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Abstract

This paper presents mathematical modeling and simulation of thin free surface flows of viscoplastic fluids

with a Herschel-Bulkley rheology over complex topographies. Using asymptotic expansion method, depth-

averaged models (lubrication and Shallow Water type models) are derived for three-dimensional multi-regime

flows on non-flat inclined topographies with varying basal conditions. Starting from the reference solutions

(zeroth-order ones), flow models are calculated as perturbations of these reference solutions. Two flow regimes

corresponding to different balances between shear and pressure forces are presented. The classical flow mod-

els in the literature (corresponding to the first regime) are recovered by considering their respective cases

on a flat-inclined surface. In the second regime case, a pressure term is non-negligible. Mathematically

it leads to a corrective term to the classical regime equations. Using dimensionless parameters, the two

regimes flow solutions are compared; the differences appear in the vicinity of sharp changes of slopes. Com-

parisons of numerical results with dam-break experiments in different geometries are presented for validation.

Key words: Shallow Water equations, viscoplastic, Herschel-Bulkley rheology, free-surface flows, multi-regime

flows, depth-integrated models.

1 Introduction

Mathematical modeling and simulation of gravity driven thin surface flows (e.g. lava flows), has a number

of important geophysical and engineering applications. One key application is the ability to predict the fluid

rheology for risk assessments and hazard management plans. Reliable forecasting, however, prompts for

accurate modeling of the flow dynamics. This paper aims at deriving a mathematical model that is adequate

to simulate Herschel-Bulkley fluids, in particular for real-like lava flows.

In fluid mechanics, lava is categorized as an example of a viscoplastic material because of its yield stress

threshold, beyond which it flows like a fluid and below which it behaves like a rigid solid. Other examples

common in nature and with such complex behavior are mud flows and snow avalanches. Examples of vis-

coplastic materials for industrial applications include, but are not limited to, food pastes, cosmetic creams,
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coating films and other concentrated suspensions [1,2,8]. There is a vast literature on viscoplastic flows, see

for instance [1,2,6,8,12]. A number of mathematical models describing this complex rheology of viscoplastic

flows have been suggested and studied. The most common are the Bingham model and the Herschel-Bulkley

model [1, 5, 30]. Generally, the Herschel-Bulkley model, is widely used because of its ability to describe

many complex fluid behaviors in a non-linear and history independent manner. For instance, the Herschel-

Bulkley model has been applied for viscoplastic flows on an inclined surface in [6,30] and its comparison with

dam-break experiments presented in [3, 15,16].

Apart from the complex rheology, modeling of geophysical viscoplastic flows still remains an active topic of

research because of the complex topography that evolve rapidly, the extreme temperatures involved especially

for lava flows and the uncertainty of data required to verify the model. Moreover, these flows have an

additional complexity arising from the evolution of the free surface with time. Solving the full set of Navier-

Stokes equations governing these flows thus becomes computationally expensive and difficult. However,

some free surface flows are characterized by a small thickness compared to the characteristic length which

makes it possible to reduce the three-dimensional flow configuration to a lower dimension by depth-averaging

approaches [14,35,36]. Depth-averaged models, also known as depth-integrated models, are less expensive to

solve compared to the full Navier-Stokes equations.

The depth integrated models presented in this paper comprise of the Lubrication model and the Shallow

Water equations model. Lubrication model result from a hypothesis that the fluid considered is relatively

shallow and inertial effects are small [5, 14, 28]. It has been derived and studied for long in many thin free

surface flows. One key advantage of lubrication approximation is that it results to a one-equation model

governing the evolution of the fluid depth which is much less expensive to solve. However, this model is

over-simplified and may fail to capture all important flow details [5,19,27,30], for instance, the inertial terms

are neglected at order zero. For shallow flows, this model is also not consistent with wet-dry front dynamics

as the depth approaches zero, see [11,13,19,25] and references therein.

On the other hand, the Shallow Water equations model is obtained by averaging the local mass and

momentum conservation equations over the fluid depth, resulting in a two-equations model. It is more con-

sistent than lubrication model, for instance the inertial terms are not inconsequential, see e.g. [11, 19, 28]

and references therein. The Shallow Water equations were first introduced by Barré de Saint-Venant for

Newtonian hydraulic flows in 1887 [18]. Since then, derivation and use of the Shallow Water equations have

been extended to non-Newtonian flows using asymptotic expansion methods. For instance, Shallow Water

models for power-law fluids and Bingham fluids based on asymptotic expansion of the Cauchy Momentum

equations have been derived in [19, 28], derivation of the Saint-Venant equations for free surface flows of

viscoplastic fluids on a flat inclined plane has been documented in [9, 10, 12]. Both Lubrication type and

Shallow Water type models have widely been used to study thin free surface flows with different flow config-

urations. [12] derived the Saint-Venant equations model for viscoplastic flows with Herschel-Bulkley rheology

on a flat inclined plane, [11] derived asymptotic thin layer flow models (one equation and two equation type)

for power-law fluids with varying basal boundary conditions (corresponding to multi-regimes), [23] derived

a two-dimensional viscous Shallow Water model with irregular topography, bottom friction and capillary

effects, [33] derived a three equation model corresponding to mass, momentum and energy equation, for thin

viscous film on an inclined plane. The present article builds on the derivation of these models in particular the

Shallow Water equations partly presented in [12] and [11] and extended to a 2-D model on a non-flat inclined

configuration with varying conditions at bottom, therefore potentially presenting different flow regimes which

are naturally defined in function of dimensionless parameters.
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The outline of the paper is organized as follows. In Section 2, the flow configuration and the governing

equations are defined. By scaling and introducing dimensionless variables, the primitive equations are non-

dimensionalized. The orders of magnitude of dimensionless parameters and the weight coefficients from field

measurements of lava flows are also tabulated and analyzed following [11], in order to define the appropriate

flow regimes for consideration. In Section 3, zeroth-order solutions equivalent to steady uniform state solutions

are calculated. These flow solutions are important as they serve as reference solutions when calculating

solutions of other flow models. In Section 4, the one-equation model of lubrication type is derived. Two

shear regimes are defined: Regime A (standard regime) corresponding to the zeroth-order solutions and

regime B (enriched regime) with an additional corrective term. By depth-averaging, the Shallow-Water

equations are derived in Section 5, using asymptotic analysis following [11,12]. The equations are converted

to physical form and considering particular cases in the literature, classical models are recovered. Numerical

results of the Shallow Water equations are presented in Section 6. Model predictions are compared with

experimental results of dam-break flows [15,16,29]. Steady flow solutions with a bump at the center are then

plotted for analysis - to distinguish the two shear regimes. Final conclusions are drawn in Section 7.

2 Model formulation

Consider a 2D flow configuration of a thin layer of a viscoplastic lava-like fluid on an inclined topography

as shown in Fig. 1, with x being the axis of the slope at an angle θ and z , the axis normal to the slope.

The flow is driven by gravity g = (gsinθ,−gcosθ) and described by its velocity u = (u,w) and pressure field

denoted by p. The fluid evolves within a time-dependent domain Ω(t) =
{

(x, z)∈R2 : b(x) ≤ z ≤ H(t, x)
}

,

where H(t, x, z) is the fluid elevation, b(x, z) the basal topography elevation and h(t, x, z) = H(t, x, z)−b(x, z)
the fluid depth.

Figure 1: Flow configuration with non-flat topography

The flow dynamics are described by the incompressibe Navier-Stokes equations (conservation of mass and

momentum, respectively) together with the Herschel-Bulkley constitutive law:

∂xu+ ∂zw = 0,

ρ(∂tu+ u∂xu+ w∂zu) = −∂xp+ ρg sin θ + ∂xσxx + ∂zσxz,

ρ(∂tw + u∂xw + w∂zw) = −∂zp− ρg cos θ + ∂xσzx + ∂zσzz,

(2.1)

with σ
=

= τ
=

+ pI
=

, where τ is the total stress tensor, σ
=

=

(
σxx σxz

σzx σzz

)
the deviatoric stress tensor and I

=
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the identity tensor.

