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Abstract

Peptidic Natural Products (PNPs) are widely used compounds that include many antibiotics and a 

variety of other bioactive peptides. While recent breakthroughs in PNP discovery raised the 

challenge of developing new algorithms for their analysis, identification of PNPs via database 

search of tandem mass spectra remains an open problem. To address this problem, natural product 

researchers utilize dereplication strategies that identify known PNPs and lead to the discovery of 

new ones even in cases when the reference spectra are not present in existing spectral libraries. 

DEREPLICATOR is a new dereplication algorithm that enabled high-throughput PNP 

identification and that is compatible with large-scale mass spectrometry-based screening platforms 

for natural product discovery. After searching nearly one hundred million tandem mass spectra in 

the Global Natural Products Social (GNPS) molecular networking infrastructure, 

DEREPLICATOR identified an order of magnitude more PNPs (and their new variants) than any 

previous dereplication efforts.

INTRODUCTION

After a long decline in the pace of antibiotics discovery in the 1990s, natural products are 

again in the center of attention as exemplified by the recent discoveries of novel classes of 
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natural product drugs.1–4 The key condition for enabling the renaissance of the natural 

product research is a turn from the current one-off process of analyzing natural products to 

high-throughput discovery pipelines. Thus, in addition to development of new experimental 

technologies, future studies of natural products will also require new computational 

approaches.5–7 The recent launch of the Global Natural Products Social (GNPS) molecular 

networking infrastructure8 brought together over a hundred laboratories that have already 

generated an unprecedented amount of publicly available mass spectra of natural products. 

However, to transform natural product discovery into a high-throughput technology and to 

fully realize the promise of the GNPS project, new algorithms for natural product discovery 

are needed.6, 9, 10 Indeed, while spectra in the GNPS molecular network represent a gold 

mine for future discoveries, their interpretation remains a bottleneck.

This paper focuses on Peptidic Natural Products (PNPs), which are produced by two types 

of biosynthetic machineries: Non-Ribosomal Peptide Synthetases (NRPS)11 and 

Ribosomally synthesized and Posttranslationally modified Peptide Synthetases (RiPPS).12 

NRPS and RiPPS synthesize Non-Ribosomal Peptides (NRPs) and Ribosomally synthesized 

and Posttranslationally modified Peptides (RiPPs), respectively. NRPs are not directly 

inscribed in genomes but are made by large multi-modular NRP synthetases using non-

ribosomal code. While RiPPs are encoded in the genome, the RiPP-encoding genes are often 

short making it difficult to annotate them.13

Development of reference spectral libraries of tandem mass spectra (MS/MS) has enabled 

identification of metabolites by searching spectra against these libraries as an alternative to 

the searches of candidate molecules in chemical databases.14 However, in the case of PNPs, 

such libraries are small since, until recently, there was no centralized effort to annotate 

spectra of various PNPs. While this situation had changed with the release of GNPS,8 the 

utility of data in this network needs to be enhanced with additional tools that can be applied 

to large extract collections in therapeutic discovery programs for identification of the 

previously described natural products and their variants. Such dereplication tools should be 

fast so that they can be applied to all GNPS spectra.

Natural product researchers face the challenge of maximizing the discovery of new 

compounds while minimizing the re-evaluation of known compounds. The process of using 

the information about the chemical structure of a previously characterized compound to 

identify this compound in an experimental sample (without having to repeat the entire 

isolation and structure-determination process) is called dereplication.15 Another challenge is 

finding variants of known compounds since these variants are sometimes more effective in 

clinical applications. For example, caspofungin is one of many examples of a variant PNP 

that proved to be effective in clinical applications.16 While many low abundance variants of 

PNPs have been reported in the last two decades, it is difficult to identify all variants without 

dedicated computational tools. In this paper, we presented a dereplication algorithm that 

identified 100s of previously unknown variant PNPs.

In the case of PNPs, MS-based dereplication refers to matching tandem mass spectra against 

PNPs in a chemical library such as AntiMarin.17 Similarly to database search tools in 

proteomics (e.g., Sequest18), dereplication algorithms search for Peptide-Spectrum Matches 
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(PSMs) and score them based on similarities between theoretical spectra derived from 

peptides in the chemical library and experimental tandem spectra. The matched peptide that 

forms a statistically significant PSM with the highest score (against a given spectrum) is 

reported as a putative annotation. In many cases, a PNP in the new sample is absent in the 

database of known PNPs, but its variant is present in this database (e.g., with a mutation, a 

modification, or an adduct). Identification of an unknown PNP from its known variants is 

called the variable dereplication (as opposed to the standard dereplication when a PNP is 

present in the chemical database).

This description hides many details that make PNP identification difficult. First, in 

difference from peptides analyzed in traditional proteomics (that are assembled from 20 

proteinogenic amino acids), PNPs are assembled from hundreds of amino acids. Second, 

PNP architectures are not limited to linear peptides but include cyclic, branched-cyclic, and 

even more complex configurations. Third, while there was large effort invested in analyzing 

statistical significance of PSMs in traditional proteomics, methods for evaluating statistical 

significance of PNPs are still in infancy. Fourth, search for mutated and modified variants of 

known PNPs requires complex blind database searches19 since the set of possible mutations 

and modifications is not known in advance.

Previously developed dereplication approaches include NRP-Dereplication20 algorithm for 

cyclic peptides and iSNAP21 algorithm for both cyclic and branch-cyclic peptides. However, 

in difference from NRP-Dereplication, iSNAP does not perform variable dereplication. 

