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Abstract. In this paper we analyze the time series of daily mean prices generated
in the Italian electricity market, which started to operate as a Pool in April 2004.
The objective is to characterize the high degree of autocorrelation and multiple
seasonalities in the electricity prices. We use periodic models with GARCH
disturbances and leptokurtic distribution and compare their performance with
more classical ARMA-GARCH processes. The within-year seasonal component is
built using the low frequencies components of physical quantities, which are very
regular throughout the sample. Results reveal that much of the variability of the
price series is explained by deterministic multiple seasonalities which interact with
each other. Periodic AR-GARCH models seem to perform quite well in mimicking
the features of the stochastic part of the price process.
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1. Introduction

Electricity prices as they are now determined in regulated (generally,
Pool) markets, where private operators have replaced previously well
established public enterprises, present everywhere specific behavioral
characteristics. On the one hand, these market-determined prices differ
from the prices fixed by governments or public agencies until the end
of the last century. In fact, in spite of the very limited storability
and transportability of electricity, government-determined prices in-
corporated little uncertainty in their dynamics as they were generally
capped by the imposition of some price ceilings resulting from the
implementation of welfare-improving tariff policies. On the contrary,
market determined electricity prices are strongly affected by the impos-
sibility of arbitrage between time and space and so they have become
very volatile. Yet, time series of current electricity prices differ quite
substantially from prices determined in markets for financial assets and
other type of commodities since electricity (as well as many physical
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commodities) cannot be treated like a stock. Electricity prices have
specific and somehow unique characteristics (e.g. strong seasonalities
and mean reversion) that motivate the use of appropriate time series
modelling to study the specific features of their time pattern and to
evaluate how prices are affected by temporal demand-supply imbal-
ances, seasonality, transmission congestion and, to a lesser extent, by
the features of the mechanism that generates the data (type of auction
employed, price rule, degree of market concentration, etc.).

In Italy the privatization of the former public (quasi)monopolist
eventually lead to the creation of an electricity Pool which started to
operate in April 2004 with some specific legal characteristics such as the
presence of Single Buyer on the demand side. In this paper we try and
describe the price dynamics of the Italian Pool and compare our find-
ings with those obtained by other authors who analyzed other European
markets. We also suggest some methodological estimation procedures
that may prove useful for further research in the econometric analysis
of electricity prices.

The paper is organized as follows. Section 2 discusses the main
characteristics of some European electricity markets for which data
availability permits time series data. We try and emphasize differences
in the organization and regulation of the markets as well as in the
production structure (specifically, electricity generation) that might
become important in explaining differences in the econometric results.
In Section 3 we describe the main characteristics of the Italian Pool.
Section 4 contains a selected review of the existing literature. In Section
5 we introduce and illustrate some general characteristics of the Italian
data and take care of the deterministic part of the models. Section 6
describes and motivates the choice of the stochastic models and meth-
ods employed to estimate the dynamics of the Italian prices. Results
are shown in Section 7 and section 8 concludes.

2. The electricity markets in the European Countries

In this section we describe some general characteristics of the main
European electricity exchanges alongside with the main features of each
national electricity industry.

The England and Wales (E&W) Electricity Pool started in 1991
after the liberalization of the British electricity market. Since then,
competitive electricity markets have been organized in many other
countries. Here we consider the Nord Pool, Austria, France, Germany,
Netherlands, Spain, and particularly Italy. The key features of most of
these experiences have been, in the first place, the privatization and
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industry reorganization and restructuring of the vertically integrated
monopolistic suppliers previously existing. Secondly, the exchange of
physical electricity is organized as a competitive wholesale spot market
or wholesale auction. Competition has been introduced also at the
retail level whereas transmission/distribution, which are still consid-
ered natural monopolies, remains under government regulation. All the
industry reorganization activity has lead to a separation of potentially
competitive elements from natural monopolies.

The wholesale exchange of electricity poses some problems of market
architecture and design to regulators. In the first place, it must be
decided whether to opt for a centralized Pool or for a decentralized mar-
ket. In the first case, all the electricity must be allocated through the
Pool which is then mandatory; this implies that bilateral contracts are
not allowed. All operators, both on the demand and on the supply side,
submit hourly or half-hourly bids which are matched by a procedure
that minimizes the cost of despatch. A decentralized electricity market
like NETA (England) and California, on the contrary, is organized as a
series of voluntary forward and spot markets and bilateral contracting
is allowed. The advantages of a Pool market over a decentralized one
is that demand and supply are continuously matched so that all co-
ordination problems disappear. Advocates of the decentralized market
structure emphasize, however, that the Pool may be affected by strate-
gic bidding on the part of those operators having some market power
and, as a consequence, the Pool prices do not generally reveal costs.
Whilst the issue is still open at the theoretical level, on the empirical
side we find many examples, especially in Europe, of non-mandatory
electricity Pools, where bilateral contracts are allowed. This choice is
probably motivated by the desire to capture the main advantages of
the two alternative organization schemes.

Electricity Pools work as multi-unit uniform price auctions: opera-
tors submit price/quantity offers which are aggregated by the market
operator in order to form a demand (where demand side bidding is
allowed) and a supply curve. The equilibrium price and quantity are
then determined by the usual crossing condition and all the producers
despatched receive the same System Marginal Price (SMP) equal to
the bid made by the marginal unit called into operation.

As mentioned above, the first European experience of a central-
ized market for the exchange of physical electricity among producers,
distributors and eligible final consumers was the British Pool market
which started in 1991 and more recently evolved to a decentralized
market (NETA).

