kim and Zeng [11] to derangements of type B. This gives a
combinatorial interpretation of the generating function formula. In Section 4, we prove
that the polynomials {dB

n (q)}n≥1 form a Sturm sequence. Moreover, we show that the
coefficients of dB

n (q) possess the spiral property. Section 5 is devoted to the limiting dis-
tribution of the coefficients of dB

n (q). By using Lyapunov’s theorem we deduce that the
distribution is normal.

2 The Excedances of Type B

In this section, we recall Brenti’s definition of type B excedances and give the definition
of the derangement polynomials of type B. We adopt the notation and terminology
on permutations of type B, or signed permutations, as given in [6]. Let Bn be the
hyperoctahedral group on [n]. We may regard the elements of Bn as signed permutations
of [n], written as σ = σ1σ2 · · ·σn, where some elements are associated with the minus sign.
We may also express a negative element −i in the form ī, and we will use −σ to denote
the signed permutation (−σ1)(−σ2) · · · (−σn).

The type B descent set and the type B ascent set of a signed permutation σ are defined
by

DesB(σ) = {i ∈ [0, n − 1] : σi > σi+1},

AscB(σ) = {i ∈ [0, n − 1] : σi < σi+1},

where σ0 = 0. The type B descent and ascent numbers are given by

desB(σ) = |DesB(σ)|, ascB(σ) = |AscB(σ)|.

A derangement of type B on [n] is a signed permutation σ = σ1σ2 · · ·σn such that
σi 6= i, for all i ∈ [n]. A fixed point of σ is a position i such that σi = i. The set of
derangements in Bn is denoted by DB

n .
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Let us recall the definitions of excedances and weak excedances of type B introduced
by Brenti [3]. For further information on statistics on signed permutations, see [3, 7, 12].

Definition 2.1 Given σ ∈ Bn and i ∈ [n], we say that i is a type B excedance of σ if

σi = −i or σ|σi| > σi. We denote by excB(σ) the number of type B excedances of σ.

Similarly, we say that i is a type B weak excedance of σ if σi = i or σ|σi| > σi, and we

denote by wexcB(σ) the number of type B weak excedances of σ.

In view of the above definition of type B excedances, we can define a type B analogue
of the derangement polynomials.

Definition 2.2 The type B derangement polynomials dB
n (q) are defined by

dB
n (q) =

∑

σ∈DB
n

qexcB(σ) =
n∑

k=0

dn, k qk, n ≥ 1, (2.1)

where dn, k is the number of derangements in DB
n with exactly k excedances of type B. For

n = 0, we define dB
0 (q) = 1.

Below are the polynomials dB
n (q) for n ≤ 10:

dB
1 (q) = q,

dB
2 (q) = 4q + q2,

dB
3 (q) = 8q + 20q2 + q3,

dB
4 (q) = 16q + 144q2 + 72q3 + q4,

dB
5 (q) = 32q + 752q2 + 1312q3 + 232q4 + q5,

dB
6 (q) = 64q + 3456q2 + 14576q3 + 9136q4 + 716q5 + q6,

dB
7 (q) = 128q + 14912q2 + 127584q3 + 190864q4 + 55624q5 + 2172q6 + q7,

dB
8 (q) = 256q + 62208q2 + 977920q3 + 2879232q4 + 2020192q5

+ 314208q6 + 6544q7 + q8,

dB
9 (q) = 512q + 254720q2 + 6914816q3 + 35832320q4 + 49168832q5

+ 18801824q6 + 1697408q7 + 19664q8 + q9,

dB
10(q) = 1024q + 1032192q2 + 46429440q3 + 394153728q4 + 937670016q5

+ 704504832q6 + 161032224q7 + 8919456q8 + 59028q9 + q10.
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3 The Generating Function

In this section we obtain an expression of dB
n (q) in terms of Bn(q), the Eulerian polynomials

of type B. This formula is analogous to the formula of Brenti for the type A case [1], and
it enables us to derive the generating function of dB

n (q). Then we give a combinatorial
interpretation of the generating function formula by extending the type A argument of
Kim and Zeng [11].