DEREPLICATOR overcame the limitations of both NRP-Dereplication (cyclic peptides 

only) and iSNAP (standard dereplication only) and further addressed the problem of 

evaluating the statistical significance (p-values) of PSMs formed by PNPs. By applying 

spectral networks22,23 to perform variable dereplication, it enabled the first high-throughput 

PNP identification effort in the field of natural products that resulted in the discovery of 

many new variant PNPs.

RESULTS

Outline of the DEREPLICATOR algorithm

Figure 1 and Supplementary Figure 1 show the DEREPLICATOR pipeline that includes the 

following steps described in the Methods section: (i) generating decoy database of PNPs, (ii) 

constructing theoretical spectra for all PNPs in the database, (iii) generating and scoring 

PSMs, (vi) computing p-values of PSMs and generating the set of statistically significant 

PSMs, (v) computing false discovery rate (FDR), (vi) enlarging the set of found PSMs 

through variable dereplication via spectral networks.

The concept of spectral networks22 (also known as molecular networks24 when applied to 

metabolites and natural products) was introduced to reveal spectra of related peptides within 

a proteomic dataset without knowing what these peptides are. Nodes in a spectral network 

correspond to spectra while edges connect spectra that are generated from related peptides, 

e.g., peptides differing by a single mutations, modification (such as oxidation, acetylation, 

methylation, etc.), or adduct (such as proton, sodium, potassium, etc.). Spectral networks 

enable variable dereplication of novel variants of known PNPs via propagation of PSMs 
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through a spectral network25 and allow one to generate a hypothesis regarding the nature of 

the structural relatedness of peptides represented by the spectra within the network. Spectral 

networks are well suited for analyzing PNPs since most PNPs form families of related 

peptides through biosynthetic promiscuity, incomplete biosynthetic processing, non-

enzymatic reactions, or mutations between different species (Supplementary Results, 

Supplementary Fig. 2).

Benchmarking DEREPLICATOR

To benchmark DEREPLICATOR, we used the AntiMarin database17 to dereplicate all 

spectra from the following GNPS datasets: SpectraGNPS (all spectra in GNPS), Spectra4 

(four low-resolution GNPS datasets from S. roseosporus, Bacillus and Pseudomonas 

cultures, and two wild-type isolates), SpectraHigh (high-resolution GNPS datasets 

SpectraFungi, SpectraActi, SpectraPseu, and SpectraCyan containing spectra from Fungi, 

Actinomycetales, Pseudomonas and Cyanobacteria, respectively), and SpectraActi36 (36 

subsets of the SpectraActi dataset that contain bacterial extracts from 36 strains with known 

genome). See Supplementary Tables 1 and 2 as well as Supplementary Fig. 3 for the details 

about these datasets and for the number of PNPs in various chemical databases.

Analyzing statistical significance of identified PNPs

The crucial element of any MS/MS database search is analysis of statistical significance by 

computing p-values (for individual PSMs) and FDRs (for the entire set of identified PSMs). 

To compute p-values, DEREPLICATOR uses MS-DPR algorithm motivated by a similar 

approach in particle physics. To compute the FDR, DEREPLICATOR uses the concept of 

decoy database and extends it to non-linear peptides (see Methods). We note that FDR in 

proteomics is estimated as the ratio of the numbers of identified PSMs (rather than peptides) 

in the decoy database and the target database. In this paper, we took a more conservative 

approach by reporting the ratio of the number of identified unique peptides in the decoy and 

the target database.

We analyzed the distribution of p-values of PSMs and peptides identified by 

DEREPLICATOR in the search of Spectra4 and SpectraGNPS against the target AntiMarin 

database and decoy database of the same size (Fig. 2). For SpectraGNPS dataset and p-value 

threshold of 10−10, DEREPLICATOR identified 8622 PSMs (150 unique peptides) in the 

target database, and 22 PSMs (11 unique peptides) in the decoy database. This translates into 

0.2% FDR at the PSM level and 7.3% FDR at the peptide level. The p-value cutoff 10−10 are 

two orders of magnitude more stringent than the median p-value of the manually curated 

PNP spectra in the GNPS spectral library8, the reference library of all annotated tandem 

mass spectra in GNPS. We thus project that 100s of PNPs reported below represent a 

fraction of PNPs whose reference spectra have been already deposited to GNPS.

While none of the decoy PSMs in the Spectra4 dataset have a p-value below 10−11 

(estimated FDR is zero), there are 374 PSMs in the target database with p-values varying 

from 10−11 to 10−27. These PSMs corresponds to 37 unique PNPs (Table 1). Only 2 PSMs 

were found in the decoy database with p-value below 10−8 as compared to 904 PSM (and 78 

peptides) in the target database with p-values below 10−8. While 78 identified PNPs are also 
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represented by reliable PSMs with low FDR 0.2%, we have decided to limit analysis to even 

more statistically significant 37 dereplicated peptides in Table 1 and to conduct the literature 

search for all these peptides.

Validation of DEREPLICATOR results

Using the conservative FDR cutoff, we set out to validate the result of DEREPLICATOR by 

(i) comparing with results reported in the literature, (ii) comparing with available spectra 

from known PNPs, and (iii) through analyzing the biosynthetic capacity of the producing 

organisms.

Table 1 lists 37 PNPs (13 cyclic and 24 branch cyclic) from PSMs identified by 

DEREPLICATOR with p-values below 10−11. To validate them, we surveyed the papers 

reporting spectra of these PNPs. Since the spectra for most of these PNPs are only available 

as images in the journal papers (rather than computer files), we were limited to comparing 

these images with spectra in Spectra4 dataset by eye. For 35 out of 37 PNPs, a tandem mass 

spectrum of peptide was published in the literature and a visual comparison confirmed that 

the dereplicated PNPs were deemed to be correct.