The North Pool, who started in 1993, is the oldest electricity market
that we consider. The Nord Pool is the unique example of cross-country
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exchange area and for this reason it might represent a first step to-
wards the integration of the European electricity industry. It links
together Norway, which is the founding country, Sweden, who joined
in 1996, Finland (1998) and the western part of Denmark (1999). The
participation to the North Pool is voluntary.

Omel operated since 1998 as the Spanish market, but it recently
became the Iberian Market after the integration of the Portuguese area
(2005).

In a similar way, the German EEX (European Electricity Exchange)
unifies since 2002 two exchanges previously operating in Leipzig (LPX)
and in Frankfurt (EEX).

In the north area of Europe the APX (Amsterdam Power Exchange)
operates since 1999; the APX Group is also in charge of the British
UKPX since 2003.

Power Next operates since 2001 as the French electricity market.
Finally, the Austrian market EXAA is active since 2002.

All the above mentioned electricity markets share some common
characteristics, which are summarized in Table 1. First we notice
that all the systems are non mandatory markets. Producers and con-
sumers/distributors are allowed to engage in bilateral contracts for the
short or long term exchange of electricity. The quantity traded bilat-
erally is usually included in the total supply recorded in the exchange
as zero price offers. A second common characteristic is the existence of
demand side bidding. However, the opening of the bidding process to
demand has not proceeded at a common pace in all countries. Indeed,
following the European Directive 2003/54/EC, all customers have to
be considered as eligible by 1/7/2007. This means that at that date
all consumers ought to be in a condition to buy electricity directly
in the day-ahead market. At present, however, in almost all markets
considered, only large (mainly industrial) consumers and distributors
are allowed to present the demand bids. Another important common
characteristic of the European electricity exchanges is the pricing rule.
All day-ahead markets have chosen the system marginal price rule on
a hourly basis. This means that 24 auctions are held the day before the
delivery, one for each hour of the next day; the last unit despatched,
namely the production unit that is necessary to match the last MWh
demanded, fixes the closing hourly price for the entire market. There-
fore, all units which have been selected by the auction receive the
System Marginal Price (SMP), for the whole quantity they sell.

The EU Electricity Directive 2003/54 requires each country to im-
plement both legal and functional unbundling for transmission and
distribution System Operators. This rule is expected to lead to non-
discriminatory network access with tariffs which broadly reflect costs.
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Although the provisions of the Directive have usually been transposed
into national laws, it is not clear whether network companies have yet
modified all aspects of their organization to comply with the new law.
The requirement to have legally unbundled and independently managed
transmission system operators (TSO) should have been implemented by
1 July 2004. All the countries considered have accomplished to the legal
unbundling of network operators, but in some cases there is still overlap
between ownership of the TSO and ownership of one (usually the former
monopolist) electricity supplier. This is the case, for example, of the
French market where RTE is a limited company held by EDF and by
the State. In the Nord Pool the State owns both the TSO and some
shares in a generating company (see again Table 1).

In all the countries considered the electricity Pool market is orga-
nized by a Market Operator (MO, auctioneer). In the former vertically
integrated electricity industry, the central operators had full knowledge
of operation and fuel cost curves of each unit. They despatched and re-
dispatched the system by using security constrained OPF, which was
based on the generation fuel cost optimization. In the deregulated elec-
tricity markets the (unconstrained) market dispatch process is similar
in the sense that MO collects bids and organizes the despatching of
units in a cost minimizing way. This auction-based dispatching does
not take transmission conditions into account and so congestions may
occur. The main features of the mechanisms implemented to manage
congestions has changed in favour of a system compatible with the bid-
price-based optimization. When congestion occurs on the transmission
line the market operator together with the TSO try and relieve it at
the minimum possible cost in a market based way. Either voluntary
adjustment bids from generators and loads are used in the optimization
procedure to minimize the cost of adjustments, or bids submitted in
the day-ahead market are used to change the provisional despatch pro-
gram when it is unfeasible given the transmission constraints. Market
based procedures are totally different from the traditional regulated
congestion procedures with centralized mandatory least-cost dispatch.
However, the allocation of the congestion costs may be performed
in more than one method. One substantial difference depends upon
whether or not locational prices are calculated directly in the electricity
day-ahead market. Alternatively, separate markets for the congestion
management may be implemented when the day-ahead market allo-
cations result unfeasible. In both cases the electricity price results to
be different across areas, namely higher in the congested areas and
lower in the “exporting” areas, and so prices send the correct signals
to operators.
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In the old UK Pool, on the contrary, the cost of congestion man-
agement was allocated uniformly to all market participants based on
system uplifts. However, a uniform price over the network can give
incorrect signals for the location of new power plants. Nodal prices are
applied in PJM, ISO-NE, ISO-NY whereas zonal prices prevailed in
the Nordic Pool and in Italy. Nodal prices would provide the correct
location price signals, but they could be very sensitive to operating con-
ditions and network characteristics. Zonal pricing is thought to combine
a good performance in sending signals to the market together with a
fairly simple implementation. The resolution of bottlenecks is managed
by the splitting of markets into zones characterized by different equi-
librium prices. In the congested area the price is higher than the one
prevailing in the non-congested area. The determination of the different
zones is managed differently across markets. In Italy, for example, zones
are predetermined on the basis of historical observation and knowledge
of the grid line. The day-ahead market IPEX therefore closes with
different zonal prices and so it solves the congestion without the need
of resorting to a specific congestion market. In the same manner, within
Norway - and at the interconnections between the Nordic countries -
price mechanisms are used to relieve grid congestion (bottlenecks), by
introducing different Elspot area prices1. The total geographic market
is divided into bidding areas; these may become separate price areas if
the contractual flow of power between bid areas exceeds the capacity
allocated for Elspot contracts by transmission system operators. When
such grid congestion develops, two or more area prices are created.
In Norway, because of the topology of its transmission system, most
congestion will appear as overloads in certain transmission corridors.
In the Nordic Pool, congestion would mostly exist at the same trans-
mission elements since its geographical characteristic leads to power
flows in the north-south direction because the large part of hydro plant
production is placed in the north while consumption is more spread out
in the south. Therefore, the zone definition is easy to implement and
the market splitting method is feasible for its congestion management.
In Austria, which is an important transit country, congestion on the
network occurs because of a high quota of energy that goes through to
the lines in order to be delivered abroad. Therefore, the network capac-
ity in this country is extremely valuable and as a result network access
tariffs are settled at the highest level with respect to other countries.