The Eulerian polynomials Bn(q) are defined in terms of the number of descents of type
B, see, Brenti [3],

Bn(q) =
∑

σ∈Bn

qdesB(σ), n ≥ 1, (3.1)

with B0(q) = 1.
Brenti [3] obtained the following formula for the generating function of the Eulerian

polynomials of type B, see, also, Chow and Gessel [7],

∑

n≥0

Bn(q)
tn

n!
=

(1 − q)et(1−q)

1 − qe2t(1−q)
. (3.2)

The following theorem is obtained by Brenti [3] and it will be used to establish the
formula for dB

n (q).

Theorem 3.1 There is a bijection ϕ: Bn → Bn such that

ascB(ϕ(σ)) = wexcB(σ),

for any σ ∈ Bn.

The following relation indicates that the notion of excedances of type B introduced
by Brenti is a right choice for type B derangement polynomials.

Theorem 3.2 We have

dB
n (q) =

n∑

k=0

(−1)n−k

(
n

k

)
Bk(q). (3.3)

Proof. It is easy to see that
desB(σ) = ascB(−σ)

for all σ ∈ Bn. This implies that the number of descents and the number of ascents of
type B are equidistributed on Bn. On the other hand, Brenti [3] gave an involution α on
Bn such that excB(σ) = wexcB(α(σ)) for all σ ∈ Bn, where

α(σi) =




−σi, if |σi| = i,

σi, otherwise.
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It follows that the number of excedances of type B and the number of weak excedances of
type B are equdistributed on Bn. By Theorem 3.1, we see that the number of excedances
and the number of descents of type B are equidistributed on Bn. Thus we deduce that

Bn(q) =
∑

σ∈Bn

qdesB(σ) =
∑

σ∈Bn

qexcB(σ). (3.4)

We proceed to estalish the following relation

∑

π∈Bn

qexcB(π) =

n∑

k=0

(
n

k

) ∑

σ∈DB

k

qexcB(σ). (3.5)

Like the cycle decomposition of an ordinary permutation, a signed permutation σ can be
expressed as a product of disjoint signed cycles, see, e.g., Brenti [3] and Chen [4]. For
example, if σ = 6̄ 2 4 3̄ 1 5 7̄, then we can write σ in the cycle form σ = (1, 6̄, 5)(2)(4, 3̄)(7̄).
It is evident that a fixed point does not form an excedance of type B. Suppose that σ
contains n − k fixed points. By removing the fixed points and reducing the remaining
elements to [k] by keeping the relative order, we get a derangement τ on [k]. It is easy to
see that excB(σ) = excB(τ). For the σ given above, we have τ = (1, 5̄, 4)(3, 2̄)(6̄). Hence
we obtain (3.5), that is,

Bn(q) =
n∑

k=0

(
n

k

)
dB

k (q). (3.6)

By the binomial inversion, we arrive at (3.3). This completes the proof.
Using the generating function of Bn(q), we derive the generating function of dB

n (q).

Theorem 3.3 We have

∑

n≥0

dB
n (q)

tn

n!
=

(1 − q)etq

e2tq − qe2t
=

etq

1 −
∑

n≥2 2n(q + q2 + · · ·+ qn−1)tn/n!
. (3.7)

Proof. Using (3.2) and (3.6), we get

et
∑

n≥0

dB
n (q)

tn

n!
=
∑

n≥0

Bn(q)
tn

n!
=

(1 − q)et(1−q)

1 − qe2t(1−q)
. (3.8)

This gives (3.7).
Next, we give a combinatorial interpretation of the identity (3.7) based on an extension

of the decomposition of derangements given by Kim and Zeng [11] in their combinatorial
proof of (1.3).

Combinatorial Proof of Theorem 3.3. First, we give an outline of the proof of Kim and
Zeng for derangements of type A. We adopt the convention that a cycle σ = s1s2 · · · sk

of length k is written in such a way that s1 is the minimum element, σsi
= si+1 for