The Herschel-Bulkley rheology law readsσij =
(
K(T )γ̇n−1 + τc

γ̇

)
γ̇ij for τ > τc,

γ̇ij = 0 for τ ≤ τc,
(2.2)

where γ̇ij = ∂jui + ∂iuj are elements of the the strain rate tensor, γ̇ =
√

1
2

∑
ij γ̇ij γ̇ij the Frobenius norm of

the deformation tensor, τ the stress norm, n > 0 the power-law index, T the fluid temperature, K(T ) > 0

the consistency index and τc the yield stress.

Other fluid models can be recovered using this law (2.2) depending on n and τc. For instance, when n = 1,

the Herschel-Bulkley model reduces to Bingham model where the consistency index K becomes the plastic

viscosity η. When n < 1 the model reduces to shear thinning fluid (pseudo-plastic) in which the apparent

viscosity increases the shear rate. For n > 1, the fluid is shear thickening (dilatant). When n 6= 1 and

τc = 0, a power-law fluid model is obtained. When n = 1 and τc = 0, the Herschel-Bulkley model reduces to

Newtonian fluid model and K(T ) becomes the viscosity of the fluid.

The above governing equations are subject to the following boundary conditions:

• Boundary conditions at the bottom surface, z = b. This comprise of the friction condition otherwise

known as the power-law type condition or Weertman-type friction law (see e.g. [11]), given as
u
−
· t
−b

= −C|σ
=
· n
−b
· t
−b
| 1−nn σ

=
· n
−b
· t
−b
,

u · t
−b

= 0,
(2.3)

where C is the basal slip coefficient, n
−b

the outward normal to the bottom and t
−b

the tangent to the

bottom. The negative sign allows C to be positive since n
−b

is pointing outward. When C = 0, the no

slip condition is recovered: u = 0 and w = 0.

• Boundary conditions at the free surface z = H comprised of

� No stress condition: τ
=
· n
−

= 0 where unit normal n
−

= 1√
1+(∂xH)2

(
∂xH
−1

)
. With some computations,

this gives rise to two expressions: σxz = ∂xH
1−(∂xH)2 (σxx − σzz) and p = 1

1−∂xH (σzz − (∂xH)2σxx).

� Kinematic condition: ∂th+ u∂xH = w.

Since the flow is incompressible, the mass conservation in Eq (2.1) results in the following equality: ∂xu =

−∂zw ⇔ σxx = −σzz.

2.1 Scaling and non-dimensionalization

For non-dimensionalization of the primitive equations, L is set to be the characteristic length in the

direction of the flow, H the characteristic depth, U the scale of u and W the scale of w. By scaling and
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introducing dimensionless variables denoted by ′ yields: x = Lx′, z = Hz′, t = L
U t
′, b = Hb′ , h = Hh′, H =

HH ′, u = Uu′ and w = Ww′. Assuming thin flow, such that the characteristic fluid depth H is much smaller

than the corresponding characteristic length L, a geometric scaling parameter can be defined as ε = H
L << 1.

From the mass conservation equation, it can be deduced: W = H
LU . For the pressure p, a hydrostatic

pressure scale can be chosen as: p = ρgHcosθp′. Some standard scales are adopted for deviatoric stresses:

σxx = KUn

Hn−1Lσ
′
xx, σzz = KUn

Hn−1Lσ
′
zzand σxz = K

(
U
H
)n
σ′xz. The strain rate is scaled naturally as: γ̇ = U

H γ̇
′.

Injecting these dimensionless variables into the primitive equations, some standard dimensionless numbers

can be defined: the Reynolds number: Re = ρU2−nHn
K , the Froude number: Fr = U√

gH cos θ
and the Bingham

number: Bi = τc
K

(H
U

)n
.

Following the work of [11,19,28], some dimensionless parameters that occur naturally can be deduced:

β = εRe, α = εγ, δ =
ε

γ
, and λ =

1

γ
tan θ,

where β, α and δ are weight coefficients corresponding to the inertial term, viscous term and the pressure

term respectively. λ is the normalized gravity source term where γ = Fr2

Re . For mathematical convenience we

set m = 1
n , where n is the power-law index. Dropping the ′ notation, the following equations are obtained in

non-dimensional form:

• Conservation of mass and momentum, respectively:

∂xu+ ∂zw = 0.

β(∂tu+ u∂xu+ w∂zu) = −δ∂xp+ λ+ αδ∂xσxx + ∂zσxz,

ε2β(∂tw + u∂xw + w∂zw) = −δ(∂zp+ 1) + αδ(∂xσxz + ∂zσzz).

(2.4)

• The scaled friction condition at z = b writes (see e.g [11])u = C
|σxz (1− αδ∂xb)2 − 2αδσxx∂xb|m−1

(1+αδ∂xb2)m+1
2

(
σxz (1− αδ∂xb)2 − 2αδσxx∂xb

)
,

w = u∂xb.

(2.5)

• Boundary conditions at z = H : the no stress condition resulting to two expressions:

σxz =
αδ∂xH

1− αδ(∂xH)
(σxx − σzz), p =

α

(1− αδ(∂xH)2)
(σzz − αδ(∂xH)2σxx). (2.6)

and the Kinematic condition: ∂th+ u∂xH − w = 0.

• Rheological law: 
σxx = −σzz = 2

(
Bi
γ̇ + γ̇n−1

)
∂xu,

σxz =
(
Bi
γ̇ + γ̇n−1

)
(∂zu+ αδ∂xw) for τ > Bi,

γ̇ij = 0 for τ ≤ Bi,

(2.7)

where γ̇ =

√
(∂zu+ αδ∂xw)

2
+ 4αδ (∂xu)

2
, γ̇ij =

(
2ε∂xu ∂zu+ αδ∂xw

∂zu+ αδ∂xw −2ε∂xu

)
and τ =

√
σ2
xz + αδσ2

xx.
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2.2 Orders of magnitude of dimensionless parameters

Field measurements of lava flows sourced from [8, 20, 21] are presented in Table 1 for analysis. The

corresponding orders of magnitude of dimensionless parameters and weight coefficients are calculated as

shown in Table 2. The density of lava and inclination angle used for this calculations is ρ = 2700kg/m3

and θ = 10o respectively. From the order of magnitude in Table 2, the following deductions can be

Composition Temperature, θ (0C) Viscosity, K (Pas) Velocity, u (m/s)

Less viscous lava Komatiite 1400− 1600 100 101

Viscous lava (Intermediate) Basalt 1200 102 10−1

More viscous lava Dacite/Rhyolite 900 107 10−2

Table 1: Measurements of 3 types of lava flows, [8, 20,21].

ε Re Fr β α δ λ 1
β

δ
β

αδ
β

Less viscous lava 10−5 103 101 10−2 10−7 10−4 101 101 103 10−9

Viscous lava (Intermediate) 10−3 100 10−2 10−3 10−7 101 103 102 105 10−3

More viscous lava 10−2 10−5 10−3 10−7 10−3 10−1 100 107 106 103

Table 2: Orders of magnitude of dimensionless parameters and weight coefficients.

made: the aspect ratio is small in the three regimes, which validates the long wave assumption: ε << 1.

Numerical investigations have shown that, the shallow layer assumption is numerically valid up-to ε ≈ 0.3,

see e.g., [20, 24]. The dimensionless parameter α is negligibly small in the three regimes. β is very small in

more viscous lava compared to other flow regimes, hence important when distinguishing the three regimes.

On the other hand, δ is either small or of at most order 1. This implies that real flows are multi-regimes in

(β, δ). The gravity term λ is of at most order 3 and can be much higher in steep slopes. Reynolds number

Re and Froude number Fr for less viscous lava (and intermediate lava) are much higher than those of more

viscous lava, which rules out consideration of the more viscous lava in this paper. Generally, Komatiite and

Basaltic lava which are less viscous, are the most common lava flows on earth [20]. From this analysis two

regimes depending on β, α and δ can be defined:

• Regime A: with β small, α small and δ small (Less viscous lava).

• Regime B: with β small, α small while δ = O(1) ) (Intermediate viscous lava).

Considering these two regimes, the weight coefficient αδ
β as seen in Table 3, is much smaller than other terms,

it can thus be neglected - this will be recalled in the following sections. The asymptotic models corresponding

to these two regimes will be derived in the next sections.