The electricity markets considered differ significantly in their under-
lying productivity structure. This is a very important point since all
the issues related to the market design become less severe when the
industry is per se more competitive. It is well known that electricity
can be generated in a variety of ways and using different types of input,
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which can be either renewable or not-renewable. The cost of the unit
of energy supplied depends upon the technology and this influences
the shape of the system marginal cost function and hence of the sys-
tem marginal price. The productive mix of the generating industry is
thought to influence the market power of firms, their strategic behavior
and finally the prices for energy. For that reason some data about the
industry structure must be considered into the analysis. The Nord Pool
comprises countries where an high percentage of production comes from
hydro resources (56.7%) and still better does Austria where the hydro
covers the 69% of total production. Spain and France present similar
figures (11.8% and 11% respectively) on hydroelectric production but
France has a very high percentage of nuclear production (78%). Nether-
lands and Germany have a small quota of hydroelectric production (0.1
and 4.2 respectively). Table 2 contains some data which can help us
to predict the degree of competitiveness of power markets in the above
mentioned countries.

The Nordic area appears to have the more competitive power mar-
ket. This must be considered together with the high percentage of hydro
plants. It is not surprising, then, that Finland, Sweden and Norway
prices are well below the EU average, even if they rose slightly due
to fuel price increase. The French market is characterized by a high
level of concentration (EDF has 90% share of the market) and by
a high consumers’ protection, which results in low regulated tariffs.
Power Next account for a small quota of total energy consumed. This
is also the case of Germany where only a small portion of energy is
traded on EEX (11%). France and Germany have recently installed
new wind plants. All the other markets listed in Table 2 appear to be
fairly concentrated and to have a quite low liquidity share.

We therefore conclude that across European countries the level of
concentration in generation is still high and this creates the scope for
market power and the ability to influence prices. The strong position of
incumbent operators has not been eroded in a significant way by invest-
ments in generation by new entrants. New generation assets normally
entail significant investment costs which are seen as a major barrier to
entry. Complex planning procedures and the scarcity of suitable sites
have also been named as reasons why the building of new power plants
does not take place. Uncertainties associated with the power exchanges
have also been considered as entry barriers. Generation is a key issue
for competition in the European electricity markets. The generators,
due to the characteristics of the electricity market (the non-storability
of electricity, the high inelasticity of demand, a very wide spectrum
of costs of production and a price equal to the highest offer (SMP)
made in power exchanges), are able to influence prices through the
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use of generation capacity available to them, in particular by either
withdrawing capacity (which may force recourse to more expensive
sources of supply) or by imposing prices when they are indispensable to
meet demand. In the first case, the withdrawal of capacity is profitable
if the cost of not producing is more than compensated by the increase
in SMP. A large portfolio of low-cost plants facilitate this strategy. In
the second case, it is possible to raise SMP even with a relatively small
portfolio of plants depending on other offer constraints (e.g. the location
of units). The behavior of generators thus can impact significantly on
the level of prices, even at a level of lower concentration than in other
sectors.

3. The Italian electricity market

The Italian IPEX has been organized on the basis of a Pool system,
managed by a market operator (“Gestore del Mercato”, GME) who
collects the bids, determines the merit order for the dispatching of
electricity and is responsible of all the auxiliary services. The Pool
initially planned to enter into force by 1st January 2001, in the reality
started on the 31st March 2004 as a one-side market. A Single Buyer
(“Acquirente Unico”), which has been constituted by the GRTN in
1999, had the responsibility of guaranteeing the supply of electricity to
all the captive customers. Demand-side bidding has been introduced
since the 1st January 2005.

The Italian electricity market is formed by three different markets,
coordinated by the GME: Day-ahead market (MGP), which is the mar-
ket for the physical exchange of energy, a Rebalancing market (MA)
and the Market for the despatchment service (MSD). The three markets
operate in a temporal sequence.

Electricity supply is considered a public service in Italy. The opening
to competition of production, import, export, purchasing and selling of
electricity must be realized in accordance with public service oblig-
ations. Several duties and obligations imposed on different operators
in the electricity sector fall within the scope of public obligations. In
particular, as for the managing of the network, the GRTN had the
obligation to ensure the security, continuity and development of the net-
work, to connect to the network all those operators that so request and
to ensure priority to the electricity produced on the basis of domestic
energy sources. The organizational choice of Italy was initially based on
a ISO model, which implied a separation between the ownership and the
managing of the network. GRTN managed the line under the guidance
of the Ministry of Production Activity, whereas a separate company
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(Terna s.p.a) owned at 100% by the former public monopolist (ENEL)
had the ownership of the line. On the 1st November 2005 Terna and
GRTN merged so that Italy now has the same organizational model
of other European countries based with a TSO who both owns and
manages the transmission line (see Table 1).

The Single Buyer is obliged to guarantee to captive consumers the
security, continuity and efficiency of supply and to apply a unique
tariff. A Code of practice for electricity supply has been introduced
by the Regulator, regarding customers disconnections for debt, com-
plaints management, meters reading, billing, payments, non-payments
handling.