1 ≤ i ≤ k − 1, and σsk
= s1. A cycle σ (of length at least two) is called unimodal if
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there exists i (2 ≤ i ≤ k) such that s1 < · · · < si−1 < si > si+1 > · · · > sk. Moreover, a
unimodal cycle σ is called prime if it satisfies the additional condition si−1 < sk. It should
be noted that a cycle with only one element is also considered as a unimodal and prime
cycle. Let (l1, . . . , lm) be a composition of n, a sequence of prime cycles τ = (τ1, τ2, . . . , τm)
is called a P -decomposition of type (l1, . . . , lm) if τi is of length li and the underlying sets
of τ1, τ2, . . . , τm form a partition of [n]. Define the excedance of τ as the sum of the
excedances of its prime cycles, that is,

exc(τ) = exc(τ1) + · · · + exc(τm),

and the weight of τ is defined by qexc(τ). Kim and Zeng found a bijection which maps the
number of excedances of a derangement to the number of excedances of a P -decomposition
of type (l1, . . . , lm), li ≥ 2. Then the generating function of dn(q) follows from the gener-
ating function of P -decomposition of type (l1, . . . , lm), as given by

(
l1 + · · · + lm

l1, . . . , lm

) m∏

i=1

(q + · · · + qli−1)
tl1+···+lm

(l1 + · · ·+ lm)!
.

Summing over l1, . . . , lm ≥ 2 and m ≥ 0, we are led to the right hand side of the relation
(1.3).

We now proceed to extend the above construction to type B derangements. Observe
that a signed permutation is a signed derangement if and only if the cycle decomposition
does not have any one-cycle with a positive sign. More precisely, for any derangement π
of type B, we can decompose it into cycles

π = (C1, C2, . . . , Ck),

where C1, C2, . . . , Ck are written in decreasing order of their minimum elements subject
to the following order

n̄ < · · · < 2̄ < 1̄ < 1 < 2 < · · · < n. (3.9)

Next we give two algorithms which help us to decompose each derangement of type
B into a P -decomposition with the same number of excedances of type B to prove (3.7).
The algorithm is described only for a cycle. Based on the cycle decomposition, one can
apply the algorithm to transform a permutation into unimodal or prime cycles. Let us
first describe the U -algorithm which transforms a permutation into unimodal cycles.
The U-algorithm

1. If σ is unimodal, set U(σ) = (σ).

2. Otherwise, let i be the largest integer such that si−1 > si < si+1 and j be the
unique integer greater than i such that sj > si > sj+1. Set U(σ) = (U(σ1), σ2),
where σ1 = s1 · · · si−1sj+1 · · · sk, and σ2 = sisi+1 · · · sj is unimodal.

For example, let π = 3 5̄ 4 2 9 6̄ 8 7 1̄. Then we have excB(π) = 5, and C1 = 7 8,
C2 = 5̄ 9 1̄ 3 4 2 and C3 = 6̄. Using the U -algorithm, we find

U(C1) = (7 8), U(C2) = (5̄ 9, 1̄ 3 4 2), U(C3) = (6̄),
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and
U(π) = (7 8, 5̄ 9, 1̄ 3 4 2, 6̄).

Note that excB(U(π)) = 5, which coincides with excB(π) = 5.
Next, we use the V -algorithm as given in [11], which transforms a sequence of unimodal

cycles into a sequence of prime cycles by imposing the order relation (3.9).
The V -algorithm

1. If σ is prime, then set V (σ) = (σ).

2. Otherwise, let j be the smallest integer such that sj > si > sj+1 > si−1 for some in-
teger i greater than 1. Then set V (σ) = (V (σ1), σ2), where σ1 = s1 · · · si−1sj+1 · · · sk,
and σ2 = sisi+1 · · · sj is prime.

Applying V -algorithm to each cycle of U(π) in the above example, we obtain that

V (U(π)) = (7 8, 5̄ 9, 1̄ 2, 3 4, 6̄).

One can check that excB(V (U(π))) = 5.
Combining the U -algorithm and the V -algorithm, we can transform a derangement

in Bn to a P -decomposition of [n]. Assume that |st−2| is an excedance of type B of the
signed cycle σ = s1s2 · · · sk, namely, σ|σ|st−2|

| > σ|st−2|. In light of the cycle notation of

σ, we have σ|st−2| = st−1, σ|σ|st−2|
| = st and st > st−1. Thus the number of excedances