We further analyzed the species that gave rise to the PNPs in Table 1. If these species are 

evolutionary close to the PNP-producing species reported in the published papers, we 

considered it as an additional evidence supporting the dereplicated PNPs. For 31 out of 37 

PNPs, information about the PNP producer was available, and for all of them, the journal 

paper reported that these PNPs are produced by an evolutionary close bacterial species. 

Overall, 36 out of 37 PNPs in Table 1 are supported by at least one of these two tests. 

Presence of multiple PNPs from the same PNP family in Table 1 (e.g., eight variants of 

surfactin) represents additional evidence that these PNPs were correctly identified.

To further evaluate PSMs identified by DEREPLICATOR, we compared spectra forming 

these PSMs to the annotated spectra in the GNPS spectral library8 that currently contains 

only 81 PNPs and includes only 21 out of 37 PNPs listed in Table 1. Moreover, only 18 of 

these 21 PNP in GNPS spectral library have spectra generated with the same type of 

instrument (LTQ-FTICR) as the spectra in Spectra4 dataset. Remarkably, all these 18 spectra 

in GNPS turned out to be similar to spectra in the Spectra4 dataset with cosine values 

varying from 0.4 to 0.8 (the cosine value for spectra from different peptides are expected to 

be close to 0).

Dereplication of the entire GNPS molecular network

Since GNPS often misses the information whether a specific spectral dataset was acquired 

using a low- or high-resolution instrument, we decided to analyze all spectra in GNPS in the 

low-resolution mode. For SpectraGNPS dataset and the p-value threshold 10−11, 

DEREPLICATOR identified 4892 PSMs (129 peptides) in the target database and 8 PSMs (3 

peptides) in the decoy database. Supplementary Table 3 lists the 129 identified PNPs (71 

cyclic, 41 branch cyclic, and 17 linear) that include 47 peptides, 81 lipopeptides, and a 

hybrid polyketide-peptide. When the spectral network is used for variable dereplication, the 

number of identified PSMs for the entire GNPS dataset (at p-value 10−11) increases to 69995 

(see Supplementary Fig. 2 for examples). About 75% of PNPs from AntiMarin listed in 
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Table 3 have variant PNPs (as revealed by neighbors in the GNPS molecular network), 

bringing to light a remarkable diversity of previously unreported PNP variants 

(Supplementary Table 4).

To further evaluate the PNPs found via variable dereplication, we analyzed the mass shifts of 

PNP variants from Supplementary Table 4 as compared to known PNPs from Supplementary 

Table 3. If the novel PNP variants are correct then we expect them to have many 

characteristic mass shifts such as 14 Da, a change of CH2.29 The histogram of mass shifts of 

PNP variants (Supplementary Fig. 4) illustrates that a large fraction of them (≈40%) have 

characteristic mass shifts 14Da, 17Da, 18Da, 28Da, 30Da, 42Da and 113Da. The spectral 

network of stenothricins further illustrates how analysis of spectral networks and 

characteristic mass shifts reveals new members of the PNP families (Supplementary Fig. 2). 

Indeed, the mass shift 7 Da connecting the three known stenothricins, also connects 

stenothricin IV with a node 573.808 Da. Since the spectra in this connected component 

originate from doubly charged ions, 7 Da corresponds to the characteristic mass shift 14 Da.

Dereplication of the GNPS spectral library

To further validate DEREPLICATOR, we analyzed all 81 annotated and manually curated 

spectra of PNPs in the GNPS spectral library. 40 out of 81 PSMs formed by PNPs in this 

library have low p-values (below 10−8) that DEREPLICATOR usually considers as reliable 

PSMs (21 out of 81 are represented by very low-quality spectra with p-values above 10−4). 

Thus, all PSMs reported in this paper represent much higher quality spectra than most (41 

out of 81) spectra in the manually curated GNPS spectral library (their p-values are at most 

10−11, three orders of magnitude lower than the median p-value in the GNPS spectral 

library).

DEREPLICATOR correctly identified all 40 high-quality spectra in the GNPS spectral 

library. Even with extremely high p-value threshold of 10−4, DEREPLICATOR correctly 

identified 58 out of 81 spectra in the GNPS spectral library. This analysis illustrates that the 

low p-value threshold 10−11 that we used in this paper is conservative and that GNPS is 

likely to contain spectra representing thousands more variant PNPs.

Dereplication of short PNPs

Since spectra of short peptides have smaller information content (smaller number of 

fragment ions matching theoretical spectra) than long peptides, their p-values are typically 

larger. As the result, a typical cutoff for the size of the peptide in proteomics is 7 amino 

acids (6 amide bonds) since otherwise the FDR exceeds the acceptable threshold. As 

Supplementray Table 2 illustrates, for SpectraHigh dataset with the FDR threshold set to 0%, 

the default mode of DEREPLICATOR identifies 6, 11, 19, 51, and 213 PNPs with 2, 3, 4, 5, 

and 6 or more bonds, respectively (Supplementary Fig. 5).