The exchange of electricity in the IPEX, is managed by the GME
and scheduled on the basis of the three separated markets mentioned
above. In the MGP, where electricity is exchanged for each hour of
the following day, producers submit price-quantity bids and the GME
organizes the despatch on the basis of the cost minimizing aggregate
supply. From January 2005, demand bids, submitted by Single Buyer
and by the eligible consumers, are ranked in a decreasing order. The
equilibrium between aggregate supply and demand determines the
hourly SMP price and the total quantity traded. The SMP is paid to
all despatched units. The IPEX is not mandatory so that eligible pur-
chasers and wholesalers may sign bilateral contracts for the exchange
of electricity with producers. The provisional program derived from
the organized Pool market and from the bilateral transactions is then
presented to the TSO who verifies if the electricity flows implied by
the program meet the technical constraints of the transmission line. In
case of congestion, the market is split into four predetermined zones
and new zonal equilibria and prices are calculated.

4. The existing literature

The above discussed modifications in the electricity market organi-
zation have stimulated empirical studies of electricity price both in
Europe and in the USA. The main elements emerging from these studies
are summarized in Table 3.

Bhanot (2000) analyzes electric power prices from twelve Californian
regional markets. The objective is to characterize and explain the high
degree of autocorrelation and seasonality in power prices and address
salient issues that are pertinent for the valuation and hedging of power-
based financial contracts. It is shown that price behavior changes with
each regional market, so that a firm that seeks to value or hedge
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power-based contracts must use instruments from the region in which
it operates.

Escribano et al. (2002) use average daily prices of several markets
and propose a general and flexible model that allows for deterministic
seasonality, mean reversion, jumps and conditional etheroskedasticity.
They use six nested versions of their model to analyze price behavior in
the different markets. Results indicate that AR(1) and GARCH (1,1)
with jumps perform better than other versions.

Lucia et al. (2002) present a model which should permit the defini-
tion of analytical formulae for derivative pricing. They employ seasonal
dummies and sinusoidal functions to deal with seasonality plus an
AR(1) autocorrelation structure.

Wilkinson et al. (2002) use Australian data and conduct a non-
parametric test of seasonality (peak and off-peak prices) and of log-
normality. They obtain mixed evidence: the null hypothesis of equal
day effects rejected for some sub-sample periods and not rejected for
some other periods.

Carnero et al. (2003) use European data. They argue that the sto-
chastic heteroskedasticity of prices can be correctly modelled when the
conditional mean of the time series is properly modelled by means of
periodic autoregressive (PAR) processes and proceed to model the sea-
sonalities by means of sinusoids and weekday dummies. PAR(1) models
seem to fit best their data. They find evidence of mean reversion in the
stochastic part of the model and long memory in the North Pool prices.

Knittel et al. (2005) study the distributional and temporal properties
of the price process using several common asset price specification (as
well as other less convention models). Results reveal several specific
characteristics unique to electricity prices. They use hourly electricity
prices (Euro/MWh) of each “zone” if there is a separate market price
in each zone. However, with no congestion arbitrage across zones drives
the price to a converging level. Then, the degree of divergence is an in-
dicator of no arbitrage opportunities and if a high degree of correlation
across “zonal” prices exists, one can use just one zone or the national
time series of prices.

Other studies (Fabra and Toro, 2005) investigate collusive vs.
cooperative behavior of bidders.

As it is made evident in Table 3, where details on some of the above
studies are presented in a comparative way, a common trait of this
literature is the adoption of a sort of two-step procedure. A preliminary
data analysis is initially conducted in order to gauge from data inspec-
tion the main characteristics of the dynamics of the electricity prices.
On the basis of this examination it is almost invariably recognized
that the models used in the second step for the time series analysis of
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spot prices have to integrate seasonality and reflect phenomena such
as mean reversion, high price-dependent volatility and leptokurtosis.
as discussed above, methods to deal with seasonality range from the
use of time dummy variables to the application of sinusoids at seasonal
frequencies.

In what follows we discuss the results obtained by previous studies
by clustering them in sets of specific issues.

a) Seasonality
Real-time balancing and dependency on cyclical demand impose
several different seasonal pattern to electricity prices (within day,
week, year) almost everywhere. Deidersen and Trück (2002) study
price series for Germany, New Zealand and Spain and report strong
intra-day pattern and peak during midday. Moreover, monthly
mean prices are higher during daytime and weekly seasonal pat-
terns show the presence of weekend effects. Also annual seasonality
was found with winter prices always higher than prices recorded in
other seasons. Also Knittel et al. (2005), using a model in which
the mean was assumed to be time dependent, found that Cali-
fornian electricity prices show intra-day seasonality and “summer”
(rather than winter) effect and Bhanot (2000), using US wholesale
transaction prices recorded from 1 January 1995 to 1 June 1998,
discovered that the seasonal means for peak and off-peak prices
exhibit significant variation across the 12 months and across the
delivery points.

b) Volatility
Storage and transmission problems and the need for markets to be
balanced in real time are responsible of an unusually high volatil-
ity. All the above reported empirical evidence coincide in stressing
that there is a strong correlation between the standard deviation
and the mean price making the volatility dependent on the price
level. Furthermore many time series exhibit some volatility cluster-
ing making models for conditional etheroskedasticity opportune.
When demand approaches and exceeds the limits of the system
generation capacity, prices are high and more volatile.

