
Himmelfarb Health Sciences Library, The George Washington University
Health Sciences Research Commons
Anesthesiology and Critical Care Medicine Faculty
Publications Anesthesiology and Critical Care Medicine

11-2014

Derivation and validation of cutoffs for clinical use
of cell cycle arrest biomarkers
Eric A.J. Hoste

Peter A. McCullough

Kianoush Kashani

Lakhmir S. Chawla
George Washington University

Michael Joannidis

See next page for additional authors

Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_anesth_facpubs

Part of the Anesthesia and Analgesia Commons

This Journal Article is brought to you for free and open access by the Anesthesiology and Critical Care Medicine at Health Sciences Research
Commons. It has been accepted for inclusion in Anesthesiology and Critical Care Medicine Faculty Publications by an authorized administrator of
Health Sciences Research Commons. For more information, please contact hsrc@gwu.edu.

Recommended Citation
Hoste, E. A. J., McCullough, P. A., Kashani, K., Chawla, L. S., Joannidis, M., et al. (2014). Derivation and validation of cutoffs for
clinical use of cell cycle arrest biomarkers. Nephrology Dialysis Transplantation, 29(11), 2054–2061.

http://hsrc.himmelfarb.gwu.edu?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_anesth_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hsrc.himmelfarb.gwu.edu/smhs_anesth_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_anesth_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hsrc.himmelfarb.gwu.edu/smhs_anesth_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_anesth_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hsrc.himmelfarb.gwu.edu/smhs_anesth?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_anesth_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://hsrc.himmelfarb.gwu.edu/smhs_anesth_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_anesth_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/956?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_anesth_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hsrc@gwu.edu


Authors
Eric A.J. Hoste, Peter A. McCullough, Kianoush Kashani, Lakhmir S. Chawla, Michael Joannidis, and The
Sapphire Investigators

This journal article is available at Health Sciences Research Commons: http://hsrc.himmelfarb.gwu.edu/smhs_anesth_facpubs/118

http://hsrc.himmelfarb.gwu.edu/smhs_anesth_facpubs/118?utm_source=hsrc.himmelfarb.gwu.edu%2Fsmhs_anesth_facpubs%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages


Nephrol Dial Transplant (2014) 29: 2054–2061
doi: 10.1093/ndt/gfu292
Advance Access publication 18 September 2014

Original Articles

Derivation and validation of cutoffs for clinical use of cell
cycle arrest biomarkers

Eric A.J. Hoste1, Peter A. McCullough2,3, Kianoush Kashani4, Lakhmir S. Chawla5,6, Michael Joannidis7,

Andrew D. Shaw8, Thorsten Feldkamp9,10, Denise L. Uettwiller-Geiger11, Paul McCarthy12, Jing Shi13,

Michael G. Walker13, John A. Kellum14 on behalf of the Sapphire Investigators†

1Intensive Care Unit, Ghent University Hospital, Ghent University, and Research Foundation-Flanders (FWO), Belgium, 2Baylor University Medical

Center, Baylor Heart and Vascular Institute, Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, TX, 3The Heart Hospital, Plano,

TX, 4Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA, 5Department of Medicine, Division of Intensive Care

Medicine, and the Division of Nephrology, Washington, DC, Veterans Affairs Medical Center, 6Department of Anesthesiology and Critical Care

Medicine, GeorgeWashington University, Washington, DC, 7Department of Internal Medicine, ICU,Medical University Innsbruck, Innsbruck,

Austria, 8Department of Anesthesia, Vanderbilt University Medical Center, Nashville, TN, USA, 9Department of Nephrology, University Hospital

Essen, University Duisburg-Essen, Germany, 10Department of Nephrology andHypertension, University Hospital Schleswig-Holstein, Christian-

Albrechts-University, Kiel, Germany, 11Clinical Laboratory Trials, JTMather Memorial Hospital, Port Jefferson, NY, USA, 12Critical Care Medicine,

R Adams Cowley Shock Trauma Center, University of MarylandMedical Center, Baltimore, MD, USA, 13Walker Biosciences, Carlsbad, CA, USA

and 14Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, School ofMedicine, Pittsburgh, PA, USA

Correspondence and offprint requests to: John A. Kellum; E-mail: kellumja@upmc.edu; kellumja@ccm.upmc.edu
†A complete list of Sapphire Investigators is provided in the Supplementary Data.