3 Zeroth-order solutions

Zeroth-order approximation of the primitive equations results to steady uniform solutions (here in di-

mensionless form). These solutions are important since they serve as the reference solutions for other flow
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regimes (see e.g. [11, 12, 28]). Zeroth-order solutions are achieved by assuming a uniform flow ( h = const)

in x direction on a flat inclined bed (b ≡ 0), see Fig. 2 and by setting β = δ = α = 0. Thus, the governing

equations (2.4-2.7) simplifies to:

• Momentum equation: ∂zσxz = −λ,

∂zp = −1.
(3.1)

• Rheological law: σxz = Bi+ (∂zu)
n

if σxz > Bi,

∂zu = 0 if σxz ≤ Bi,
(3.2)

where at order zero; τ = σxz and γ̇ = ∂zu.

• Friction condition at z = 0: u = C|σxz|m−1σxz, w = 0, from which a non-slip condition is recovered

when the slip coefficient C = 0 and pure slip when C →∞.

• Boundary conditions at the free surface z = h: σxz = 0, and p = 0.

(a) (b)

Figure 2: Sketch of steady uniform flow (a) and lubrication regime (b) showing plug and sheared zones in
Herschel-Bulkley flows

Solving Eq. (3.1) a hydrostatic pressure and shear stress which are linear in z are obtained:

p = h− z, σxz = λ (h− z) . (3.3)

Consequently, the friction condition at z = 0 reduces to u = C (λh)
m

and w = 0. Near the free surface as

z → h, the shear stress component σxz → 0. This implies the existence of a plug like flow near the free

surface of thickness hp ( see Fig. 2) such that

hp =
Bi

λ
. (3.4)

Next, solving for stream-wise velocity using Eqs. (3.2), (3.3) and (3.4) yields

u(z) =


1

m+1λ
mhm+1

c

[
1−

(
1− z−b

hc

)m+1
]

+ C(λh)m, for z < hc

1
m+1λ

mhm+1
c + C(λh)m, for z ≥ hc

(3.5)
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where hc = max (0, h− hp) represents the thickness of the sheared zone below the plug. The flow rate can

also be obtained by q = hū =

∫ H

b

udz where ū is the mean velocity:

q = λmhm+1
c

[
1

m+ 1
hp +

1

m+ 2
hc

]
+ Cλmhm+1. (3.6)

In a Newtonian case where Bi = 0, m = 1 and taking C = 0, the plug is absent, thus hc = h. This results in

a Poiseuille-like velocity profile: u(z) = 1
2λh

2
[
1−

(
1− z

h

)2]
, and the average velocity ū in terms of thickness

h becomes ū = 1
3λh

2.

Steady uniform solution is important as it gives an idea of how the flow behaves and serves as a reference for

other flow regimes. Asymptotic fields of other flow regimes considered in the following sections, are calculated

as perturbations of this reference flow.

4 Lubrication type model (one-equation model)

In the lubrication theory, it is assumed that one dimension is significantly smaller than the others, here

the geometrical ratio ε = H
L << 1, and that the inertial terms are inconsequential. To obtain the lubrication

model otherwise known as the one-equation model, the 0th order terms in ε are considered: β = α = O(ε).

As a result, the model (2.4-2.7) is reduced to the following system of equations:

• Conservation of mass: ∂xu+ ∂zw = 0, and the conservation of momentum:

∂zσxz = δ∂xp− λ, (4.1)

∂zp = −1. (4.2)

• Herschel-Bulkley rheology law:
σxx = −σzz = 2

(
Bi
∂zu

+ (∂zu)
n−1
)
∂xu,

σxz = Bi+ (∂zu)
n

for σxz > Bi,

∂zu = 0 for σxz ≤ Bi,

(4.3)

• Friction boundary condition at the bottom surface z = b: u = C|σxz|m−1σxz, w = u∂xb.

• Boundary conditions at the free surface z = H, comprising of the non-stress conditions: σxz = 0, p = 0

and the kinematic condition: ∂th+ u∂xH = w.

Eq. (4.2) results to a hydrostatic pressure which evolves linearly within the fluid: p = H(x, t)−z. Substituting

this in Eq. (4.1) and integrating yields

σxz = (λ− δ∂xH)(H − z). (4.4)

This equation represents a balance between the shear stress and the pressure gradient together with gravity.
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Following the approach by Boutounet et al. [2], in order to calculate the velocity profile the modulus of Eq.

(4.4) can be obtained as

|σxz| = |λ− δ∂xH|(H − z). (4.5)

which implies that for a vanishing slope angle in the gravity term λ, the sign of the shear stress σxz remains

the same as the sign of the local slope. A new variable Λ can thus be introduced using Eqs.(3.3) and (4.5) as

Λ =

λ for regime A,

λ− δ∂xH for regime B,
(4.6)

regime A corresponding to the reference solution and regime B corresponding to the enriched regime contain-

ing an additional slope term δ∂xH. As seen previously in the case of steady uniform flow, Eq. (4.4) shows

that the evolution of shearing stress is linear indicating that there exist an unsheared (plug) zone near the

surface of the flow as seen in Fig. 2(b), whose thickness hp is obtained as

hp =
Bi

Λ
. (4.7)

This thickness, however, is not constant, it varies with the thickness gradient of the free surface, which

implies existence of some elongational deformation in the plug. This contradicts the validity of lubrication

approximation. To resolve this contradiction, a concept of pseudo-plug is introduced where the plug is made

weakly sheared under the influence of normal stresses [5, 12,13,30].

Next, to obtain the depth-integrated law of mass conservation, the continuity equation is integrated from z = b

to z = H applying Leibniz integral rule on the first term to get
∂

∂x

∫ H

b

udz−u|z=H ∂H
∂x +u|z=b ∂b∂x+

∫ H

b

dw = 0.

Taking w|z=H − w|z=b = w|z=H and applying the kinematic condition at the free surface recalling that the

depth average velocity is defined as ū = 1
h

∫ H

b

udz, the depth-averaged mass conservation is obtained as

∂h

∂t
+
∂(hū)

∂x
= 0. (4.8)

To solve Eq. (4.8), the mean velocity ū has to be determined by integrating the constitutive law (4.3) to obtain

u. By substituting Eq. (4.4) and (4.7) into Eq. (4.3) and integrating, using the fact that H = hp + hc + b,

equation of the velocity is obtained:

u(z) =

Λ|Λ|m−1

[
1

m+1h
m+1
c

(
1−

(
1− z−b

hc

)m+1)
+ Chm

]
if z < hc + b,

Λ|Λ|m−1
[

1
m+1h

m+1
c + Chm

]
if z ≥ hc + b.

(4.9)

The velocity component of the plug region is not constant, varies as soon as the slope changes, confirming

the existence of some deformations as mentioned above. This velocity profile is locally identical to that of

the zeroth-order solution of steady uniform flow, a perturbation of the reference flow.

Finally, to obtain an expression for the discharge rate q = hū, u can be integrated to get

q = Λ|Λ|m−1

[
hm+1
c

(
1

m+ 1
hp +

1

m+ 2
hc

)
+ Chm+1

]
. (4.10)

Inserting this expression into Eq. (4.8) the Lubrication type model (one-equation model) in variable h is
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obtained:
∂h

∂t
+

∂

∂x

(
Λ|Λ|m−1

[
hm+1
c

(
1

m+ 1
hp +

1

m+ 2
hc

)
+ Chm+1

])
= 0. (4.11)

For a Newtonian case when Bi = 0,and m = 1, the plug is absent, thus H = h + b where h = hc.

The expression (4.9) simplifies to a quadratic velocity profile that depends on gravity and the slope: u(z) =

Λ
[

1
2h

2
(

1−
(
1− z−b

h

)2)
+ Ch

]
. Thus the average velocity ū in terms of thickness h becomes ū = Λ

(
1
3h

2 + Ch
)
.

Substituting this equation into the depth-integrated mass conservation (4.8), a simplified one-equation model

of Benney’s type with no surface tension term (see [7, 14]) is recovered: ∂h
∂t + ∂

∂x

(
Λ
(

1
3h

2 + Ch
)
h3
)

= 0. To

summarize, one advantage of lubrication approximation is that it reduces the primitive equations to a one

non-linear diffusive equation governing the evolution of the fluid depth, which is less expensive to solve com-

pared to the full Navier-Stokes equation. However, this model is over-simplified and may fail to capture all

important flow details, for instance, the inertial terms are neglected at order zero. Researchers have also

questioned the validity of lubrication approximation at high Reynolds number, and the associated error due

to shallow layer assumption quantified, see [27]. This result has shown that, one equation type model is only

valid for small aspect-ratio flows and can present singularities in finite time when linear stability threshold

is exceeded, [19,28]. The model is also not consistent with wet-dry front dynamics as h→ 0 [11,14,19]. The

solution to these issues is to consider a two-equations model discussed in the next section, which is more

consistent.