of type B in a cycle σ of length larger than two equals the number of indices i such
that si > si+1. As long as the order is given, it is the same as counting the number of
excedances of an ordinary cycle. This implies that as the type A case, the number of
excedances of type B in π equals to the total number of excedances of type B in all prime
(resp. unimodal) cycles. In the type B case, we define the weight of each prime cycle τ by
qexcB(τ). Notice that in the cycle decomposition of a type B derangement, we allow cycles
of length one with negative elements. Thus the corresponding P -decompositions have
type (1k, l1, . . . , lm), k ≥ 0, li ≥ 2. For a cycle containing only one negative element, the
weight is q. For a cycle of length l ≥ 2, we have 2l choices for the l elements in the prime
cycle, so the weight of such a prime cycle on a given l-set is 2l(q + q2 + · · ·+ ql−1). Hence
the generating function of dB

n (q) follows from the generating function of P -decompositions
of type (1k, l1, . . . , lm), k ≥ 0, li ≥ 2, as given by

qktk
(

l1 + · · · + lm
l1, . . . , lm

) m∏

i=1

2li(q + · · · + qli−1)
tl1+···+lm

(l1 + · · ·+ lm)!
.

Summing over l1, . . . , lm ≥ 2 and k ≥ 0, m ≥ 0, we obtain the right hand side of (3.7).

4 A Recurrence Relation

In this section, we use the recurrence relation for Eulerian polynomials of type B to
derive a recurrence relation for the derangement polynomials dB

n (q). Applying a theorem
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of Zhang [18], we deduce that the polynomials {dB
n (q)}n≥1 form a Sturm sequence, that

is, dB
n (q) has only real roots which are separated by the roots of dB

n−1(q). Moreover, from
the initial values, one sees that dB

n (q) has only non-positive real roots for any n ≥ 1.
Consequently, dB

n (q) is log-concave. Although the polynomials dB
n (q) are not symmetric,

we show that they are almost symmetric in the sense that the coefficients have the spiral
property.

The following recurrence formula (4.1) for Bn(q) is a special case of Theorem 3.4 in
Brenti [3], see, also, Chow and Gessel [7]. This relation leads to a recurrence for dB

n (q).

Theorem 4.1 For n ≥ 1, we have

Bn(q) = ((2n − 1)q + 1)Bn−1(q) + 2q(1 − q)B′
n−1(q). (4.1)

Theorem 4.2 For n ≥ 2, we have

dB
n (q) = (2n − 1)qdB

n−1(q) + 2q(1 − q)dB′

n−1(q) + 2(n − 1)qdB
n−2(q). (4.2)

Proof. By (3.3) and (4.1), we obtain

dB

n (q) =

n∑

k=0

(−1)n−k

(
n

k

)
Bk(q)

=
n∑

k=0

(−1)n−k

((
n − 1

k − 1

)
+

(
n − 1

k

))
Bk(q)

= −dB

n−1
(q) +

n∑

k=1

(−1)n−k

(
n − 1

k − 1

)
(((2k − 1)q + 1)Bk−1(q) + 2q(1 − q)B′

k−1
(q))

= −qdB

n−1
(q) + 2q

n∑

k=1

(−1)n−k

((
n

k

)
−
(

n − 1

k

))
kBk−1(q) + 2q(1 − q)dB

′

n−1
(q)

= −dB

n−1
(q) + 2nq

n∑

k=1

(−1)n−k

(
n − 1

k − 1

)
Bk−1(q)

+ 2q(n − 1)

n∑

k=1

(−1)n−k−1

(
n − 2

k − 1

)
Bk−1(q) + 2q(1 − q)dB

′

n−1
(q)

= (2n − 1)qdB

n−1
(q) + 2(n − 1)qdB

n−2
(q) + 2q(1 − q)dB

′

n−1
(q),

as desired.
Equating coefficients on both sides of (4.2), we are led to the following recurrence

relation for the numbers dn, k.

Corollary 4.3 For n ≥ 2 and k ≥ 1, we have

dn, k = 2kdn−1, k + (2n − 2k + 1)dn−1, k−1 + 2(n − 1)dn−2, k−1. (4.3)

From the above relation (4.3), it follows that dn,1 = 2n for n > 1. The recurrence
relation (4.2) enables us to show that the polynomials {dB

n (q)}n≥1 form a Sturm sequence.
The proof turns out to be an application of the following theorem of Zhang [18].
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Theorem 4.4 Let fn(q) be a polynomial of degree n with nonnegative real coefficients

satisfying the following conditions:

(1) For n ≥ 2, fn(q) = anqfn−1(q) + bnq(1 + cnq)f ′
n−1(q) + dnqfn−2(q), where an >

0, bn > 0, cn ≤ 0, dn ≥ 0;

(2) For n ≥ 1, zero is a simple root of fn(q);

(3) f0(q) = e, f1(q) = e1q and f2(q) has two real roots, where e ≥ 0 and e1 ≥ 0.