ABSTRACT

Background. Acute kidney injury (AKI) remains a deadly
condition. Tissue inhibitor of metalloproteinases (TIMP)-2
and insulin-like growth factor binding protein (IGFBP)7 are
two recently discovered urinary biomarkers for AKI. We now
report on the development, and diagnostic accuracy of two
clinical cutoffs for a test using these markers.
Methods. We derived cutoffs based on sensitivity and specifi-
city for prediction of Kidney Disease: Improving Global Out-
comes Stages 2–3 AKI within 12 h using data from a previously
published multicenter cohort (Sapphire). Next, we verified
these cutoffs in a new study (Opal) enrolling 154 critically ill
adults from six sites in the USA.
Results. One hundred subjects (14%) in Sapphire and 27
(18%) in Opal met the primary end point. The results of the
Opal study replicated those of Sapphire. Relative risk (95% CI)
in both studies for subjects testing at ≤0.3 versus >0.3–2 were

4.7 (1.5–16) and 4.4 (2.5–8.7), or 12 (4.2–40) and 18 (10–37)
for ≤0.3 versus >2. For the 0.3 cutoff, sensitivity was 89% in
both studies, and specificity 50 and 53%. For 2.0, sensitivity
was 42 and 44%, and specificity 95 and 90%.
Conclusions. Urinary [TIMP-2]•[IGFBP7] values of 0.3 or
greater identify patients at high risk and those >2 at highest
risk for AKI and provide new information to support clinical
decision-making.
Clinical Trials Registration. Clintrials.gov # NCT01209169
(Sapphire) and NCT01846884 (Opal).

Keywords: acute kidney injury, acute renal failure, biomar-
kers, insulin-like growth factor binding protein (IGFBP)7 and
tissue inhibitor of metalloproteinases (TIMP)-2, sensitivity
and specificity (MeSH)

INTRODUCTION

Acute kidney injury (AKI) continues to be a challenging
clinical problem for hospitalized patients, especially for those© The Author 2014. Published by Oxford University Press on behalf of ERA-

EDTA. This is an Open Access article distributed under the terms of the Creative
Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and
reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com
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admitted to the intensive care unit (ICU). AKI is associated
with a marked adverse impact on survival and significantly
increases risk for subsequent complications, including chronic
kidney disease (CKD) [1–6]. Although risk assessment for
AKI is recommended by clinical practice guidelines, in prac-
tice this is difficult and no applicable standards have been
described [4,7].

Recently, we reported two novel urinary biomarkers for
AKI, tissue inhibitor of metalloproteinases (TIMP)-2 and
insulin-like growth factor binding protein (IGFBP)7 [8]. We
now report the development, diagnostic accuracy and verifica-
tion of two cutoff values in order to guide clinicians in the
clinical use of this test.

We prospectively set two clinical cutoff values for the
urinary [TIMP-2]•[IGFBP7] panel, based on sensitivity, speci-
ficity and relative risk for predicting development of moderate
or severe AKI within the subsequent 12 h in the Sapphire
cohort. We then confirmed accuracy and clinical utility of
these cutoff values in a new cohort of critically ill patients.

MATERIALS AND METHODS

Subjects

The Sapphire study has been reported in detail elsewhere
[8]. Briefly, Sapphire enrolled 744 critically ill patients at 35
sites in North America and Europe from September 2010
through June 2012. The Opal study enrolled 154 critically ill
subjects from six diverse academic and community hospital
sites in the USA from November 2012 through April 2013 (see
Supplementary Data for a list of the enrolling sites). Subjects
were at least 21 years of age, admitted to ICU within 24 h of
enrollment and expected to remain in the ICU with a urinary
catheter for at least 48 h after enrollment.

Both Sapphire and Opal were reported according to the
Standards for Reporting of Diagnostic Accuracy guidelines [9]
and were approved by the Western Institutional Review Board
(Olympia, WA, USA). In addition, the study protocols were
approved by investigational review boards/ethics committees
as required, by each participating institution. All subjects (or
legally authorized representatives) provided written informed
consent.

Sample and data collection

In the Opal study, a single urine sample was collected at en-
rollment by standard methods and centrifuged. The urine
supernatant was frozen within 2 h of collection, stored at less
than or equal to −70°C, and thawed immediately prior to ana-
lysis. Each study site measured the biomarkers in their samples
and entered the biomarker data into electronic case-report
forms. In both studies, clinical data including patient demo-
graphics, history of CKD, reason for ICU admission, weight,
serum creatinine and hourly urine output were collected.
Password-protected, anonymized clinical data collected with
electronic case-report forms resided on servers at independent
sites (Medidata Solutions, New York, NY for Sapphire and
Document Solutions Group, Malvern, PA for Opal).