5 The Shallow Water type model (two-equations model)

The drawbacks of the one-equation model limit its validity to geophysical flows with complex rheology.

This prompts us to consider a two-equations model otherwise known as the Shallow Water type model which

is more complete and robust. The Shallow Water type model results from integration of the incompressible

Navier-Stokes equations over the depth of the flow (this eliminates the vertical dimension) plus the shallow

layer assumption ε << 1.

Starting from the Navier-Stokes equations (2.1) and the associated boundary conditions, derivations are

done following the work of [11, 12, 19]. Integration of the mass conservation expression over the depth was

done in the previous section which is recalled here as the first equation model, see Eq. (4.11). Next, the

momentum equation is also integrated over the fluid depth to obtain the second equation model. To achieve

this, the x-momentum equation is integrated, and Leibniz integral rule applied together with the boundary

conditions to give

β

(
∂

∂t

∫ H

b

udz +
∂

∂x

∫ H

b

u2dz

)
+ δ

∂

∂x

∫ H

b

pdz = ε2
∂

∂x

∫ H

b

σxxdz+λh−σxz|z=b−
(
δp|z=b − ε2σxx|z=b

) ∂b
∂x
.

With some computations and introducing the flow rate q = hū =

∫ H

b

udz and the shear stress at the base

as σxz|z=b = τb the second equation for Shallow Water type model in variables (h, q) is obtained as

∂hū

∂t
+

∂

∂x

∫ H

b

u2dz − αδ

β

∂

∂x

∫ H

b

σxxdz +
δ

β

∂

∂x

∫ H

b

pdz +
δ

β
(p|z=b−ασxx|z=b)

∂b

∂x
=

1

β
(λh− τb) . (5.1)
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To close the model, terms involving
∫H
b
u2,

∫H
b
σxx, and

∫H
b
p need to be expressed in terms of h and ū

by asymptotic approximation. For geophysical flows such as lava flows with complex rheology, zeroth-order

approximation is sufficient to describe the model. Order one, though more consistent, is more complex

to implement for practicable use [11]. Thus, for the closure of the two-equations model, the following

approximations at order zero are developed, following the approach of [11,12]:

i. If assuming u ≈ ū, the term involving
∫H
b
u2dz can be approximated as:

∫H
b
u2dz ≈ hū2 = q2

h , which

can be written as
∫H
b
u2dz = q2

h + ”the corrective term”. Adopting the corrective term used in [11]:

”corrective term”= Λ2mh2m+3

(2m+3)(m+2)2 , gives
∫H
b
u2dz ≈

∫H
b
u(0)2dz = q2

h + Λ2mh2m+3

(2m+3)(m+2)2 . It is important to

note that the corrective term vanishes as the slope Λ vanishes.

ii. The pressure term can be approximated from the zero-order expansion as:
∫H
b
pdz '

∫H
b
p(0)dz = h2

2 .

Using this expression, the pressure terms in Eq. (5.1) can be added together as follows ∂
∂x

∫H
b
pdz +

p|z=b ∂b∂x = ∂
∂x

(
h2

2

)
+ h ∂b∂x = h∂H∂x .

iii. The terms in order αδ
β are negligible, thus all terms in σxxcan be dropped (as seen in Table 3, the

weight coefficient αδ
β is much smaller compared to others, hence can be neglected).

iv. The basal shear stress τb can be approximated at order zero as a function of flow rate, following the

approach by [12]. From Eqs. (4.4) and (4.7) it can be written

τ
(0)
b = σ(0)

xz |z=b = Λ (hp + hc) . (5.2)

This approximation is closed by expressing it in terms of the state variables h and q. Thus, by substi-

tuting the equivalent expression for Λ from Eq. (4.10) into Eq. (5.2) yields

τ
(0)
b = |Λ|1−m (hp + hc)

 hū

hm+1
c

(
1

m+1hp + 1
m+2hc

)
+ Chm+1

 . (5.3)

In a similar way, Chambon [12] obtained a similar expression of the form

τb = Bi+ hc

 hū

hm+1
c

(
1

m+1hp + 1
m+2hc

)
+ Chm+1

 1
m

. (5.4)

The two-equations model (Shallow Water type) consists of the mass equation (4.8) and the momentum

equation (5.1), providing a PDE system for the fluid height h and the discharge rate hū. Applying the above

approximations into Eq. (5.1), the two-equations system writes

∂h

∂t
+
∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

h
+

Λ2mh2m+3

(2m+ 3)(m+ 2)2

)
+
δ

β
h
∂H

∂x
=

1

β
(λh− τb) , (5.5)

with the basal shear stress τb written as

τb = |Λ|1−m (hp + hc)
q

D(h)
, (5.6)
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where the denominator D(h) writes D(h) = hm+1
c

(
1

m+1hp + 1
m+2hc

)
+ Chm+1.

Considering Newtonian case where Bi = 0 and m = 1, Eq. (5.6) reduces to: τb = 3h2ū
h3+3Ch2 . For a flat

basal topography with no slip τb becomes τb = 3ū
h . This recovers, the two-equations model for a Newtonian

fluid presented in [11,14,19]:

∂h

∂t
+
∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

h
+

δ

2β
h2 +

Λ2h5

45

)
=

1

β

(
λh− 3q

h2

)
. (5.7)

Similarly, setting Bi > 0 and m = 1 the Shallow Water model for Bingham fluids reported in [19] is recovered.

Also, by setting Bi = 0 and m 6= 1 the Shallow Water model for power-law fluids presented in [11, 19] is

recovered.

Using the dimensionless variables in Sec. 2.1 , the 1D two-equations model in physical form becomes

∂h

∂t
+
∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

h
+

1

2
gh2cosθ + CmΛ2mh2m+3

)
= ghcosθ

(
tanθ − ∂b

∂x

)
− 1

ρ
τb (5.8)

where: τb = |Λ|1−mK (hp + hc)
q

D(h) , Λ = ρg
K Sθ, with Sθ =

sinθ for regime A,

sinθ − cosθ ∂H∂x for regime B,

the denominator D(h) = hm+1
c

(
1

m+1h−
1

(m+1)(m+2)hc

)
+ C (h)

m+1
, Cm = 1

(2m+3)(m+2)2 , the thickness of

the sheared zone hc(z, t) = max (0, h(z, t)− hp(z, t)), the plug thickness hp(z, t) = τc
ρgSθ

.

An important remark is that the Shallow Water model is closed when all terms are expressed in terms of

averaged velocity and depth. Accordingly, the slope can be expressed as tanθ = −∂h∂x , with the negative sign

indicating the direction of the flow.

To extend the derivations to two dimensions, the Shallow Water system is derived from the integration of

the 3D incompressible Navier-Stokes equations (5.9). For the purpose of derivation, a configuration in which

either x or y is the axis of the slope at an angle θ with z being the axis normal to the slope is considered

β(∂tu+ u∂xu+ v∂yu+ w∂zu) = −δ∂xp+ λx + αδ (∂xσxx + ∂yσxy) + ∂zσxz,

β(∂tv + u∂xv + v∂yv + w∂zv) = −δ∂yp+ λy + αδ (∂xσxy + ∂yσyy) + ∂zσyz,

ε2β(∂tw + u∂xw + v∂yw + w∂zw) = −δ(∂zp+ 1) + αδ(∂xσxz + ∂yσyz + ∂zσzz).

(5.9)

Considering 0th order terms in ε and assuming β = α = O(ε), the governing equations reduces to the following

system of equations:

• Conservation of mass: ∂xu+ ∂xu+ ∂zw = 0.