c) Mean reversion
By mean reversion we mean the absence of stochastic trends or
martingale-like behavior of prices. This is a distinctive feature of
electricity prices, with respect to other commodity prices. Electric-
ity prices do not behave as martingales, and the non-deterministic
part of the data generating process does not seem to contain unit
roots (e.g. no random walk like behavior). When hourly prices go
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up then they have to move downwards again in a relatively short
time. It is thought that they oscillate around some “equilibrium”
mean (possibly deterministically time varying). This makes a cru-
cial difference with financial markets. The speed of the reversion
is quite informative also in regulatory terms because it displays
the time needed by the supply side of the market to react to
unanticipated events or the time necessary for the event to be
over. The mean reverting nature of electricity prices is generally
explained by market fundamentals. Commonly held opinion is that
only mean reverting models with jumps allow for brief price spikes
(see below) observed in price data and that only the short term
mean reversion is the result of seasonal patterns. In the long run
electricity prices may revert to some mean. Mean reversion and
seasonality are integrated in a model proposed by Lucia et al.
(2002) where the price is decomposed into a deterministic and a
stochastic component the latter following a Ornstein-Uhlenbeck
mean reverting process with zero mean so that price revert to the
deterministic function.

d) Spikes and jumps
They are attributed to sudden and strong increase in demand when
supply is at the limit of generation capacity or to an unexpected
break down of large enough assets. Depending on demand and sup-
ply conditions they can also be negative. According to Deidersen
and Trück (2002) they are less frequent in market with high level
of hydropower generation. Still, spikes are quite pervasive and it
is the presence of spikes what makes the forecasting properties
of the models used in the literature rather poor. These extreme
values can be modelled in discrete time by using stochastic process
with leptokurtic marginal distributions or in continuous time by
introducing jumps in a Wiener process. Equally important are, at
the same time, the problems given by the appropriate modelling
of extreme values of electricity prices since price series are highly
non-normal with large number of extreme values observations.
Byström (2005) models extreme price changes in the Nord Pool
and estimates tail quantiles by filtering the return series and then
applying an extreme value theory model to the residuals. Like in
other studies, the performance of the estimates improves when the
model takes into account explicitly the time-of-the-year seasonality
of the volatility of the data.
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5. Preliminary analysis of the Italian data

In this section we study electricity prices recorded in Italy from April
1st 2004 to January 15th 2006. The data are sampled hourly, but in
this study we use daily means2, leaving the modelling of hourly data
for future analysis.

The daily prices are represented in Figure 1 together with the total
demand for electricity (daily means as well). The strong weekly season-
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Figure 1. Daily means of hourly prices (above) and of hourly demand (below) for
electricity

ality of the prices is clearly due to the seasonality present in electricity
consumption. Indeed, the unitary price of electricity changes according
to the volume to be produced in a fashion roughly depicted in Figure
2.
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Figure 2. Scatter plot of electricity prices and demand with non parametric curve
estimate.

It can be clearly noticed by observing Figures 1 and 3, that in year
2004 the prices have been significantly more volatile compared to the
following years. This may be due to a learning phase that the traders

ElectricityIAER01.tex; 22/03/2006; 18:20; p.13



14

have undergone and to the regulation changes that have taken place
in January 2005. Furthermore, the first 10-15 days of 2005 witnesses
an abrupt increase of the prices not supported by a corresponding rise
in the demand. This episode has been followed by an inquiry of the
antitrust authority about ENEL (the former public monopolist). The
rest of the time series show a greater regularity.
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Figure 3. Weekly time series of the seven days.

Table IV reports some descriptive statistics and normality tests and
graphs for the weekly time series of each day. It is interesting to no-
tice how the days Tuesday-Friday enjoy a very similar behavior (see
Figure 3). By looking at the normality tests (a modified version of the
Jarque-Bera statistic is presented in Doornik and Hansen, 1994), one
is led to think that the data of Monday-Saturday are normal, but the
kernel estimates give evidence of multi-modality for all densities. This
is due to the presence of seasonality within the year and a possible
trend, which make the data generating process non-stationary and the
marginal densities not well-defined. A further problem might be the
presence of weekday holidays that make such days behave similarly to
Sundays, producing negative skewness.

From the sample autocorrelation function (ACF) reported in Table
IV, it is evident the high persistence of linear memory at weekly lags.
This leaves three alternatives open: i) the presence of a deterministic
weekly seasonality, ii) the presence of 7 seasonal unit roots, iii) the
presence of multiple periodic unit roots (Franses and Paap, 2004, ch.4).
In previous literature only the first hypothesis has been modelled.

In order to deal with within-the-year seasonality the cited authors
have used monthly dummies or sinusoids with frequencies 2π/365 and
4π/365. Since this seasonality is due to the low-frequency components
of the electricity demand, and these components tend to be very regular
across years, it is very sensible to use them directly instead of approxi-
mating them in the mentioned way. By observing the electricity demand
series in Figure 1 it easy to notice a higher-than-average consumption
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in winter and summer with sudden decreases in the two main vacation
periods: Christmas holidays (in Italy typically December 24th-January
6th) and August. In order to successfully extract the described features,
we have designed a low-pass filter with two different cut-off frequencies:
a lower one for “normal” periods and higher one for vacation times. This
way, the extracted time series is rather smoothed most of the time, but
it does not average out the negative peaks of the two vacation times.
The slight trend in the extracted component of the consumption has
been eliminated by imposing the same value to December 31st 2004
and December 31st 2005 and adjusting all the other days by linear dis-
counting. Technical details about filtering and detrending are reported
in the Appendix. The low-pass filtered series and the final seasonal
component are shown in Figure 4.

24

28

32

36

40

2004:04 2004:07 2004:10 2005:01 2005:04 2005:07 2005:10 2006:01

a)

24

28

32

36

40

2004:04 2004:07 2004:10 2005:01 2005:04 2005:07 2005:10 2006:01

b)

Figure 4. a) band-pass filtered electricity demand (coincident and lagged one year);
b) final seasonal component (detrended band-pass filtered electricity demand of year
2005 repeated for all years).