Clinical end points

AKI status was classified using the Kidney Disease: Improv-
ing Global Outcomes (KDIGO) guideline [7] based on the
serum creatinine and urine output available in the hospital
record. Baseline serum creatinine was assessed according to
three methods: Method 1—median of at least five serum cre-
atinine values in the time range starting 6 months and ending 6
days prior to enrollment; Method 2—if 1 unavailable—nadir
value in the time range starting 5 days prior to enrollment and
ending at enrollment if available; Method 3—if 1 and 2 unavail-
able—enrollment value [8].The primary end point for Opal (as
in Sapphire) was the development of moderate or severe AKI
(KDIGO Stages 2 or 3) within 12 h of sample collection.
Because the frequency of serum creatinine testing available in
the hospital record varied between patients, serum creatinine
values were interpolated at hourly intervals (standard linear
interpolation) to determine if patients met the end point by
the serum creatinine criteria. The reference values for serum
creatinine were obtained as previously described [8].We defined
major adverse kidney events (MAKE30) as the composite of
death, use of renal replacement therapy or persistence of renal
dysfunction (defined by serum creatinine ≥200% of reference)
at hospital discharge truncated at 30 days [10].

Clinical cutoff selection

The Sapphire investigators held a series of consensus con-
ferences with the external statisticians and the sponsor and
discussed the operating characteristics (Supplementary Data
Tables S4 and S5) to arrive at cutoffs that were judged to be
clinically appropriate for the intended clinical use [11]. A low
cutoff was chosen that allows early recognition of the majority
of patients who will develop AKI. This cutoff was selected to
have high sensitivity for the primary end point and with the
intent to be used in routine clinical practice to identify patients
who are at high risk for AKI, and therefore candidates to
receive kidney-sparing management strategies, such as those
outlined in the KDIGO guideline for high-risk patients [7]. A
high cutoff was also selected to allow identification of patients
who will develop AKI with high specificity. This cutoff was
selected to identify the subgroup of patients who are at the
highest risk of AKI and can be considered for more active
interventions when clinically appropriate.

Laboratory methods

We tested TIMP-2 and IGFBP7 using the NephroCheck®
Test (Astute Medical, San Diego, CA, USA) at each Opal
enrolling site. Further details of the test are provided in the
supplement. All values for [TIMP-2]•[IGFBP7] are reported
in units of (ng/mL)2/1000.

End point prevalence adjustment for positive
and negative predictive value

To anticipate the prevalence expected in clinical practice
[12], we used data from a previously published multicenter
study of 14 356 patients from 303 ICUs examining the epidemi-
ology of AKI in critically ill patients [13].
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Statistical analysis

The primary analysis was based on the receiver operating
characteristics (ROC) curves for [TIMP-2]•[IGFBP7] in the
Sapphire and Opal cohorts for the development of the primary
end point (KDIGO Stages 2–3 within 12 h of sample collec-
tion). The Sapphire ROC curve was used to identify two optimal
cutoffs for [TIMP-2]•[IGFBP7]. At these cutoffs we determined
sensitivity, specificity and relative risk for development of the
primary end point and prospectively verified these results in the
Opal cohort.

We examined the distributions of [TIMP-2]•[IGFBP7] as a
function of AKI stage in the Sapphire and Opal cohorts. We
calculated positive and negative predictive values (PPV and
NPV) for the two cutoffs and adjusted these values for AKI
prevalence using a bootstrap method to generate AKI preva-
lence that matched the AKI prevalence reported in Joannidis
et al. [13] as described above. PPV and NPV were calculated
for development of KDIGO Stages 2–3 within several time
windows (12, 24, 36 and 48 h). Statistical analyses were per-
formed using R 3.0.0 [14]. For all analyses, two-sided
P-values <0.05 were considered statistically significant. For
Sapphire, operating characteristics (sensitivity, specificity,
PPV, NPV and relative risk) were calculated with bootstrap
confidence intervals to account for clustered observations in
subjects with >1 sample collected within 18 h of enrollment
[15]. Relative risk was calculated for strata defined by cutoffs
of 0.3 and 2.0; the reference stratum for relative risk
comprised subjects with [TIMP-2]•[IGFBP7] values ≤0.3.
Tests of trend in risk across strata used the Cochran–
Armitage test [16].