• Conservation of momentum:

∂zσxz = δ∂xp− λx, (5.10)

∂zσyz = δ∂yp− λy, (5.11)

∂zp = −1. (5.12)
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• Herschel-Bulkley rheology law introduced in Section 2.1 reduces to
σxz =

(
Bi
γ̇ + γ̇n−1

)
∂zu,

σyz =
(
Bi
γ̇ + γ̇n−1

)
∂zv, if τ > Bi,

γ̇ij = 0 if τ ≤ Bi,

(5.13)

where the deformation tensor norm: γ̇ =

√
(∂zu)

2
+ (∂zv)

2
and the stress norm:

τ =
√
σ2
xz + σ2

yz. (5.14)

• Friction condition: u = C|σxz|m−1σxz, v = C|σyz|m−1σyz and w = u∂xb+ v∂yb, at the bottom z = b.

When C = 0 the no-slip condition is recovered.

• Non-stress conditions: σxz = σyz = 0, p = 0, and kinematic condition: ∂th + u∂xH + v∂yH = w, at

the free surface z = H.

Integrating Eq. (5.12) a hydrostatic pressure with a linear evolution is obtained: p = H(x, y, t)− z. Substi-

tuting this in Eq. (5.10) and (5.11) and integrating, results to

σxz = Λx(H − z), σyz = Λy(H − z), (5.15)

where, if x is considered as the axis of the slope, y as the horizontal axis and z the normal axis to the slope,

Λ defined in Section 4 writes

Λ = λ
(

1
0

)
for regime A, Λ = λ

(
1
0

)
− δ
(
∂xH
∂yH

)
for regime B. (5.16)

Otherwise, when considering a general case in which the axis of the slope is either x or y, the gravity term

can be written as

Λ = λ
(

1
1

)
for regime A, Λ = λ

(
1
1

)
− δ
(
∂xH
∂yH

)
for regime B. (5.17)

Eq. (5.14) can now be written in terms of Λ as

τ =
√(

Λ2
x + Λ2

y

)
(H − z). (5.18)

On the yield surface: h = hc and τ = Bi, thus the thickness of the sheared zone is obtained as

hc = h− Bi

||Λ||
for τ > Bi, (5.19)

which in general, writes: hc = max (0, h− hp), where the plug thickness hp = Bi
||Λ|| and ||Λ|| =

√(
Λ2
x + Λ2

y

)
.

Next, from the rheology law (5.13), τ can be written as

τ =
√
σ2
xz + σ2

yz = Bi+ γ̇n. (5.20)
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Note that Eq. (5.18) and Eq. (5.20) are equivalent, which after a few arrangements translates to

∂zu = Λx(hc + b− z) 1
n , ∂zv = Λy(hc + b− z) 1

n (5.21)

in x- and y-direction, respectively. Integrating these expressions and applying the friction condition, the

velocity distribution in the x- and y-direction respectively, is obtained:

u(z) =

Λx|Λx|m−1
[

1
m+1

(
hm+1
c − (hc − z − b)

m+1
)

+ Chm
]

if z < hc,

Λx|Λx|m−1
[

1
m+1h

m+1
c + Chm

]
if z ≥ hc.

v(z) =

Λy|Λy|m−1
[

1
m+1

(
hm+1
c − (hc − z − b)

m+1
)

+ Chm
]

if z < hc,

Λy|Λy|m−1
[

1
m+1h

m+1
c + Chm

]
if z ≥ hc.

(5.22)

The flow rate in both directions can be calculated by integrating qx = hū =
∫H
b
udz and qy = hv̄ =

∫H
b
vdz

respectively to obtain

qx = Λx|Λx|m−1

[
hm+1
c

(
1

m+ 1
hp +

1

m+ 2
hc

)
+ Chm+1

]
,

qy = Λy|Λy|m−1

[
hm+1
c

(
1

m+ 1
hp +

1

m+ 2
hc

)
+ Chm+1

]
.

(5.23)

The first equation of the model (lubrication type) can now be written in 2D:

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0. (5.24)

To obtain the second equation of the model, following the approach presented for 1D case, the x- and y-

momentum equations are integrated over the fluid depth, applying Leibniz integral rule and the boundary

conditions to obtain:

the x-component:

∂hū

∂t
+

∂

∂x

∫ H

b

u2dz +
∂

∂y

∫ H

b

uvdz − αδ

β

(
∂

∂x

∫ H

b

σxxdz +
∂

∂y

∫ H

b

σxydz + σxy|z=b
∂b

∂y
− σxy|z=H

∂H

∂y

)

+
δ

β

∂

∂x

∫ H

b

pdz +
δ

β
(p|z=b−ασxx|z=b)

∂b

∂x
=

1

β
(λxh− τbx) ,

the y-component:

∂hv̄

∂t
+

∂

∂x

∫ H

b

uvdz +
∂

∂y

∫ H

b

v2dz − αδ

β

(
∂

∂x

∫ H

b

σxydz +
∂

∂y

∫ H

b

σyydz + σxy|z=b
∂b

∂x
− σxy|z=H

∂H

∂x

)

+
δ

β

∂

∂y

∫ H

b

pdz +
δ

β
(p|z=b−ασyy|z=b)

∂b

∂y
=

1

β

(
λyh− τby

)
.

Considering both directions, the zeroth-order approximations defined at the begining of this section can now
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be used to close the model. This yields the two-equations model in 2D:

∂h

∂t
+
∂hū

∂x
+
∂hv̄

∂y
= 0,

∂hū

∂t
+

∂

∂x

(
hū2 +

δ

2β
h2 + CmΛ2m

x h2m+3

)
+

∂

∂y
(hūv̄ + CmΛ2m

y h2m+3) =
1

β

(
λxh− δh

∂b

∂x
− τbx

)
,

∂hv̄

∂t
+

∂

∂x

(
hūv̄ + CmΛ2m

x h2m+3
)

+
∂

∂y

(
hv̄2 +

δ

2β
h2 + CmΛ2m

y h2m+3

)
=

1

β

(
λyh− δh

∂b

∂y
− τby

)
,

(5.25)

with basal shear stress components approximated at order zero from Eq. (5.15), which after substituting Eq.

(5.23) for Λ in both directions, yields

τbx = |Λx|1−m
(
Bi

||Λ||
+ hc

)
qx
D(h)

, τby = |Λy|1−m
(
Bi

||Λ||
+ hc

)
qy
D(h)

, (5.26)

where the denominator D(h) = hm+1
c

(
1

m+1h−
1

(m+1)(m+2)hc

)
+ Chm+1 and Cm = 1

(2m+3)(m+2)2 .

In dimensional form the two-equations model in 2D writes

∂h

∂t
+
∂qx
∂x

+
∂qy
∂y

= 0,

∂qx
∂t

+
∂

∂x

(
q2
x

h
+

1

2
gh2cosθ + CmΛ2m

x h2m+3

)
+

∂

∂y

(qxqy
h

+ CmΛ2m
y h2m+3

)
= −hgcosθ

∂H

∂x
− 1

ρ
τbx ,

∂qy
∂t

+
∂

∂x

(qxqy
h

+ CmΛ2m
x h2m+3

)
+

∂

∂y

(
q2
y

h
+

1

2
gh2cosθ + CmΛ2m

y h2m+3

)
= −hgcosθ

∂H

∂y
− 1

ρ
τby ,

(5.27)

where Λ = ρg
K Sθ, with Sθ = sinθ

(
1
0

)
for regime A, or Sθ = sinθ

(
1
0

)
− cosθ

(
∂xH
∂yH

)
for regime B. The basal shear

stress is expressed as

τ b =

[
τbx

τby

]
=


K

(
K

ρg|Sθx |

)m−1(
τc

ρg||Sθ||
+ hc

)
qx
D(h)

K

(
K

ρg|Sθy |

)m−1(
τc

ρg||Sθ||
+ hc

)
qy
D(h)

 , (5.28)

where as presented previously, the sheared thickness hc = max (0, h− hp) and the plug thickness hp = τc
ρg||Sθ|| ,

as seen in Fig. 2. By setting τc = 0, m = 1 and θ = 0, the classical Shallow Water equations for Newtonian

flows are recovered.

6 Numerical results

This section presents computed results of a few cases considered using the Shallow Water equations 5.27.