If we assume, at least for the moment, that the price data are gener-
ated by the sum of a deterministic component (seasonalities and trend)
and a (well behaved) stationary process, the least square estimates of
the regression of the prices on the deterministic components are consis-
tent and asymptotically normal (CAN) and the asymptotic covariance
matrix of the estimators may be consistently estimated. We estimated
the following three nested regressions:

yt = τ · t +
7∑

i=1

δ0,i · Di,t + δs · St + ηt, (1)
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yt = τ · t +
7∑

i=1

(δ0,i · Di,t + δ1,i · Di,tSt) + ηt, (2)

yt = τ · t +
7∑

i=1

(
δ0,i · Di,t + δ1,i · Di,tSt + δ2,i · Di,tS

2
t

)
+ ηt, (3)

where Di,t is the daily dummy of day i = 1, . . . , 7 (1 =Mon, 7 =Sun),
St is the seasonal variable of Figure 4b) and ηt is a stationary process
with absolutely summable covariances. The difference among the three
regressions is that in equation (1) the within-year seasonality (St) enters
linearly and cannot influence the within-week seasonality, in equation
(2) St enters linearly and influences the within-week seasonality and
in equation (3) St enters quadratically and influences the within-week
seasonality. Table V reports summary statistics on the three regression
models and on the validity of the constrains imposing the equality
of all the parameters relative to the days Tuesday-Friday. The model
has been fitted to the whole sample and to the sub-sample February
1st, 2005 through January 15th, 2006. In both samples the constrained
model (3) outperforms the others, according to the Schwartz’ Bayesian
Information Criterion. It is striking how the performance of all the
models drastically worsen when the whole sample is considered: for the
best fitting model, the standard error of regression is more than double
and the R2 is 20% smaller. These and other considerations have lead us
to conclude that omitting the first 10 months will let us produce more
accurate models and predictions.

6. Stochastic models for the daily electricity prices

In this section we fit a set of models for the prices, which encompass the
regression on deterministic components and take care of the remaining
memory that plays an important role in short term forecasting and in
derivative pricing.

By looking at the sample ACF and PACF functions it can be no-
ticed the presence of linear memory both in the errors and the squared
errors, suggesting the opportunity of ARMA-GARCH models. Maybe
curiously, the model in this family that seems to fit the data best is the
constrained regression (3) with AR(1,6)-GARCH(1,1) errors:

ηt = φ1ηt−1 + φ6ηt−6 + σtzt (4a)

σ2
t = ω + ασ2

t−1z
2
t−1 + βσ2

t−1. (4b)

with zt i.i.d. standard normal process.
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0 7 14 21 28 35 42 49
−1

0

1 ACF of regression errors

0 7 14 21 28 35 42 49
−1

0

1 PACF of regression errors

0 7 14 21 28 35 42 49
−1

0

1 ACF of squared regression errors

0 7 14 21 28 35 42 49
−1

0

1 PACF of squared regression errors

Figure 5. ACF and PACF of regression errors of model (3) with constrains.

Another attractive class of models that could fit the different
characteristics of the days better than simple ARMA is that of
periodic ARMA-GARCH3. A periodic ARMA is an ARMA model
with coefficients that vary periodically (with seasons). For example a
PARMA(1,1) with period 7 is

yt = µt + φ1,t(yt−1 − µt−1) + σtzt + θ1,tσt−1zt−1 (5a)

with zt i.i.d. and

µt+7 = µt, φt+7 = φt, σt+7 = σt, θt+7 = θt. (5b)

A periodic ARMA is a non-stationary model since mean, variance and
linear filter depend on time. Nevertheless a PARMA model for daily
data has a VARMA representation for the vector of the seven weekly
time series. If the VARMA representation has a causal stationary so-
lution, then the process is said periodically stationary. For details on
periodic time series models refer to Franses and Paap (2004) and the
references therein.

A PARMA model may be enriched with a periodic (but also non
periodic) GARCH-type structure by opportunely redefining σt in equa-
tion (5). From our analyses we expect a non-periodic GARCH-type
process to be enough. By looking at the vast GARCH library, we pick
the EGARCH of Nelson (1991), since it is easier to adapt to a peri-
odically changing unconditional variance, allows for asymmetry (which
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implies skewness in the unconditional distribution) and does not impose
constrains on the parameters:

log σ2
t = log σ̄2

t +α(|zt−1|−E|zt−1|)+λzt−1+β( log σ2
t−1−log σ̄2

t−1), (6)

with σ̄2
t+7 = σ̄2

t .
In order to identify the orders of a PARMA model the periodic ACF

and PACF functions may be used. The seven periodic autocorrelation
functions of a periodically stationary process of period 7, xt, are defined
by

γt(k) = E

(
xt − µt

σt
· xt−k − µt−k

σt−k

)
with γt+7(k) = γt(k). The periodic partial ACF (PACF) are defined in
a similar fashion to the non-periodic ones (for definitions and algorithm
refer to Sakai, 1982). Figure 6 reports the sample ACF and PACF of
the estimated regression (3) errors. It is interesting to observe how the

0 7 14
−1

0

1 Mon

0 7 14
−1

0

1 Tue

0 7 14
−1

0

1 Wed

0 7 14
−1

0

1 Thu

0 7 14
−1

0

1 Fri

0 7 14
−1

0

1 Sat

0 7 14
−1

0

1 Sun

Figure 6. Sample periodic ACF (bar) and PACF (line) of the estimated regression
(3) errors.

linear memory changes according to the weekdays. Particularly, it can
be noticed the lag 3 partial autocorrelation of Monday, for which the
previous Friday carries the most important information, and the scarce
influence of previous days on Saturday.
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7. Estimation results on Italian data

The process of finding a good model for the Italian data has been
incremental: we began with simple models and added complexity grad-
ually, in order to match features of the data that appeared during the
modelling process and had not been included in previous models.