Logistic regression models were built including clinical
variables with or without [TIMP-2]•[IGFBP7]. All clinical
covariates shown in Table 1 and Supplementary Data Table S2
of Kashani et al. [8] with P-value < 0.1 were included. Serum
creatinine was included in the model as a dichotomous vari-
able based on the KDIGO 1 staging criteria. CKD was also in-
cluded because it is a known risk factor for AKI. Integrated
discrimination improvement (IDI) and category-free net re-
classification improvement (cfNRI) for [TIMP-2]•[IGFBP7]
were calculated using methods described by Pencina et al.
[17,18]. Variance in the area under the ROC curve (AUC) and
the difference in AUC were calculated using the methods
described by DeLong et al. [19,20].

RESULTS

Subject characteristics and event rates

For Opal we enrolled 154 subjects; one subject was lost
to follow-up and, therefore, excluded from the analysis
(Figure 1). Demographic information is depicted in Table 1.
Overall, 27 subjects (18%) in Opal met the primary end point
of moderate or severe AKI within 12 h.

Biomarker performance

ROC curves and operating characteristics using the clinical
cutoffs of 0.3 and 2.0 for urinary [TIMP-2]•[IGFBP7] from

Sapphire and Opal are shown in Figure 2. Results from the
two cohorts are similar showing that the performance of the
two prospectively selected clinical cutoffs was reproduced in a
new verification cohort (Opal). The cutoffs of 0.3 and 2.0 also
showed comparable results for relative risk of AKI in both
Sapphire and Opal cohorts (Figure 3). Specifically compared
with baseline risk, subjects in the middle strata were >4-fold
and those in the highest strata were >10-fold more likely to
manifest moderate-to-severe AKI (KDIGO Stages 2–3) in the
next 12 h. In Opal 46% of patients tested ≤0.3 while the
upper two strata included 39 and 16% of patients. In order to
evaluate the biomarker cutoffs in comparison with clinical
variables we performed a multivariable logistic regression
analysis with and without the biomarkers. The results are
shown in Table 2 and demonstrate that the biomarkers con-
tinue to have significant explanatory value even after control-
ling for clinical variables. We further found that [TIMP-2]•
[IGFBP7] (using these new cutoffs) added value to clinical
variables using IDI and cfNRI based on data from the Sap-
phire Cohort. These results are presented in Supplementary
Data Table S6 and are consistent with the regression analysis
presented in Table 2. Note, that these analyses were per-
formed using data from the Sapphire study but were not pre-
sented in Kashani et al. [8] because the cutoffs had not yet
been derived. Finally, we show in Figure 4 that the cutoffs also

Table 1. Baseline patient characteristics. N (proportion) or median (IQR)

End point
positive

End point
negative

All subjects 27 126
Male 12 (44%) 75 (60%)
Age (years) 64 (54–75) 65 (54–78)
Enrollment serum creatinine (mg/dL) 2.1 (1.2–2.5) 1.1 (0.8–1.4)
Baseline serum creatinine (mg/dL) 1.1 (0.9–2.1) 1.0 (0.8–1.3)
Urine volume (mL) for 6 h period prior
to enrollmenta

214 (124–386) 433 (240–650)

History of CKD 4 (15%) 9 (7%)
Race
Asian 1 (4%) 9 (7%)
Black or African American 3 (11%) 10 (8%)
Other/unknown 1 (4%) 10 (8%)
White or Caucasian 22 (81%) 97 (77%)

ICU type
Cardiac surgery 0 (0%) 1 (1%)
Combined ICU 10 (37%) 33 (26%)
Coronary care unit 6 (22%) 21 (17%)
Medical 6 (22%) 47 (37%)
Neurologic 0 (0%) 2 (2%)
Other/unknown 2 (7%) 3 (2%)
Surgical 3 (11%) 10 (8%)
Trauma 0 (0%) 9 (7%)

Reason for ICU admissionb

Respiratory 15 (56%) 66 (52%)
Surgery/post-operative 2 (7%) 21 (17%)
Cardiovascular 16 (59%) 48 (38%)
Sepsis 5 (19%) 24 (19%)
Cerebrovascular 5 (19%) 10 (8%
Trauma 0 (0%) 12 (10%)
Other 14 (52%) 43 (34%)

aOne hundred and thirty-eight (24 end point positive and 114 end point negative)
subjects had 6 h of urine output recorded prior to enrollment.
bSubjects may have multiple reasons for ICU admission.
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stratify for risk of the composite outcome MAKE30 (death,
use of renal replacement therapy or persistence of renal dys-
function at Day 30).