To start with, numerical results are compared with experimental results for validation. Thereafter, steady-

state flows with a bump at the center are considered for analysis. Results are computed using COMSOL

multiphysics applying the “Shallow Water equations interface” and DassFlow open-source software [26] for

cross-validation. COMSOL multiphysics employs a first order Discontinuous Galerkin scheme in space and

Runge-Kutta in time. DassFlow employs demonstrated robust Finite Volume (FV) schemes (both first and

15



second order), see [17, 25, 32] in the Newtonian case. For the present Herschel-Buckley case, the first order

FV scheme has been enriched; details are presented in the appendix. Results presented are for Regime A

(using both Comsol and DassFlow) unless stated otherwise while comparing with Regime B (using Comsol

only).

6.1 Validation

To test the accuracy and reliability of the Shallow Water equations model to predicting actual behavior

of the fluid flow, computed results are compared with experimental results presented in [15,16] and [29]. Two

cases are considered: flows on an inclined surface and on a horizontal surface with a topography. Experimental

data is extracted from the literature using WebPlotDigitize free online software with an estimated error margin

of less than 0.05 [34].

6.1.1 Dam-break experiment on an inclined surface

To validate the numerical model on an inclined surface, a dam-break experiment of [15,16] is considered.

The experiment involves the sudden release of fixed volumes of a viscoplastic fluid down a plane inclined at

some angle θ, as seen in Fig. 3. The fluid is initially locked in a reservoir set at the top of the plane before

(a) (b)

Figure 3: Dam-break geometry: (a) Side-view (b) top-view of the geometry.

it is released suddenly by opening the lock gate. Data used is obtained from [3, 15, 16]: inclination θ = 12o,

density ρ = 1000kg/m3, rheological information of Carbopol ultrez 10 for different concentrations as shown

in Table 3, and an initial fluid height 0.36m. The reservoir is of length 0.51m and width 0.3m, while the

plane is of length 4m and width 1.2m.

Concentration 0.25% 0.3% 0.35%

K(Pa sn) 32.1 47.7 58.9
n 0.39 0.42 0.51

τc(Pa ) 78 89 102

Table 3: Rheological details of Carbopol ultrez 10 used. Data obtained from [3,15,16].

The wall condition (with C = 0) is used on all boundaries. Unless stated otherwise, simulations are

carried out using 43kg of Carbopol ultrez 10 at a concentration of 0.3%. An unstructured mesh with 2000

number of elements is used for discretization with a time-step ∆t = 0.05.

Fig. 4 shows computed results plotted against experimental results. The front positions varying with

time for 0.3% and 0.25% concentration of Carbopol ultrez 10 on a slope of θ = 12o and θ = 18o are shown.

Simulation results are in good agreement with experimental results. A small difference is observed,

especially at early times after releasing the fluid. This discrepancy could be attributed to the experimental

errors reported in the literature. For instance, it was reported that the dam-gate took some time to fully open
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(a) (b) (c)

Figure 4: Comparing experimental and simulation results of a dam-break problem: front positions varying
with time for 0.3% concentration of Carbopol ultrez 10 on a slope of θ = 12o (a), θ = 18o (b), and for 0.25%
concentration on a slope of θ = 12o(c).

while in simulations the gate is assumed to open instantly releasing the whole bulk of the fluid instantaneously.

Moreover, at the initial stage of the flow (where ε ' 0.6), this dam-break problem is not compatible with the

shallow flow assumption (as it does not obey the thin-layer assumption ε << 1). (Similar observations are

reported e.g. in [8]).

Fig. 5(a) shows the evolution of fluid height with time of a Herschel-Bulkley fluid for various time instants.

(a) (b) (c)

Figure 5: Fluid evolution in a dam-break problem: (a) fluid height evolution at different time instants, (b)
mean velocity at different time instants, (c) fluid depth at t = 1s for various fluid types.

The corresponding mean velocity is plotted in Fig. 5(a). The fluid propagates as expected with the flow

front advancing in time. Both fluid thickness and mean velocity are reducing in time as the flow front

spreads further. Fig. 5(c) shows the comparison of fluid heights for a Newtonian, Herschel-Bulkley and

power-law fluid respectively at t = 1s. Bingham fluid is obtained by setting n = 1, power-law fluid by setting

τc = 0Pa and Newtonian fluid achieved by setting τc = 0Pa and n = 1, while keeping other parameters

constant. Having used the same consitency index, it is observed that the power-law fluid spreads faster than

the Herschel-Bulkley which spreads faster than the Newtonian fluid. For 2D visualization, computed flow

(a) (b) (c)

Figure 6: 2D visualization of the dam-break flow for different time instants

thickness at t = 0.2s, t = 0.5s and t = 1s respectively is shown in Figure 6. The fluid advances in both
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directions past the reservoir gate as expected. The height is observed from the color legends on the right,

to reduce with time as the fluid flows. These results confirm the ability of the Shallow Water model to well

simulate these 3D flows.

6.1.2 Dam-break experiment on a horizontal surface with a topography

To validate the numerical model on a horizontal surface with a topography, a dam-break experiment done

by [29] is considered. This experiment was carried out using water on a rectangular horizontal channel of

length 8.9m and width 0.3m. A reservoir of width 0.3m was set 4.65m from the channel entrance, see Fig.

3(a), with angle θ = 0o. The reservoir was initially filled with 0.25m of water at rest. A trapezoidal shaped

topography of base length 1m, top length 0.3m and height 0.075m is located 6.18m downstream from the

entrance. The reservoir gate is opened suddenly and surface elevation data captured using video cameras.

(a) (b) (c)

Figure 7: Comparing experimental and simulation results of a dam-break problem for Newtonian case. Free
surface profile on a flat surface (a) and over a topography at t = 1.9s (b) and t = 6.6s (c).

For numerical simulations, an unstructured mesh with 2000 number of elements is used for discretization

with a time-step ∆t = 0.05. The wall condition (with C = 0) is used on all boundaries. Computed free

surface profiles are compared with experimental data with and without a topography at t = 1s, t = 1.9s and

t = 6.6s respectively, as seen in Fig. 7. Numerical results are achieved using a Newtonian fluid for regime

B by setting τc = 0Pa and n = 1 and K = 0.001Pa sn. Experimental results are accurately predicted by

numerical results with or without a topography. This confirms the reliability of the model to simulating

unsteady flows over topography. It is worth noting that the long-wave assumption is obeyed in this test case

with ε ' 0.05 at the initial stage.

6.2 Steady flow with a bump at the center

Figure 8: Flow geometry on a flat topography with a bump at the center

In this subsection, a steady state flow on a flat topography with a bump at the center is considered, as

shown in Fig. 8. The topography given by b(x) = 0.5e−0.5( 2x−L
2 )2 is set on a domain such that 0 ≤ x ≤ L

18



where L = 10m. The same data described as in Table 3 for 0.3% concentration of Carbopol ultrez 10 is

used together with a density ρ = 1000Kg/m3 and inclination θ = 12o. To mimic a real-like consistency

index that is temperature dependent, a consistency index that varies linearly with time is set such that:

K =
(
Kf−Ko
tf

)
t+Ko where consistency index at initial time to is Ko = 30Pa sn and at some final time to is

Kf = 60Pa sn. These values are chosen arbitrary from Table 3. An unstructured mesh with 2000 quadrilateral

elements is used for discretization with ∆t = 0.05. The aspect ratio is estimated as ε = H/L ' 0.1 from

which dimensionless numbers defined in Section 2.1 are locally computed with time. To ensure a steady-state

is achieved, the iterations are run until the relative error between solutions of two consecutive time steps is

below the stationarization tolerance: |h
n+1−hn|
|hn| < 10−3.

6.2.1 Steady uniform flow

To achieve a steady uniform flow, the following conditions are imposed: initial fluid elevation H(x, 0) =

h(x, 0)+b(x) = 0.5m and a mean velocity value ū(x, 0) = 3.125cm/s, uniform Dirichlet boundary conditions:

h(x, 0) = 1.0m and ū = 6.25cm/s at both inlet and outlet, and a wall condition at the bottom (with C = 0).

Figure 9: Time evolution of the fluid elevation. A steady state is reached at t = 10s with a tolerance of
about 10−8.

As expected for a uniform steady state flow, the fluid elevation attains a constant steady value at about

t = 10s as seen in Fig. 9 with a steady state tolerance of less than 10−8. Similarly, for dimensionless numbers

in Fig. 10, a steady state is achieved at t = 10s.