Then for n ≥ 2, the polynomial fn(q) has n distinct real roots, separated by the roots of

fn−1(q).

It can be easily verified that the recurrence relation (4.2) satisfies the conditions in
the above theorem. Thus we reach the following assertion.

Theorem 4.5 The polynomials {dB
n (q)}n≥1 form a Sturm sequence, that is, for n ≥ 2,

dB
n (q) has n distinct non-positive real roots, separated by the roots of dB

n−1(q).

As a consequence of the above theorem, we see that the coefficients of dB
n (q) are log-

concave for n ≥ 1. We will show that the coefficients of dB
n (q) satisfy the spiral property.

This property was first observed by Zhang [19] in his proof of a conjecture of Chen and
Rota [5].

Theorem 4.6 The polynomials dB
n (q) possess the spiral property. Precisely, for n ≥ 2, if

n is even,

dn, n < dn, 1 < dn, n−1 < dn,2 < dn, n−2 < · · · < dn, n

2
+2 < dn, n

2
−1 < dn, n

2
+1 < dn, n

2
,

and if n is odd,

dn, n < dn, 1 < dn, n−1 < dn, 2 < dn, n−2 < · · · < dn, n+3

2

< dn, n−1

2

< dn, n+1

2

.

Proof. Let

f(n) =





n
2
− 1, if n is even,

n−1
2

, if n is odd.

In this notation, the spiral property can be described by the following inequalities

dn, n+1−k < dn, k < dn, n−k (4.4)

for any 1 ≤ k ≤ f(n), and the inequality

dn, n

2
+1 < dn, n

2
(4.5)

when n is even.
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We proceed to prove the relations (4.4) and (4.5) by induction on n. It is easily seen
that (4.4) and (4.5) hold for n = 2 and n = 3. We now assume that they hold for all
integers up to n. We claim that

dn+1, n+2−k < dn+1, k < dn+1, n+1−k (4.6)

for any 1 ≤ k ≤ f(n + 1). We will also show that when n + 1 is even,

dn+1, n+3

2

< dn+1, n+1

2

. (4.7)

For k = 1, we have dn+1, n+1 − dn+1, 1 = 1 − 2n+1 < 0. For 2 ≤ k ≤ f(n + 1), by the
recurrence relation (4.3) for dn, k, we have

dn+1, n+2−k = 2(n + 2 − k)dn, n+2−k + (2k − 1)dn, n+1−k + 2ndn−1, n+1−k, (4.8)

dn+1, k = 2kdn, k + (2n − 2k + 3)dn, k−1 + 2ndn−1, k−1, (4.9)

dn+1, n+1−k = 2(n + 1 − k)dn, n+1−k + (2k + 1)dn, n−k + 2ndn−1, n−k. (4.10)

It follows from (4.8) and (4.9) that

dn+1, n+2−k − dn+1, k = (2n − 2k + 3)(dn, n+2−k − dn, k−1) + 2k(dn, n+1−k − dn, k)

+ 2n(dn−1, n+1−k − dn−1, k−1) + (dn, n+2−k − dn,n+1−k).

By the inductive hypothesis, we see that the difference in every parenthesis in the above
expression is negative. This implies that for 2 ≤ k ≤ f(n + 1)

dn+1, n+2−k − dn+1, k < 0. (4.11)

Similarly, for 2 ≤ k ≤ f(n + 1), in view of (4.9) and (4.10) we find

dn+1, k − dn+1, n+1−k = (2k + 1)(dn, k − dn, n−k) + 2n(dn−1, k−1 − dn−1, n−k)

+ (2n + 3 − 2k)(dn, k−1 − dn, n+1−k) + (dn, n+1−k − dn, k).