M1. Reg-AR(1,6)-GARCH(1,1), zt ∼ (0, 1);

M2. Reg-PAR(1), zt ∼ N(0, 1);

M3. Reg-PAR(1), zt ∼ GED4;

M4. Reg-PAR(5), zt ∼ GED with

Mon : ηt = φ1,1ηt−1 + φ3,1ηt−3 + σ1zt

Tue : ηt = φ1,2ηt−1 + σ2zt

Wed : ηt = φ1,3ηt−1 + σ3zt

Thu : ηt = φ1,4ηt−1 + σ4zt

Fri : ηt = φ1,5ηt−1 + φ2,5ηt−5 + σ5zt

Sat : ηt = φ1,6ηt−1 + σ6zt

Sun : ηt = φ1,7ηt−1 + σ7zt;

M5. like Mod4. but with EGARCH(1,1) of equation (6).

Table VI reports some goodness-of-fit statistics and diagnostics tests
for the five models plus a constrained version of M5. (the insignifi-
cant parameters and the insignificantly different parameters have been
constrained).

Model M5., specifically in its constrained version, seems to outper-
form the others, although the simple AR-GARCH works reasonably
well, if one is lead by Schwartz’ BIC. Table VII reports the con-
strained estimates. The asymmetry parameter of the EGARCH has
been eliminated since not significant.

8. Conclusion

The analysis of Italian electricity prices carried out in this study per-
mitted a good understanding of the most relevant features of these
data. The first finding is the significant change of behavior that the
data generating process has undergone starting from mid January 2005.
This may be due to a learning time needed by the traders involved and
by a change of regulation that took place in that period.
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Another peculiarity of the Italian prices is the relevant drop during
Christmas holidays and summer vacations, that makes a couple of
sinusoids or some monthly dummies not fit for modelling with-year
seasonality. Thus, an original methodology to deal with this problem
has been developed. Furthermore, the interaction of the within-year
seasonality with the within-week seasonality has also been modelled.

A slow but significant (increasing) linear trend in the prices has also
been noted and modelled. The reasons for this may be found in the
relevant growth of the prices of hydrocarbon-based energy sources.

Leptokurtic PAR-GARCH models seem to fit best the different
amount of memory of past observations that each weekday carry, as
well as the presence of spikes and some form of volatility clustering.

Although the limited length of the price time series leaves some
questions open, the models developed in this paper seem to perform
quite well. The stability of these models over time must be checked as
soon as enough data become available.

Appendix

In order to filter the low frequencies of the daily time series of demanded
electricity, we designed a partially model based low pass filter with time
varying cut-off frequency. We used the model

yt = µt + γ
(1)
t + γ

(2)
t + γ

(3)
t + εt (7a)

µt = µt−1 + βt−1 (7b)

βt = βt−1 + ζt (7c)[
γ

(i)
t

γ̃
(i)
t

]
=
[

cos ωj sinωj

− sinωj cos ωj

] [
γ

(j)
t−1

γ̃
(j)
t−1

]
+

[
κ

(j)
t

κ̃
(j)
t

]
(7d)

with ωj = j · 2π/7, j = 1, 2, 3, εt ∼ (0, σ2
ε), ζt ∼ (0, σ2

ζ ), κ
(j)
t , κ̃

(j)
t ∼

(0, σ2
κ). Since the cut-off frequency of the low-pass filter is determined

by the signal-to-noise ratio ρ = σ2
ζ/σ2

ε , we fixed it to 1600 for “normal”
days and to 100 for Christmas and Summer vacation time (24Dec-
6Jan and July-September). The other unknown variances have been
estimated by ML. The filtered series is produced by the Kalman
smoother.

The gain of the filter is given by

G(λ) =
[
ρ(2 − 2 cos λ)2

]−1

1 + [ρ(2 − 2 cos λ)2]−1 + S(λ)
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where

S(λ) =
3∑

j=1

r

(
4(cos λ − cos ωj)2

1 − 2 cos ωj cos λ + cos2 ωj

)2
−1

,

ρ is defined as above, r is the signal-to-noise ratio relative to the sea-
sonal component (the estimated value is 48.660.207, meaning that the
weekly seasonality is practically time-invariant) and ωj = 2πj/7.

The resulting cutoff frequency for normal times is 0.05π correspond-
ing to a period of circa 40 days. The cutoff frequency for vacation days
is 0.10π (ca. 20 days). The two gain functions are depicted in Figure 7.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

λ

G(λ)

Figure 7. Gains of the filter for normal days (dashed) and vacation days (solid).
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Table I. The European Day-Ahead Electricity Markets

 
 
Country 

Nord Pool 
 

Norway, Sweden, 
Finland and 
Denmark 

 

Omel 
 

Spain 

Mibel 
 

Spain 
and 

Portugal 

EEX 
 

Germany 

APX 
 

Nederland 

Power Next 
 

France 

EXAA 
 

Austria 

Start 1993 1998 2005 1998/2002 1999 2001 2002 
Mandatory No              No No No  No 
Pricing rule SMP/h           SMP/h SMP/h SMP/h SMP/h SMP/h 
Demand Side 
bidding 

Yes            Yes Yes Yes Yes Yes 

Grid Owner Statnett (State-
owned) 
 
Energinet.dk (State-
Owned) 
 
Svenska Kraftnät 
(State Utility) 
 
Fingrid  
(12% owned by the 
State of Finland) 

Red Electrica SA 
(Public Company) 

Four 
independent 
companies; 
 
EnBW 
Transportnetze 
AG 
 
E.ON Netz 
GmbH 
 
RWE 
Transportnetz 
Strom GmbH 
 
Vattenfall 
Europe 
Transmission 
GmbH 

TenneT 
holding BV   
 
(State -owned)  

RTE  
 
(limited Comp. 
subsidiary of  
EDF) 

Three independent 
companies: 
 
Verbund-APG 
 
Tiroler Regelzone 
AG 
 
VKW-
Ubertragungsnetz 

“Auctioneer” 
same as Grid 
Owner? 