(a) (b) (c)

Figure 10: Time evolution of dimensionless numbers: β, α and δ respectively. Convergence for dimensionless
numbers is not expected since consistency index K varies with time.

Dimensionless parameters: β, α and δ, defined in Section 2.1 are plotted in Fig. 10 for different time

instants using local values. The weight coefficient β in Fig.10 (a) corresponding to inertial term is maximum

at initial time t = 0.5s when the flow is unsteady with high Reynolds number and reduces with time as the

flow becomes steady. The viscous term coefficient α in (b) increases with time as the flow achieves steady
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state. Similarly, as seen in (c) the pressure term coefficient δ becomes steady with time as the flow progresses.

There is high pressure at the initial stage which becomes steady with time.

To study the difference between the two flow regimes, the gravity term defined in Section 4 in is normalized

as

Λ

λ
=

1 for regime A,

1− δ
λ∂xH for regime B,

(6.1)

from which, a regime correction criterion differentiating the two regimes can be defined as δ
λ∂xH. In physical

dimensions δ
λ=cotθ and λ = ρg

K . Time evolution of this term is plotted in Fig. 11. Regime A is represented

Figure 11: Time evolution of the normalized gravity term Λ
λ .

by line Λ
λ = 1 while regime B enriched with the correction term ( δλ∂xH) is represented by Λ

λ = 1 − δ
λ∂xH.

Equilibrium state is reached at t = 10s. The difference is approximately 15% around the bump on both

sides of the mean position and negligible everywhere else. This clearly depicts that a deviation between the

two regimes only occurs when there is a change in slope within the flow e.g. due to varying topographies.

However, this difference does not manifest itself within the state variables. This is noticed while comparing H

and U at time t = 10s between the two regimes, with a very small relative difference of about |hB−hA||hA| < 10−5

observed. This shows that a 15% disparity observed within the normalized gravity term corresponds to a

< 10−3% difference within the state variables, which has insignificant effects on the flow. This concludes that

the corrective term ( δλ∂xH) can be neglected in steady uniform laminar flows (unless its magnitude is large

enough to cause observable perturbations of course).

6.2.2 Steady non-uniform flow

To achieve a steady non-uniform flow, similar conditions for initial data are used: i.e. fluid height

H(x, 0) = h(x, 0) + b(x) = 0.5m, a mean velocity value ū(x, 0) = 3.125cm/s, wall condition at the bottom

(i.e. no-flux condition with C = 0), inlet boundary conditions: q = 6.25cm/s (with h = 1.0m) and the

outlet is left open to allow transmission from the domain values. A steady state is reached at t = 10s with a

stationarization tolerance of about 10−6. Fig. 12 shows evolution of fluid elevation in time over a bump for

various time instants, with a shock evidently observed around point x = 6m. The flow is non-uniform with

a sharp change of slope at the top of the bump. Strict convergence to a steady-state is not expected as the

consistency index is set to vary linearly with time from low viscosity to a relatively high viscosity.

Fig. 13 shows dimensionless parameters evolving in time. The discussion is the same as for the steady

uniform case; with β and δ reducing with time as the fluid reaches equilibrium. On the other hand, α varies

inversely increasing with time as the flow attains steady-state as expected.

Fig. 14 shows the normalized gravity term given by Eq. 6.1 evolving in time. A regime correction criterion
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Figure 12: Time evolution of the fluid elevation. A steady state is observed at t = 10s with a tolerance of
about 10−6.

(a) (b) (c)

Figure 13: Time evolution of dimensionless numbers: β, α and δ respectively. Convergence for dimensionless
numbers is not expected since consistency index (mimicking real-like lava viscosity) varies with time.

of about 18% can be observed on the left hand side of the bump in Fig. 14(a), and about 500% after the tip

of the bump on the right hand side where the shock is observed, see Fig. 14(b). This clearly depicts that

a sharp change of slope increases the magnitude of the corrective term where a perturbation on the flow is

expected.

Fig. 15 shows the difference between the two regimes for the state variables: H and U respectively,

and Froude number Fr, plotted in both COMSOL and DassFlow simulation softwares for cross-comparison.

There is agreement between the two codes as observed for regime A. The difference between regime A and

B, however is clearly observed where the gradient is changing sharply i.e. around position 5.0 − 7.0 in

x−values. The maximum relative difference between the two regimes at about x = 6.2m can be computed as
|hB−hA|
|hA| ≈ 0.3m. However, this disparity is negligible everywhere else beyond the point where the gradient

is changing, as also seen in the previous case of a steady uniform state. These results have shown that the

corrective term in regime B improves solution in areas with a very sharp change of slope, otherwise negligible

everywhere else.

7 Conclusion

This paper presents derivations of thin-layer flow models: 2D lubrication and Shallow Water equations,

valid for multi-regime flows of viscoplastic Herschel-Bulkley fluids on inclined non-flat topographies. From

the primitive Navier-Stokes equations with free-surface and friction-law condition, these models are derived

by asymptotic expansion method, extending the work of [11, 12, 28] to 3D multi-regime flows with varying

basal conditions. Starting from zeroth-order solutions, flow models and the corresponding flow regimes are

calculated. Classical reference solutions in the literature are recovered by considering particular cases on

flat topographies. Numerical solutions of the Shallow Water equations are obtained using both a Finite

Volume solver implemented into the open source computational software DassFlow [26] and a Discontinuous

Galerkin scheme implemented into the commercial software COMSOL multiphysics [31], for cross-validations.
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(a) (b)

Figure 14: Time evolution of the normalized gravity term Λ
λ : (a) the y-axis values ranges from 0.6 - 1.2 to

while (b) ranges from −4.0 - 1.0 to view the lower side of the mean position Λ
λ = 1

(a) (b)

Figure 15: Comparing fluid elevation H (a) and mean velocity U (b) for regime A and B at t = 10s. The
difference between the two regimes is evident where the slope is changing.

Numerical results are compared with dam-break experiments presented in [15, 16] on an inclined plane, and

in [29] on a horizontal surface with varying topography. A good agreement between experimental and

numerical results is achieved, which confirms the ability of the numerical model to simulate complex fluid

flows. The two flow regimes (the standard one, Regime A and the less classical one, Regime B) corresponding

to different balances between shear and pressure forces are numerically analyzed and compared. Two steady

state cases (uniform and non-uniform) are studied to investigate the difference between the two regimes within

the flow fields. Differences are observed in high slope areas within non-uniform flows. This shows that the

additional term present in the enriched equations modeling Regime B enables more consistent approximation

of flows in the vicinity of sharp slope variations. The numerical models which have been derived are able to

simulate real-world flows presenting Herschel-Bulkley rheology like lava flows.
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A Appendix: the Finite Volume scheme

In this section, solution procedure for the Shallow Water equations using finite volume method of Godunov

type is presented, following [17,25,35], see also [32].

24



A.1 Numerical scheme basic form

Firstly, the model is written in conservative form as

∂tU + ∂xF (U) + ∂yG (U) = Sg (U) + Sf (U) (A.1)

where

U =

 h

hū

hv̄

 is the vector of conserved variables,

F (U) =

 hū

hū2 + 1
2gh

2cosθ + Cm
[
ρg
K Sθx

]2m
h2m+3

hūv̄ + Cm
[
ρg
K Sθx

]2m
h2m+3

 andG (U) =

 hv̄

hūv̄ + Cm
[
ρg
K Sθy

]2m
h2m+3

hv̄2 + 1
2gh

2cosθ + Cm
[
ρg
K Sθy

]2m
h2m+3


are the vectors of fluxes,

Sg (U) =


0

−gh
(
cosθ ∂b∂x − sinθ

)
−gh

(
cosθ ∂b∂y − sinθ

)
 and Sf (U) =

 0

− 1
ρτbx

− 1
ρτby

 are the vectors of sources. Basal shear

stressτ b is given by (5.28).