Again, by the inductive hypothesis, we deduce that for 2 ≤ k ≤ f(n + 1),

dn+1, k − dn+1, n+1−k < 0. (4.12)

Combining (4.11) and (4.12) gives (4.6) for 1 ≤ k ≤ f(n + 1).
It remains to verify (4.7) when n+1 is even. By the recurrence relation (4.3), we have

dn+1, n+3

2

= (n + 3)dn, n+3

2

+ ndn, n+1

2

+ 2ndn−1, n+1

2

,

dn+1, n+1

2

= (n + 1)dn, n+1

2

+ (n + 2)dn, n−1

2

+ 2ndn−1, n−1

2

.

This yields

dn+1, n+3

2

− dn+1, n+1

2

= (n + 2)(dn, n+3

2

− dn, n−1

2

) + (dn, n+3

2

− dn, n+1

2

)

+ 2n(dn−1, n+1

2

− dn−1, n−1

2

).

Again, by the inductive hypothesis, we obtain (4.7). This completes the proof.
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5 The Limiting Distribution

In this section, we show that the limiting distribution of the coefficients of dB
n (q) is nor-

mal. The type A case has been studied by Clark [9]. It has been shown that the limiting
distribution of the coefficients of dn(q) is normal. Let ξn be the number of type B ex-
cedances in a random type B derangement on [n]. We first compute the expectation and
the variance of ξn. Then we use Lyapunov’s theorem to show that ξn is asymptotically
normal.

Theorem 5.1 We have

Eξn =
n

2
+

1

4
+ o(1), (5.1)

Varξn =
n

12
− 1

16
+ o(1). (5.2)

Proof. By the recurrence relation (4.1) for Bn(x), we have for n ≥ 1,

B′
n(x) = (2n − 1)Bn−1(x) + (2nx − 5x + 3)B′

n−1(x) + 2x(1 − x)B′′
n−1(x). (5.3)

Since Bn(1) = 2nn! for n ≥ 0, setting x = 1 in (5.3) gives the following recurrence relation
for B′

n(1):
B′

n(1) = (2n − 1)(n − 1)!2n−1 + (2n − 2)B′
n−1(1).

It can be verified that for n ≥ 1,

B′
n(1) =

n2nn!

2
. (5.4)

Moreover, by (5.3) we get

B′′
n(x) = (4n − 6)B′

n−1(x) + (2nx − 9x + 5)B′′
n−1(x) + 2x(1 − x)B′′′

n−1(x). (5.5)

Setting x = 1 in (5.5) and using (5.4), we obtain

B′′
n(1) = (2n − 3)(n − 1)2n−1(n − 1)! + (2n − 4)B′′

n−1(1). (5.6)

One can check that the solution of the above recurrence relation is given by

B′′
n(1) =

(3n2 − 5n + 1)2nn!

12
, n ≥ 2. (5.7)

Since Bn(1) = 2nn!, in view of the formula (3.3), we see that

dB
n (1) =

n∑

k=0

(−1)n−k

(
n

k

)
Bk(1). (5.8)

Let

sn =
n∑

k=0

(−1)k 1

2k · k!
.
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So dB
n (1) can be written as 2nn!sn.

Applying the formula (3.3) again and using the evaluation (5.4) for B′
n(1), we find

that for n ≥ 1,

dB
n

′
(1) =

n∑

m=1

(−1)n−m

(
n

m

)
· 2m−1m · m!

= 2nn!

n−1∑

m=0

(−1)m n − m

m!2m+1

= 2nn!

(
n

2

n−1∑

m=0

(−1)m 1

m!2m
+

1

4

n−1∑

m=0

(−1)m−1 1

2m−1(m − 1)!

)

=
2nn!

2

(
nsn−1 +

1

2
sn−2

)
. (5.9)

Differentiating (3.3) twice and invoking (5.7), we deduce that for n ≥ 2

dB
n

′′
(1) =

n∑

m=2

(−1)n−m

(
n

m

)
2mm!

3m2 − 5m + 1

12

=
2nn!

12

n∑

m=2

(−1)n−m 3m2 − 5m + 1

(n − m)!2n−m

=
2nn!

12

n−2∑

m=0

(−1)m 3(n − m)2 − 5(n − m) + 1

m!2m

=
2nn!

12

(
n−2∑

m=0

(−1)m 3n2 − 5n + 1

m!2m
+

n−2∑

m=0

(−1)m −6n + 5

(m − 1)!2m
+ 3

n−2∑

m=0

(−1)m m2

m!2m

)

=
2nn!