To improve identification of short PNPs, we implemented a special mode of 

DEREPLICATOR optimized for short PNP identification (see Methods section). As the 

result, the number of identified short PNPs with less than 6 bonds increased from 125 to 193 

PNPs at FDR 15%, and the percentage of AntiMarin compounds discovered in the 

SpectraHigh dataset (analyzed in Supplementary Table 5) increased to 9% for 6 bonds or 

Mohimani et al. Page 6

Nat Chem Biol. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more, 14% for 5 bonds, 3% for 4 bonds, and 2% for 3-bond compounds, out of all 

AntiMarin compounds. Note that DEREPLICATOR generates a theoretical spectrum for 

each PNP (including short PNPs) by considering generalized peptide bonds that include N-

C-O linkage amide bonds as well as C-C-O linkage bonds between thiazoles/oxazoles and 

dehydroalanines/dehydrobutyrines and other amino-acids (Supplementary Fig. 6).

High-resolution vs. low-resolution MS/MS for PNP discovery

We searched the SpectraHigh dataset against the target AntiMarin database and decoy 

database of the same size and identified 5109 PSMs (325 PNPs) in the target database and 

59 PSMs (42 PNPs) in the decoy database at the p-value threshold 10−10. Note that, for the 

same dataset, the number of identified PNPs in the low-resolution mode reduces from 325 to 

79 as compared to the high-resolution mode (with 2 PSMs and 2 peptides identified in the 

decoy database in the low-resolution mode). Interestingly, the p-values in the high-resolution 

mode are typically at least 5 orders of magnitude lower than p-values in the low-resolution 

mode (Supplementary Table 6). The fact that the high-resolution spectra are vastly superior 

to the low-resolution spectra with respect to non-linear PNP identification (4-fold increase in 

the number of identified PNPs) is surprising since the difference between the high-resolution 

and the low-resolution spectra with respect to identification of linear peptides in proteomics 

is not so large (20%–30% increase39).

To validate PNPs identified in the SpectraHigh dataset, we further analyzed their distributions 

between Fungi, Actinomycetales, Pseudomonas and Cyanobacteria. According to 

AntiMarin, the lion’s share (167 out of 180) of PNPs identified from the SpectraFungi dataset 

are first reported in fungal sources. Similarly, the lion’s share (53 out of 64) of peptides 

identified from the SpectraCyan dataset are first reported in cyanobacterial sources. Some of 

13 peptides identified from SpectraFungi dataset and forming PSMs with non-fungal sources, 

are clearly not false identifications, e.g., all four Pseudomonas peptides are variants of 

massetolide (it is unlikely that four spurious PSM originate from the same PNP family). 

There are a few reasons why spectra from SpectraFungi datasets form PSMs with peptides 

from bacterial sources apart from being false PSMs, e.g., laboratory contamination and 

morphology misidentification as many collections contain misidentified organisms.

A similar analysis of SpectraActi and SpectraPseu datasets should be done with caution since 

B. subtilis was added as true positive to these samples. As the result, 42 and 22 peptides 

from Bacillus sources were identified in SpectraActi and SpectraPseu, respectively. After 

removing surfactins (typically associated with Bacillus species), the lion’s share of peptides 

identified in SpectraActi (31 out of 35) and SpectraPseu (12 out of 18) had Actinomycetales 

and Pseudonomas sources, respectively (Fig. 3). It further suggests that metabolite origin 

tracking using DEREPLICATOR can become a useful tool for capturing contamination or 

incorrect sample labeling.

Using DEREPLICATOR to optimize sample preparation

The dataset SpectraActi36 was collected under three different growth conditions and extracted 

in three different ways. DEREPLICATOR can screen the output of the experiment and 

reveal promising versus not-so-promising experimental conditions (microorganisms can 
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produce different PNPs under different conditions). We used DEREPLICATOR to 

investigate which of 9 combinations of growth conditions and extraction methods performs 

the best for the PNP discovery. In addition to 9 pairs (strain, peptide) shown as blue squares 

in Supplementary Fig. 7, DEREPLICATOR also found surugamide in 2 out of 36 strains 

bringing the maximum possible number of pairs (strain, peptide) to 11 for each of 9 possible 

conditions. Supplementary Fig. 8 illustrates that butanol extract from A1 agar recovers 10 

out of 11 (90%) such pairs, making it the most efficient combination.

Cross-validating genome mining and peptidomics results

We further cross-validated PNPs identified by DEREPLICATOR from SpectraActi36 dataset 

partitioned into 36 subsets.13, 40–42 Since we have two independent approaches (mass 

spectrometry and genome mining) to check whether a given strain produces a given PNP, we 

can cross-validate their results. At a p-value threshold of 10−10, DEREPLICATOR identified 

9 PNPs in 8 out of 36 strains in these datasets (grisemycin, CDA, daptomycin, actinomycin, 

stendomycin, cyclomarin, salinamide, arylomycin, and surugamide).

We extracted the biosynthetic gene cluster for eight of these 9 PNPs from MIBiG43 (the 

biosynthetic gene cluster for surugamide remains unknown) and performed a BLAST search 

of the 36 actinomycetales against these gene clusters. This search revealed that, in majority 

of the cases, when DEREPLICATOR reports evidence for production of a chemotype in a 

specific strain, genome mining also predicted the corresponding genotype in the same strain 

thus providing additional support for both peptides identified by DEREPLICATOR and for 

MIBiG predictions (Supplementary Fig. 7).

DEREPLICATOR found surugamide in four GNPS datasets from S. albus J1074 generated 

by independent studies,13, 40, 41 and in a dataset from Streptomyces sp. CNY228. The utility 

of DEREPLICATOR is illustrated by the surprising fact that all previous studies failed to 

identify surugamides in S. albus J1074, a workhorse strain for Streptomyces synthetic 

biology and heterologous expression.44

Validating surugamide compounds

Surugamide45 and the related molecules champacyclin46 and reginamide25 are recently 

discovered NRPs from marine streptomyces that share the same amino acid sequences. 