Secondly, Godunov-type finite volume method is employed to solve the integrated form of the Shallow

Water equations (A.1) which generally yields a semi-discretized equation of the form

∂tU +
1

mk

∑
e∈∂k

meF̂ e (U) = Sg (U) + Sf (U) (A.2)

where, following notations defined in DassFlow [26]; Ω is the computational domain in 2D with N number

of cells, k representing the cell index, mk the area of the cell k, m∂k perimeter of the cell k, ke neighboring

cell, e the cell edge, ne the unit normal vector to e, ne,k the unit normal vector to e pointing outward from k

to ke, me the length of the side e, and F̂ e (U) = F e (U)nex +Ge (U)ney the intercell normal flux obtained

by applying the rotational invariance property in Eq. (A.1), see [35]. This property enables us to reduce the

sum of a 2D problem to a 1D Riemann problem.

Figure 16: Finite volume cell k: showing notations used for mesh discretization

A.2 Splitting method

To obtain a fully discretized system of Eq. (A.2), splitting method is employed for numerical treatment of
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the fluxes and the source terms. Splitting methods are commonly used to divide a long equation incorporating

several time-dependent physical process into simpler equations for individual physical process, which can be

solved separately by numerical techniques [22, 35]. Incorporating prediction and correction method, the

splitting method here consists of two steps:

Step 1: Compute Ũ
n+1

solution of (A.2) without the friction term:

∂tU +
1

mk

∑
e∈∂k

meF̂ e (U) = Sg (U) (A.3)

Step 2: Given the predicted solution Ũ
n+1

, compute Un+1
k solution of

∂tU = Sf (U) (A.4)

It’s noted that the solutionŨ
n+1

obtained in Step 1 is used to update the solution Un+1
k obtained in Step 2.

This procedure is described in the next subsection and detailed in [26]. Following these steps, the expected

final scheme in general will take the form

Un+1
k = Ũ

n+1

k + ∆tSf

(
Ũ
n+1

k

)
(A.5)

It is evident from Eq. (A.1) and (A.5) that for small fluid depth i.e as h → 0, the friction term becomes

very large compared to other terms and can lead to numerical instability. In that sense, a small time step

∆t can be chosen to maintain stability, however this can be computationally expensive. To overcome this

drawback, a proper numerical treatment of the friction source term is required i.e. the friction source term

can be treated implicitly while others are treated explicitly.

A.3 Interface fluxes and gravity source term discretization

Here, the fluxes and gravity source terms are treated explicitly, thus, integrating Eq. (A.3) in time, a

fully discrete system is obtained:

Ũ
n+1

= Un
k −

∆t

mk

∑
e∈∂k

meF̂ e (Un) + ∆tSg (Un) (A.6)

where subscript k represent the mesh cell index, superscript n is the time level, ∆t = tn+1 − tn is the

time step for t ∈ [0, T ], Un
k the approximation of Uat time tn, and F̂ e = F̂ e,k − F̂ e,ke are the numerical

fluxes through the interfaces of cell k at time tn. For clarity it is worth noting that this can also be

written asF̂ e (Un) = F̂ e
(
Un
e,k

)
− F̂ e

(
Un
e,ke

)
where Un

e,k and Un
e,ke are the vectors of the conservative

variable on either side of edge e. Numerical scheme (A.6) is complete when numerical fluxes F̂ e and gravity

source term Sg are reconstructed using finite volume methods developed in the literature, see e.g. [26, 35].

For this work Godunov-type scheme incorporated with HLLC approximate Riemann solver is employed

as detailed in DassFlow guide [26]. For the gravity source term, a well balanced scheme developed in

DassFlow (and references there in) which is stable for simulations involving wet-dry fronts is also adopted.

To ensure positivity of the fluid depth and preservation of the fluid at rest property, Audusse et al. [4]

considered a hydrostatic balance between the momentum components of the fluxes and gravity source term:
1
2g∇h

2 = −gh∇b, and proposed a well balanced gravity source term scheme of the form Sg (Un) = −gh∇b '
1
mk

∑
e∈∂k

me
g
2

[(
hne,k

)2

− (hnk )
2

]
ne,k, where the well-balanced discretization of the bed slope if considering the
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x-direction, can be viewed as ∂b
∂x '

be,k−bk
∆x ' hk−he,k

∆x , with he,k representing the reconstructed hydrostatic

water depth, at the left hand side of the cell interface e. This is first-order gravity source term scheme

implemented in Dassflow for Newtonian fluids.

In a similar approach, comparing with the Newtonian version in DassFlow ( [26]) and Audusse et al.

( [4]), a well-balanced discretization of the gravity source term Sg (U) = −g (cosθh∇b− hsinθ) for SWE

model derived here is employed. For instance, considering the x- direction gravity term:

Sg = −g
(
hcosθ

∂b

∂x
− hsinθ

)
,

' −g
[(

he,k + hk
2

)(
hk − he,k

∆x

)
cosθ − he,k + hk

2
sinθ

]
,

' g

2∆x

[(
h2
e,k − h2

k

)
cosθ + ∆x (he,k + hk) sinθ

]
.

(A.7)

Thus, in general Sg (Un) = −ghn (cosθ∇b− sinθ) ' 1
mk

∑
e∈∂k

me
g
2

[((
hne,k

)2

− (hnk )
2

)
cosθ +me

(
hne,k + hnk

)
sinθ

]
ne,k.

Substituting this into Eq. (A.6) yields

Ũ
n+1

= Un
k −

∆t

mk

∑
e∈∂k

meF̂ e (Un) +
∆t

mk

∑
e∈∂k

me
g

2

[((
hne,k

)2 − (hnk )
2
)

cosθ +me

(
hne,k + hnk

)
sinθ

]
ne,k (A.8)

Using appropriate Riemann solver (HLLC), this scheme for the fluxes and gravity term together with other

terms are implemented in Dassflow for Non-Newtonian version.

Note: For further details of the hydrostatic reconstruction and numerical methods used see [4, 26] and the

references there in.

A.4 Friction source term discretization

A stable implicit-scheme for the friction source term is required to avoid numerical instability as h→ 0.

Using appropriate numerical methods, Eq. (A.4) can be solved conveniently to get a numerical scheme for

the friction term. In an expanded form, this equation writes

∂h

∂t
= 0,

∂q̄

∂t
= Sf .

(A.9)

whereSf = − 1
ρτ b. Its’s noted that the component of the continuity equation is already zero i.e.

hn+1−h̃n+1

∆tn = 0, which implies that we only need to seek a solution of the non-zero component of the momen-

tum equation. The fluid depth is thus updated as

hn+1 = h̃n+1. (A.10)

where h̃n+1 is the fluid depth estimated at previous time step in Step 1 above. Treating the friction source

term implicitly i.e at time level tn+1 for all state variables, the semi-implicit time step scheme writes

hn+1ūn+1 − h̃n+1ũn+1

∆tn
= −1

ρ
τn+1
b ,

where h̃n+1 and ũn+1 are the previous solutions at tn obtained in step 1 above. Further, this writes
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ūn+1 = ũn+1 − ∆tn

h̃n+1ρ
τn+1
b . (A.11)

recalling that τ bexpression reads

τn+1
b =

K

D

(
K

ρg |Snθ |

)m−1(
τc

ρg||Snθ ||
+ hnc

)
qn+1. (A.12)

Treating flow rate term implicitly, Eq. (A.11) becomes

ūn+1 = ũn+1 − ∆tn

ρh̃n+1

[
K

D

(
K

ρg |Snθ |

)m−1(
τc

ρg||Snθ ||
+ hnc

)
h̃n+1ūn+1

]
. (A.13)

After rearrangement this results to

ūn+1 = ũn+1

 ρD

ρD + ∆tnK
(

K
ρg |Snθ |

)m−1 [
τc

ρg ||Snθ ||
+ h̃n+1

c

]
 . (A.14)

As h→ 0 then ūn+1 → 0, which implies that the fluid at rest property is preserved even at wet/dry fronts.

This develops to the following full-implicit scheme

Un+1
k =

(
hn+1

hn+1ūn+1

)
=


h̃n+1

hn+1ũn+1

 ρD

ρD+∆tnK

(
K

ρg |Sn
θ
|

)m−1[
τc

ρg ||Sn
θ
||+h̃

n+1
c

]

 . (A.15)

Recall the critical depth hc , Sθ term and the denominator D expressions are defined in Sec. 5. In a

similar way, this scheme is also implemented in DassFlow together with other terms and results computed

as presented in the previous section.

Remark : It is worth noting that only regime A is implemented in DassFlow. Further work need to be done

to implement regime B in DassFlow.
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