Sensitivity analyses

Supplementary Data Table S5 shows the NPV and PPV
results for urinary [TIMP-2]•[IGFBP7] (Sapphire) adjusted
by the prevalence of AKI reported in Joannidis et al. [13]. As
expected, prevalence adjustment decreased NPV to 96% for
the 0.3 cutoff (from 97% prior to adjustment); conversely PPV
increased to 69% for the 2.0 cutoff (from 49%) for AKI within
12 h. We also varied the time window for detection of AKI out
to 48 h (Sapphire and Opal and both studies combined;
Figure 5). PPV increases modestly with increasing time
window for prediction of AKI, because some patients manifest
clinical AKI (KDIGO 2–3) >12 h after sample collection. Con-
versely, NPV decreases modestly with increasing prediction
time. We also examined urinary [TIMP-2]•[IGFBP7] with
respect to different severities of AKI (ranging from KDIGO
Stages 1–3). These results are presented in Supplementary
Data Figure S2.

DISCUSSION

In this study we present the derivation and verification of
clinical cutoffs for urinary [TIMP-2]•[IGFBP7] when used
to assess the risk of AKI in highly susceptible (critically ill)
patients. We set the clinical cutoffs based on operating charac-
teristics (sensitivity, specificity and relative risk) by consensus
of experts who judged them to be clinically appropriate based
on the intended clinical use of the [TIMP-2]•[IGFBP7] test.
Once these cutoffs were defined we verified them prospectively

F IGURE 2 : [TIMP-2]•[IGFBP7] ROC curves and operating charac-
teristics for the Sapphire (solid) and Opal (dash) cohorts. Closed tri-
angles and circles indicate [TIMP-2]•[IGFBP7] cutoffs of 0.3 and 2.0,
respectively. End point was AKI Stages 2 or 3 within 12 h of sample
collection. Area under the ROC curve [95% confidence interval (CI)]
= 0.80 (0.74–0.84) and 0.79 (0.69–0.88) for Sapphire and Opal,
respectively. NPV and PPVs are presented in Supplementary Data
Figure S4 of the supplement.

F IGURE 1 : Study design (Opal) and number of subjects.
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using an independent cohort of critically ill patients. Our
results clearly show that a urinary [TIMP-2]•[IGFBP7] value
can be used to identify patients at greater risk for AKI.

These results are noteworthy for several reasons. First, AKI
can be difficult to identify early. An inpatient care audit in the
UK revealed delays in diagnosis of AKI in 43% of cases and
poor assessment of AKI risk [21]. Delay in diagnosis of AKI is
thought to contribute significantly to ineffective care. Indeed,
multiple studies have demonstrated that early nephrology con-
sultation or early intervention for ICU patients reduces the
number and severity of AKI cases [22,23]. The UK audit also
found that 17% of cases had avoidable complications and
another 22% were managed badly [21]. We tested the ability of
urinary [TIMP-2]•[IGFBP7] to provide information not avail-
able from clinical variables alone first by multivariable regres-
sion and then by IDI and cfNRI. Both analyses showed
considerable added information from the test (Supplementary
Data Table S6).

Second, the very high (97%) NPV for the low 0.3 cutoff
means that almost all patients testing negative for the test will
be free of AKI for the next 12 h. Conversely, those testing posi-
tive are at much higher risk for AKI in the next 12 h. This risk
stratification is precisely what is needed in order to implement
the KDIGO guideline and to apply kidney-sparing therapies
for those patients at highest risk—even though <50% of pa-
tients in this group will develop AKI [7]. The NPV remained
virtually unchanged (96%) even after adjusting for the higher
prevalence of AKI reported in observational studies, demon-
strating that this cutoff can be used in the ‘real world’ environ-
ments where patients are cared for [13] (Figure 5).