Because multiple pieces of bioinformatics evidences pointed to production of surugamides 

in S. albus J1074, we set out to validate them experimentally. Although the NRP synthetase 

responsible for synthesizing surugamides remains unknown, our analysis identified a 

putative surugamide-encoding NRPS using a peptidogenomics approach47 (this 

computational hypothesis needs to be experimentally validated). See Supplementary Note 

for details.

To demonstrate that the molecules corresponding to the identified spectra are indeed 

surugamides, we conducted a SILAC experiment with S. albus J1074 sample and analyzed 

the resulting spectral network. The SILAC experiments revealed each incorporated amino 

acids as a characteristic 6 Da mass shift in the corresponding mass spectrum.
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When S. albus J1074 was cultured in the presence of 13C6 -labeled lysine, addition of 13C6 -

labeled lysine was observed for surugamide A and surugamide B supporting that these nodes 

in the spectral network represent surugamides (Fig. 4a). When S. albus J1074 was cultured 

in the presence of 13C6-labeled isoleucine, 4 additional nodes in the spectral network 

corresponding to addition of 13C6-labeled isoleucines were observed (Fig. 4b). A green path 

consisting of 4 edges in Fig. 4b reveals incorporation of up to four 13C6-labeled isoleucines 

represented by nodes with m/z 918.647, 924.668, 930.688 and 936.686. Further inspection 

of these spectra revealed incorporation into each of the isoleucine positions. For surugamide 

B with three isoleucines, the spectral network revealed addition of up to two 13C6-labeled 

isoleucines.

In summary, our SILAC experiments supported the incorporation of the four isoleucines and 

the lysine, together with the adenylation domain specificity and location of the epimerase 

domains in the biosynthetic gene cluster that we predicted. These experiments, together with 

the fact that no other gene cluster in S. albus J1074 has propensity to produce surugamide, 

support DEREPLICATOR identifications.

In further confirm that the identified spectrum in the extract of S. albus J1074 is surugamide 

A, the retention time and the spectrum of m/z 912.627 observed in the extract of S. albus 

J1074 was compared with the previously purified and NMR-characterized authentic standard 

of surugamide A.45 Both the retention time and the spectra of authentic surugamide A and 

putative surugamide A detected in the extract of S. albus J1074 were nearly identical 

(Supplementary Fig. 9). Furthermore, when the authentic surugamide A was added to the 

extract of S. albus J1074, a single peak at m/z 912.627 was observed further supporting that 

the detected molecule in the extract of S. albus J1074 is surugamide A.

DISCUSSION

While molecular networks for PNP discovery recently gained a lot of momentum,24, 48 they 

require time-consuming manual follow-up analysis to transform cryptic information into 

identified spectra of known compounds or their variants. Thus, the shortage of 

computational tools for PNP analysis is the key bottleneck for taking advantage of the 

wealth of PNPs in various species.

Currently, over 98% of spectra in the GNPS molecular networking infrastructure represent 

“dark matter of metabolomics” 49 since they evaded all attempts to interpret them.8 

However, much of this dark matter is likely formed by spectra from known molecules 

present in chemical databases. As the result, there is a contrast between the large number of 

known structures of natural products and rather small number of their annotated spectra in 

the GNPS spectral library. Therefore, to fully utilize the potential of the GNPS project, the 

development of algorithms for matching millions (and soon billions) of spectra of natural 

products against chemical databases is needed. In the “living data” concept, public data is 

periodically reanalyzed and new finding are relayed back to biologists who contributed 

specific datasets. Although DEREPLICATOR can be run as a standalone search through 

GNPS, it is now also run on each newly deposited public dataset in GNPS to perform both 

standard and variable dereplication, making it a part of the “GNPS living data.”
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Since it is impractical to validate annotations of millions of spectra with isolation and NMR 

analysis, the only feasible way forward is to develop a measure of statistical confidence of 

PSMs with respect to the core structure of PNPs (as MS is blind to stereochemistry). While 

such measures are widely used in proteomics and genomics, they are currently missing in 

the field of natural products. To address the challenge of evaluating the statistical 

significance of PSMs identified by DEREPLICATOR, we complemented it with p-values 

and demonstrated that PSMs with low p-values represent confident spectral identifications 

with low FDR.

DEREPLICATOR is the first software tool in the field of natural products that is compatible 

with high-throughput analysis of millions of spectra and aimed at reducing the peptidic 

fraction of the “dark matter of metabolomics.” While it has limitations with respect to 

analyzing short PNPs, it has already increased the size of the publicly available GNPS 

spectral library of PNPs by an order of magnitude. We envision that DEREPLICATOR will 

be used to prioritize strains and molecules in natural product discovery programs, to 

discover analogs of known natural products, and to reveal biosynthetic promiscuity, 

intermediates, and shunt products.

URLs

DEREPLICATOR is available both as a stand-alone tool (http://cab.spbu.ru/software/

dereplicator) and a web application (http://gnps.ucsd.edu).

Online Methods

Below we describe various steps of DEREPLICATOR summarized in Fig. 1.

Constructing theoretical spectra of PNPs

DEREPLICATOR generates a theoretical spectrum for each PNP by first constructing a PNP 

graph with amino acids as nodes and generalized peptide bonds as edges (Fig. 5a). Herein, 

generalized peptide bonds include N-C-O linkage amide bonds as well as C-C-O linkage 

bonds between thiazoles/oxazoles and dehydroalanines/dehydrobutyrines and other amino-

acids (Supplementary Figure 6). The notion of generalized peptide bonds is useful as 

illustrated by identification of the thiazole/oxazole containing PNP plantazolicin from B. 

amyloliquefaciens, lanthipeptide SapB from S. coelicolor, and complex PNPs such as two-

rings containing actinomycin from Streptomyces sp. CNS654 (Supplementary Fig. 6).