12

(
(3n2 − 5n + 1)sn−2 +

1

2
(6n − 5)sn−3 +

3

4
sn−4 −

3

2
sn−3

)

=
2nn!

12

(
(3n2 − 5n + 1)sn−2 + (3n − 4)sn−3 +

3

4
sn−4

)
. (5.10)

It is easy to see that sn−r/sn = 1 + o(1) for r = 1, 2, 3, 4. From (5.8), (5.9) and (5.10),
we conclude that

Eξn =
dB

n

′
(1)

dB
n (1)

=
n

2
+

1

4
+ o(1), (5.11)

Varξn =
dB

n

′′
(1)

dB
n (1)

+ Eξn − (Eξn)2 =
n

12
− 1

16
+ o(1), (5.12)

as desired.
Given the formulas for the expectation and variance of ξn, we will use Lyapunov’s

theorem [13, Section 1.2] to show that the limiting distribution of ξn is normal. Recall
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that a triangular array of independent random variables ξn,k, k = 1, 2, . . . , n, n = 1, 2, . . .,
is called a Poisson sequence if

P{ξn,k = 1} = pk, P{ξn,k = 0} = qk,

where pk = pk(n) ∈ [0, 1], qk = qk(n) and pk + qk = 1. Lyapunov’s theorem can be used
to derive asymptotically normal distributions.

Theorem 5.2 (Lyapunov) Let

V 2
n =

n∑

k=1

pkqk, ηn = V −1
n

n∑

k=1

(ξn,k − pk).

If Vn → ∞ as n → ∞, then the sequence {ηn} is asymptotically standard normal.

The above theorem enables us to derive the asymptotic distribution of the random
variable ηn.

Theorem 5.3 The distribution of the random variable

ηn =
ξn − Eξn√

Varξn

converges to the standard normal distribution as n → ∞.

Proof. Since the polynomials dB
n (q) have distinct, real and non-positive roots, we may

express dB
n (q) as

dB
n (q) = q(q + α1)(q + α2) · · · (q + αn−1),

where αi > 0 for all 1 ≤ i ≤ n − 1. Obviously, P (ξn = k) = dn,k/d
B
n (1). The probability

generating function

Pn(x) =

n∑

k=1

P (ξn = k)xk

can be easily written as

Pn(x) =
x(x + α1)(x + α2) · · · (x + αn−1)

(1 + α1)(1 + α2) · · · (1 + αn−1)

= x

(
x

1 + α1

+
α1

1 + α1

)
· · ·
(

x

αn−1

+
αn−1

1 + αn−1

)
.

Consider the independent random variables ξn,1, ξn,2, . . . , ξn,n, taking the values 0 and 1,
such that

P (ξn,k = 1) = pk =
1

1 + αk

∈ [0, 1], k = 1, 2, . . . , n,

the electronic journal of combinatorics 16(2) (2009), #R15 14



with the convention that αn = 0. It is evident that the variance of ξn,k equals pk(1− pk).
Hence the random variable ξn, namely, the number of type B excedances in a random
type B derangement on [n], can be represented as a sum of independent random variables

ξn = ξn,1 + ξn,2 + · · ·+ ξn,n−1 + ξn,n.

Since the variables ξn,1, ξn,2, . . . , ξn,n are independent, we obtain that

Var(ξn) =
n∑

k=1

Var(ξn,k) =
n∑

k=1

pk(1 − pk).

On the other hand, it follows from (5.12) that Var(ξn) → ∞ as n → ∞. By Theorem 5.2,
we reach the conclusion that ηn is asymptotically standard normal.

Note added in proof. Chow [8] defined the derangement polynomials of type B based
on the number of weak excedances. As pointed out by Chow [8], the number of ex-
cedances and n minus the number of weak excedances of type B are equidistributed over
derangements of type B, the derangement polynomials of type B defined in this paper is
essentially the same as the polynomials defined by Chow. By different methods, Chow
has independently obtained the generating function, recurrence relation, real-rootedness.
Theorem 4.2, Theorem 3.3 and Theorem 4.5 in this paper are equivalent to Proposition
3.1, Theorem 3.2 and Theorem 3.3 in Chow [8], respectively.
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