Third, examining both cutoffs together reveals very similar
results to those obtained with biomarkers used for manage-
ment of other acute diseases such as acute decompensated
heart failure and acute myocardial infarction [24–26]. For
example, at 50 pg/mL, B-type-natriuretic peptide has an NPV
of 96% and at 100 pg/mL, the PPV is 79% for acute heart
failure [24]. Similarly, for acute myocardial infarction, high-
sensitivity troponin I (>30 pg/mL) has an NPV of 95% (single
measurement) in patients presenting with suspected acute cor-
onary syndrome (PPV was 75%) [25]. For high-sensitivity

F IGURE 3 : Relative risk of AKI Stage 2 or 3 within 12 h in the Opal
(light gray), Sapphire (medium gray) and combined Opal and Sap-
phire (dark gray) cohort. Samples were collected within 18 h of en-
rollment. Risk for each [TIMP-2]•[IGFBP7] range is shown relative
to the lowest [TIMP-2]•[IGFBP7] range (≤0.3). Raw risk in lowest
stratum = 4.3, 2.7 and 2.9%, respectively, for the Opal, Sapphire and
combined cohorts. Error bars indicate the 95% CI. For both cohorts
together 700 (46%) of patients had values ≤0.3; 675 (44%) had values
between 0.3 and 2 (raw risk of AKI 12.6%); and 154 (10%) had values
>2.0 (raw risk of AKI 49%). Cochran–Armitage test for significant
trend: P < 0.001 for all three cohorts. Relative risk P < 0.001 for both
the second and third stratum relative to the first stratum for all
cohorts, except the second stratum of Opal for which relative risk
P < 0.01.

Table 2. Comparison of logistic regression models for risk of AKI in the sapphire cohort (i) using only clinical variables and (ii) using clinical variables plus
[TIMP-2]•[IGFBP7]

Variable Clinical model Clinical model plus [TIMP-2]•[IGFBP7]

Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value

Age 1.02 (0.99–1.04) 0.16 1.01 (0.99–1.04) 0.27
APACHE III (non-renal) score 1.01 (1.00–1.02) 0.070 1.01 (0.99–1.02) 0.39
Hypertension 1.7 (0.8–3.4) 0.14 1.9 (1.0–4.0) 0.066
Nephrotoxic drugs 2.4 (1.2–4.7) 0.011 2.2 (1.1–4.4) 0.029
Liver disease 4.8 (1.9–12.1) 0.001 4.7 (1.7–13.0) 0.003
Diabetes 2.1 (1.1–3.8) 0.02 1.9 (1.0–3.5) 0.053
Sepsis 1.2 (0.6–2.4) 0.56 1.0 (0.5–2.1) 0.96
History of CKD 0.65 (0.26–1.62) 0.35 0.86 (0.32–2.32) 0.77
KDIGO≥ 1 by creatininea 9.0 (5.0–16.3) <0.001 5.7 (3.0–10.8) <0.001
[TIMP-2]•[IGFBP7] >0.3 to ≤2.0* Not included in model 3.5 (1.6–7.7) 0.002
[TIMP-2]•[IGFBP7] >2.0* Not included in model 11.7 (4.6–29.4) <0.001

Models for risk of KDIGO 2 or 3 AKI within 12 h of the first sample collection. All patients with a [TIMP-2]•[IGFBP7] value and data for all clinical variables were included (N = 721).
All clinical covariates shown in Table 1 and Supplementary Data Table S2 of Kashani et al. [8] with P-value <0.1 were included. CKD was also included because it is a known risk factor
for AKI.
aKDIGO stage of 1 or greater by serum creatinine criteria at the time of sample collection.
*Overall P-value < 0.001 for [TIMP-2]•[IGFBP7] (likelihood ratio test).
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troponin T a cutoff of 13 pg/mL yielded a PPV of 38% in ‘low-
to-intermediate risk patients with chest pain’ (NPV was 96%)
[26].The results of urinary [TIMP-2]•[IGFBP7] as a test for
AKI in critically ill patients where the NPV for the 0.3 cutoff is
97% (96% after prevalence adjustment) and the PPV for the
2.0 cutoff is 49% (69% after prevalence adjustment) (Figure 5)
are comparable with single measurements of B-type-naturetic
peptide for acute heart failure and troponin for acute myocar-
dial infarction. Finally, these same cutoffs identify differences
in risk for long-term outcomes as shown by significant
increased relative risk for MAKE30.

Recently, we reported a third study (Topaz) [27] where the
cutoffs derived and validated in this paper were also tested
using a clinical adjudication committee to ascertain the AKI
end point. These results are complementary to the current
study. Indeed the performance of urinary [TIMP-2]•[IGFBP7]
has been very consistent across different cohorts. Including
the initial discovery, the test has now been evaluated in three
multicenter studies of heterogeneous ICU patients, including
>1800 patients, and has proved reliable and reproducible, with
nearly identical ROC characteristics across all three trials. Fur-
thermore, beginning in the second cohort (Opal), the samples
were collected and measured by hospital personnel using a
clinical assay, as would occur in routine clinical use.