Yes; Nord Pool Spot 
AS, is owned by all 
of the transmission 
system operators in 
the Nordic power 
exchange area and 
by Nord Pool ASA. 

No  No No  No No 

Who operates? Producers, 
distributors, 
industrial 
companies, energy 
companies, trading 
representatives, large 
consumers and TSOs 

Producers and self-
producers, 
distributors, resellers 
qualified consumers.  

Production/dist
ribution 
companies, 
large 
consumers, 
industrial end-
users, brokers 
and traders. All 
of these can be 
active as buyer 
or supplier 

Production/dist
ribution 
companies, 
large 
consumers, 
industrial end-
users, brokers 
and traders. All 
of these can be 
active as buyer 
or supplier 

Producers, 
suppliers, 
Industrial 
consumers, 
financial 
institutions 
traders 

Production/distributio
n companies, large 
consumers, industrial 
end-users, brokers 
and traders. All of 
these can be active as 
buyer or supplier 

Financial 
market? 

Yes No Yes  Yes (from 
25/11/2005) 

Yes 

Management 
of bottlenecks 

Internal after market 
splitting 

     After market  
   congestion bids 

Market based 
(bidding zones) 

Market based Market 
coupling 
(Belpex) 

Market based  
(three control zones) 

% of hydro 56.7             11.8 4.2 0.1 11 69 
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Table II. Wholesale Market Positions - end 2004

Country
Number of companies
with at least 5% share
of production capacity

Total share of the 3
largest producers

Liquidity

Austria 5 54% 3%

Finland 10 40% 42%

Sweden 10 40% 42%

Norway 10 40% 42%

France 1 96% 3%

Germany 5 72% 11%

Italy 5 65% 21%

Netherland 4 69% 12%

Portugal 3 76% -

Spain 3 69% 92%
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Table III. Some previuos analyses.
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Table IV. Descriptive statistics, normality tests and kernel density estimates (top
graph) for each day and sample ACF of the whole time series (bottom graph).

mon tue wed thu fri sat sun

Means 58.04 61.96 62.24 62.84 61.94 46.66 37.93

St.Dev. 10.92 10.06 11.42 11.08 11.17 7.83 8.75

Skew -0.487 -0.113 -0.488 -0.054 -0.363 -0.073 -1.334

Kurt 2.977 2.449 3.220 2.595 3.804 3.643 7.453

Min 29.06 35.16 24.68 32.89 25.87 21.14 1.21

Max 80.26 86.91 84.25 90.38 91.49 69.09 55.75

Norm (sig) 0.103 0.590 0.141 0.881 0.099 0.166 0.000

Mon Tue Wed Thu Fri Sat Sun

Table V. Diagnostics for the regression models of equations (1)-(3).

Whole sample eq. (1) eq. (2) constr eq. (3) constr

R2 0.67 0.68 0.68 0.70 0.69

S.E. of Regression 7.93 7.85 7.83 7.68 7.65

LogLik -2281 -2272 -2273 -2254 -2255

BIC 7.06 7.09 7.03 7.10 7.02

Wald Test Sig∗ 0.52 0.55

Feb2005-Jan2006 eq. (1) eq. (2) constr eq. (3) constr

R2 0.84 0.87 0.87 0.92 0.92

S.E. of Regression 4.97 4.52 4.51 3.49 3.48

LogLik -1050 -1014 -1016 -920 -924

BIC 6.17 6.06 5.98 5.64 5.51

Wald Test Sig∗ 0.32 0.23

∗Wald test for the equality of all the parameters relative to Tuesday-Friday.
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Table VI. Goodness-of-fit statistics of the various models.

M1. M2. M3. M4. M5. M5.c

LogLik -834 -840 -813 -804 -792 -798

N. of Coefs. 15 27 28 30 33 23

AIC 4.88 4.97 4.82 4.78 4.73 4.71

BIC 5.08 5.27 5.13 5.11 5.09 4.96

Q(10) Sig. 0.229 0.007 0.000 0.000 0.005 0.005

Q(10)2 Sig. 0.855 0.012 0.221 0.724 0.989 0.989

Q(10) is the lag 10 Box-Lijung statistics on the standardized residulas.
Q(10)2 is the lag 10 Box-Lijung statistics on the squared standardized residuals.

Table VII. Estimates of model 5. constrained (only the parameters of the stochastic
part are reported).

Coefficient Std.Error t-Ratio Prob.

φ1,1 0.251 0.098 2.555 0.011

φ1,2 = φ1,4 = φ1,5 0.776 0.047 16.504 0.000

φ1,3 0.985 0.073 13.475 0.000

φ1,7 0.827 0.103 8.034 0.000

φ2,5 0.211 0.075 2.823 0.005

φ3,1 0.388 0.073 5.288 0.000

α 0.361 0.101 3.561 0.000

β 0.695 0.150 4.621 0.000

σ1 = . . . = σ7 1.349 0.368 3.662 0.000

GED’s r 0.925 0.082 11.296 0.000
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