A generalized peptide bond is called a bridge if removing the bond disconnects the PNP 

graph. While theoretical spectra of linear peptides are generated by removing all bridges 

(single bonds), spectra of non-linear peptide are generated by removing some bond pairs. A 

pair of bonds is called a 2-cut if none of them are bridges but removing both of them 

disconnects the graph. The theoretical spectrum of a peptide consists of the masses of all 

subgraphs resulting from removal of a bridge or a 2-cut from the PNP graph. We refer to the 

theoretical spectrum of Peptide as Spectrum(Peptide).
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Generating and scoring PSMs

DEREPLICATOR compares each spectrum in the spectral dataset against each peptide in the 

chemical database. It further forms a PSM if the precursor mass of the spectrum matches the 

molecular mass of the peptide (up to a predefined maximum error). Since DEREPLICATOR 

only compares a spectrum against all peptides with similar mass, the number of peptides to 

compare against is much smaller than the PNP database size. We score a PSM formed by 

Peptide and Spectrum using PepNovo51 and MS-GF+.39

SPCscore(Peptide, Spectrum) is defined as the Shared Peak Count, the number of peaks 

shared between Spectrum(Peptide) and the filtered version of Spectrum as defined by 

PepNovo.52, 53 Two peaks are shared if their masses are within a predefined threshold. 

While we utilize SPCscore to summarize the statistics of found PSMs, DEREPLICATOR 

uses a more advanced MSGFscore.39 Admittedly, since MSGFScore was initially developed 

for linear peptides, it does not take into account the specifics of fragmentation of non-linear 

peptides. However, it performs better than SPCscore in our database searches.

Computing p-values of PSMs

The PSM scores poorly correlate with p-values of PSMs23 and thus should not be used for 

evaluating the statistical significance of found PSMs. Indeed, the PSM scores do not remove 

the bias towards large PNPs, PNPs with different architectures (e.g., linear vs. cyclic), or 

spectra with many peaks. While methods for evaluating statistical significance of linear 

PSMs are well developed,54 they do not extend to the evaluation of the statistical 

significance of non-linear PSMs.

Estimating p-values of PSMs is a difficult instance of a general problem of estimating the 

probabilities of extremely rare events. For linear peptides, the generating function 

approach55 efficiently explores the huge set of all possible peptides (rather than relatively 

small set of all peptides in the database23) to derive p-values for PSMs. MS-DPR 

algorithm50 for computing p-values for PSMs formed by nonlinear peptides is motivated by 

a similar approach in particle physics.56 MS-DPR evaluates p-values based on exploring 

various peptides that are not present in the peptide database and addresses an important 

problem of deciding whether a spectrum was generated by a linear, cyclic, or branch-cyclic 

peptide50 (Fig. 5b). This feature (that was missing in previous approaches) is important for 

analyzing large datasets containing spectra of PNP with various structures (linear, cyclic and 

branch cyclic). DEREPLICATOR reports PSMs with p-values below a predefined threshold 

and informally defines the p-value of a peptide as the minimum p-value of all PSMs formed 

by this peptide.

Generating decoy database of PNPs

To compute the FDR, DEREPLICATOR uses the concept of decoy database57 and extends it 

to non-linear peptides. For each PNP in the chemical database (denoted Peptides), 

DEREPLICATOR constructs a decoy PNP with the same topology but randomly rearranged 

amino acids (Fig. 5c). The resulting set of PNP forms a decoy database DecoyPeptides.
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Computing false discovery rate

Given a chemical database Peptides, a spectral dataset Spectra, and a score threshold T, 

DEREPLICATOR finds all high-scoring PSMs, i.e., all PSMs formed by a peptide P from 

Peptides and a spectrum S from Spectra with MSGF Score (P, S) ≥ T. This approach is 

analogous to the peptide identification approach in proteomics. DEREPLICATOR further 

computes p-values of all high-scoring PSMs using MS-DPR and forms the list of the high-

scoring PSMs in the increasing order of their p-values. Given a p-value threshold θ, we 

define PSMθ (Peptides, Spectra) as the set of all PSMs in this list with p-values below θ.

To evaluate the statistical significance of PSMs found in proteomics searches, researchers 

report FDR that estimates the fraction of false PSM among all reported PSMs. The target-

decoy approach57 for estimating FDR is based on generating a decoy proteome and 

searching all spectra against both the target and decoy proteomes. The target-decoy approach 

further uses the number of PSMs found in the decoy proteome to evaluate the FDR. Since 

the decoy proteome is generated randomly, we expect to find very few PSMs in PSMθ 
(DecoyPeptides, Spectra) for an appropriately chosen p-value threshold θ. We thus compute 

the FDR as the ratio of the number of identified PSMs in the decoy and target proteomes:

Variable dereplication of PNPs via spectral networks

Ideally, each PNP family corresponds to a connected component in the spectral network. 

However, spurious edges in spectral networks often connect unrelated spectra from different 

PNP families making it difficult to perform variable dereplication. To minimize the number 

of spurious edges, DEREPLICATOR uses a stringent threshold for defining spectral pairs 

(edges in the spectral network).