The opportunity to detect AKI early in its course has the
potential to pay multiple clinical dividends for patient care.
However, the open question remains as to exactly how clini-
cians might realize this potential in various clinical settings.
We selected a 12 h window for developing AKI because it pro-
vides sufficient time to take various actions (e.g. stopping
nephrotoxic drugs, assessing volume status and making

admission decisions) while at the same time avoiding con-
founding from subsequent exposures (new AKI-causing
events) that might take place during critical illness. Biomarkers
are not ‘crystal balls’ and cannot forecast future events that
have not yet taken place when the biomarkers were sampled.
However, as can be seen in Figure 5, using the same cutoffs,
PPV increases by >10% going out to 48 h since some AKI
events will manifest after 12 h, while NPV (for both studies to-
gether) remains near 90% for the 0.3 cutoff.

Although there are no specific therapies for AKI, recent
studies of protocolized supportive care in high-risk patients,
including hemodynamic optimization [28,29] and avoidance

F IGURE 4 : Relative risk of MAKE30 in the Sapphire cohort.
Samples were collected within 18 h of enrollment. Risk for each
[TIMP-2]•[IGFBP7] range is shown relative to the lowest [TIMP-2]•
[IGFBP7] range (≤0.3). Raw risk in lowest stratum = 18%. Error bars
indicate the 95% CI. Cochran–Armitage test for significant trend: P <
0.001. *P = 0.036; **P < 0.001.

F IGURE 5 : Prevalence adjusted PPV (A) and NPV (B) for
[TIMP-2]•[IGFBP7] cutoff values of 0.3 and 2.0 in the Opal (light
gray), Sapphire (medium gray) and combined Opal and Sapphire
(dark gray) cohort. Samples were collected within 18 h of enrollment.
End point is AKI Stage 2 or 3 within the time window for prediction
of AKI indicated along the abscissa (zero time = time of sample
collection). Prevalence was adjusted to match the AKI distribution
from Joannidis et al. [13] as described in the text [13]. Error bars
indicate the 95% CI. Median time from a positive test result to a
positive end point was 12.5 h [interquartile range (IQR) 2.7–26]
for the Sapphire study and 8 h (IQR 0–15.5) for Opal.
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of nephrotoxins [30,31], have shown the potential to reduce
the incidence and severity of AKI [28–31] and improve long-
term outcomes [29,31]. Importantly, previous clinical trials of
AKI therapy have been hampered by late intervention [32].
Thus, it is hoped but not proven that biomarkers that can
predict imminent AKI will facilitate delivery of existing inter-
ventions as well as facilitate future trials.

Our study has certain limitations, including those inherent
when biomarkers are measured at a single time point in the
course of complex critical illness. We recognize that subject
enrollment was not synchronized with respect to the course of
illness and in fact, while most subjects in the Opal study were
recruited prior to clinical manifestations of AKI, some were
enrolled soon after AKI was apparent. However, urine [TIMP-
2]•[IGFBP7] clearly precedes the diagnosis of AKI based on
either urine output or serum creatinine in the setting of early
critical illness. Our decision to study patients at the time of
ICU admission is based on the fact that patients are admitted
to an ICU for a reason, whether it is planned (e.g. following
major surgery) or unplanned. This new onset of critical illness
represents an extraordinarily high-risk period for AKI—not
unlike new onset of chest pain in the assessment of acute cor-
onary syndrome. Given that AKI is usually asymptomatic, it is
important to tie biomarker assessment to some clinically rele-
vant time point. Future studies will be required to evaluate the
role of other triggers for biomarker assessment (e.g. exposure
to nephrotoxins). Finally, when baseline creatinine is not avail-
able and admission creatinine is used as baseline, AKI patients
may be under-detected [13,33]. As this occurred in only two
patients it probably had only limited effects on our results.

In conclusion, we have derived cutoffs for [TIMP-2]•
[IGFBP7] that enable identification of patients at high risk for
the development of moderate or severe AKI, and validated this
in an independent cohort of patients. Given the unmet clinical
need for risk assessment and early identification of AKI, the
application of this test has the potential to improve care of
patients who suffer from AKI.
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