DEREPLICATOR constructs the spectral network of a spectral dataset and finds connected 

components in this network (Supplementary Fig. 2). We refer to a connected component in a 

spectral network as a PNP component if one of the spectra (nodes) in this component was 

identified as a statistically significant PSM. We further use such PSMs to perform the 

variable dereplication of all spectra in the PNP component.25 For each PNP derived via 

variable dereplication, we use MS-DPR to compute its p-value. The variable dereplication is 

accepted if the resulting p-value does not exceed the threshold θ.

Characteristic shifts in spectral networks

Supplementary Fig. 2 illustrates that many edges in the PNP components correspond to the 

mass shift 14 Da (7 Da for doubly charged ions). Nodes separated by the mass shift 14 Da is 

a common feature of molecular networks that often reveals new variants of known 

compounds29 (e.g., mutations of Val into Ile). This and other common shifts reveal analogs 

with amino acid substitutions, truncations (in the case of branch cyclic peptides), hydrolysis 

products, different sized lipid side chains, glycosylation, methylation, and other variant 

PNPs.29
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For example, the mass shift 14 Da is a characteristic feature of the kurstakin family (and 

many other PNP families) because it connects some known variants of kurstakins 

(Supplementary Fig. 2). Thus, since the kurstakin 4 is connected by the 14 Da shift to a node 

with mass 920.519 in the spectral network, this node likely represents a still unknown 

variant of kurstakin. Indeed, since spurious edges in the connected component have spurious 

mass shifts, it is extremely unlikely that such spurious edges will have mass shifts 

characteristic for a specific PNP family, The node with mass 934.589 (with the mass shift 14 

Da from the node with mass 920.519) may represent a yet another unknown variant of 

kurstakin.

Identification of short PNPs

In the first approximation, the FDR equals to the p-value threshold multiplied by the 

database size to account for multiple hypothesis testing.54 For example, in practice, to avoid 

false identifications, existing MS/MS database search pipelines often discard all PSMs 

formed by peptides shorter than 7 aa while searching bacterial proteomes. It does not mean 

that identification of such peptides is impossible but rather means that researchers have no 

choice but to consider a few such identifications (to be within the given FDR) or relax the 

FDR beyond the traditional 1–3%. Our computational analysis illustrates that short PNPs are 

indeed difficult to identify via database search due to low information content resulting in 

high p-values.

To improve identification of short PNPs, we compared the characteristics of PSMs formed 

by short PNPs identified in AntiMarin with characteristics of PSM identified in the decoy 

database. This comparison revaled the striking difference: most PSM from short AntiMarin 

peptides originated from spectra with charge +1 and isotopic shift 0 Da, while most PSM 

from short decoy peptides originated from spectra with charge +2 and +3 and isotopic shifts 

+1 Da, and +2 Da. Thus, while the search for multicharged spectra and spectra with non-

zero isotopic shifts makes sense for long peptides (it increases the number of identified 

PSMs at the expense of a modest increase in FDR), it is counter-productive for short PNPs 

(e.g., we do not expect short PNPs to result in spectra with isotopic shifts). We thus mofified 

DEREPLICATOR to limit analysis of PSMs formed by short PNPs to only spectra of charge 

+1 and isotopic shift 0 Da. After this change, most decoy PSMs formed by short PNPs 

disapeared (without significantly reducing the number of target PSM formed by short 

PNPs). As the result, at the FDR threshold of 15%, DEREPLICATOR identified 47, 36 and 

110 compounds with 3, 4 and 5 bonds, respectively.

Experimental validation of PNPs

We performed SILAC experiments to validate some PNPs identified by DEREPLICATOR. 

S. albus J1074 and S. albus ATCC 21838 strains were cultured on ISP2, A1 and R5 agar 

medium (10 mL) with and without 1 mM of 13C6-labeled isoleucine for 6 days at 30 °C. 

Similar experiment was conducted for 13C6-labeled lysine. Mass spectra from resulting 

samples were acquired in positive ion mode over a mass range of 100–1500 m/z using a 

QExactive (Thermo Scientific) mass spectrometer with HESI-II probe source. 

(Supplementary Note).
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Validation of surugamide A

The putative identification of surugamide A, annotated by the DEREPLICATOR in S. albus 

J1074 extract, was validated by comparison of the MS/MS spectrum and retention time with 

an authentic standard of surugamide A,45 analyzed in LC-MS/MS under the same analytical 

conditions. Furthermore, a comigration assay was performed to control any matrix effect, by 

spiking the extract of S. albus J1074 with the authentic standard of surugamide A. 

Supplementary Note describes the experimental details.

Revealing the biosynthetic gene cluster for surugamides

The NRP synthetase responsible for synthesizing surugamides remains unknown. Below we 

describe a method that combines peptidogenomics47 with DEREPLICATOR to point to the 

elusive NRP synthetase responsible for surugamide.

While DEREPLICATOR identified surugamide in multiple Streptomyces strains, only one 

of them (S. albus J1074) was assembled into a single scaffold (most other strains are split 

into over 100 contigs). However, the assembly was performed using a non-reproducible 

computational protocol making it difficult to estimate the number of miss assemblies. We 

thus faced the challenge of finding a surugamide-producing NRP synthetase in a genome 

with potential assembly errors.

While NRPS2predictor identified 36 adenylation domains in S. albus J1074, it is unclear 

which of them code for surugamide. To account for possible assembly artifacts, we focused 

on triples of consecutive adenylation domains in the genome and further added a constraint 

that the genomic distance between consecutive domains in a triple does not exceed 20 kb. 

For each of the 22 triples A1A2A3 of adenylation domains satisfying this constraint and for 

each of 8000 3-mers X1X2X3 of proteinogenic amino acids, we computed score(A1A2A3, 

X1X2X3) = score(A1, X1) + score(A2, X2) + score(A3, X3), where score(A, X) is the 

NRPS2predictor score of an adenylation domain A against an amino acid X (the percentage 

of matches between the 10-residue long specificity code of the adenylation domain A and 

the “ideal” specificity code of an amino acid X as defined by NRPS2predictor).

For each of 8000 3-mers X1X2X3, we find the triple of consecutive adenylation domains 

A1A2A3 (among 22 such triples) with maximum score resulting in the histogram shown in 

Supplementary Fig. 10. We further define the p-value of a 3-mer as the fraction of 3-mers 

(among 8000) with this or higher score. For example, the p-value of (Ile, Phe, Leu) is 

164/8000=0.0205 since its score (250) has rank 164 among 8000 3-mers.

The amino acid sequences of surugamide A and surugamide B are IAIIKIFL and IAVIKIFL, 

respectively. Supplementary Fig. 10 revealed that, somewhat surprisingly, the p-values of all 

eight 3-mers forming IAIIKIFL are below the mean p-value 1/2 (similar result holds for 

IAVIKIFL). To quantify this statistical bias, we define the bias of a 3-mer as its p-value 

divided by 2 and the bias of a peptide as the product of biases of its 3-mers. The bias of 

IAIIKIFL is 7.4 · 10−7 while the bias of a random peptide is close to 1 implying that 

IAIIKIFL is likely to be coded by the adenylation domains in S. albus J1074 that generate 

the high scoring 3-mers shown by red bars in Supplementary Fig. 10. Further analysis 
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revealed that these adenylation domains are clustered at the genomic location 

2863086-2868922 of S. albus J1074.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
DEREPLICATOR pipeline. DEREPLICATOR pipeline includes the following steps: (i) 

generating decoy database of PNPs (ii) constructing theoretical spectra for all PNPs in the 

database, (iii) generating and scoring PSMs, (vi) computing p-values of PSMs and 

generating the set of statistically significant PSMs, (v) computing false discovery rate, (vi) 

enlarging the set of found PSMs through variable dereplication via spectral networks. 

Various steps related to target and decoy databases are shown in green and red boxes, 

respectively. Six peptides identified in target database and two peptides identified in decoy 

database are shown in green and red, respectively.
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Figure 2. 
Number of PSMs and peptides identified by DEREPLICATOR. For each x (shown as p-

value along the x-axis), the plots show the number of identified PSMs or peptides with p-

values below x. (Top) Number of PSMs (a) and peptides (b) for the target AntiMarin and 

decoy databases in the search of Spectra4. 1787 PSMs and 180 unique PNPs with p-value 

below 10−13 were dereplicated via spectral networks. (Bottom) Number of PSMs (c) and 

peptides (d) for the target AntiMarin and decoy databases in the search of SpectraGNPS. All 

searches were performed with the precursor mass tolerance 0.05 Da.
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Figure 3. 
Number of peptides identified by DEREPLICATOR in SpectraHigh dataset. The number of 

unique peptides identified from Fungal/Actinomycetales/Pseudomonas/Cyanobacteria 

spectral datasets, coming from Fungal/Actinomycetales/Pseudomonas/Cyanobacteria 

sources. Since B. subtilis was added to the extracts from the samples SpectraActi and 

SpectraPseu, 42 and 22 peptides from Bacillus sources identified in SpectraActi and 

SpectraPseu represent contaminants. Since Bacillus growth media is similar to that of 

Actinomycetes and Pseudomonas, samples from Actinomycetes and Pseudomonas often 

have small Bacillus contaminations that originates from pre-autoclaving growth in the 

media.
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Figure 4. 
Spectral networks illustrating the results of SILAC experiment. (a) Spectral network of 

surugamides from S. albus J1074 when the strain is labeled by 13C6 isoleucines. A path 

connecting five green nodes reveals surugamide A (911.621 Da, observed at m/z 912.610) 

and four SILAC incorporations into isoleucine with characteristic 6 Da mass shifts 

(surugamide A has four isoleucines which are observed as addition of 6 Da, 12 Da, 18 Da 

and 24 Da to the precursor ion). Blue nodes reveal incorporations in surugamide B with 

three isoleucines (897.605 Da, observed at m/z 898.611), and purple nodes reveal 

incorporations in a previously unknown surugamide variant with two isoleucines (m/z 

884.589). (b) Spectral network of surugamides from S. albus J1074 when the strain is 

labeled by 13C6 lysine. Green and blue nodes reveal SILAC incorporations into a single 

lysine in surugamides A and B. Sizes of the nodes reflect relative abundance based on total 

intensity of the ion that was fragmented. Width of the edges connecting the nodes reflects 

the similarity (cosine score) between corresponding spectra. Since we used a stringent 
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cosine threshold 0.7, some related spectra are not connected by edges. (c) structure of 

surugamide A.
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Figure 5. 
Generating theoretical spectra and computing p-values of PSMs formed by PNPs with 

various architectures. (a) Generating the theoretical spectrum of a branch-cyclic peptide 

(only 12 out of 90 peaks in the theoretical spectrum are shown). Nodes and edges in the PNP 

graph are shown as circles and lines. Bridges are shown as red edges. The intensities of all 

peaks in the theoretical spectrum are the same since prediction of intensities remains an 

open problem. (b) MS-DPR50 explores a large set of peptides (enriched for high-scoring 

peptides) to accurately estimate p-values. Each such set is illustrated as a collection of seven 

peptides, each with a different shuffled sequence of amino acids. (c) Constructing decoy 

database of PNPs by randomly rearranging amino acids while preserving the architecture of 

a PNP.
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