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DERIVATION -BOUNDED LANGUAGES™

INTRODUCTION
In [6] the authors studied sets generated by the imposition of certain re-

strictions on the use of the rewriting rules in a phrase-structure grammar., The
present paper is related to (6] in that again we examine sets generated by
derivations in a phrase-structure grammar which are restricted. In particular,
call a derivation "k-bounded" if each ward in the derivation contains at most k
occurrences of nonterminals, For a given grammar G and a positive integer k, let
I‘k(G) denote those wards in the language generated by G which have at least one
k-bounded derivation. Such sets Lk(G) are called "derivation bounded" and are the
objects of study in the paper.

A nonterminal bounded grammar [1]) is a context-free grammar G for which
there exists a positive integer k such that every derivation in & is k-bounded.
Since such grammars define the family of ultralinear languages (5], every ultra-
linear language is a derivation-bounded set (but not conversely), Thus the defini-
tion of derivation-bounded set extends that of ultralinear language in two ways,
Firstly, arbitrary phrase-structure grammars (not just context-free grammars) are
considered, And secondly, the set of all words generated by same k-bounded
derivation is considered,

The main result is that every derivation-bounded set is a context~free
langusge. In case G is a context-free grammar, it is not surprising that Lk(G)
is a context-free lunguage far every k. (In fact, a simpler argument can be
given 12 this case than the e given in the paper far an arbitrary phrase-
structure grammr,) It is somewbat unexpected, however, that far «very phrase-
structure grammar G and every integer k, the set Lk(G) is context-free,

*Research sponscared in part by the Air Farce Cambridge Research Labarataries,
Office of Aerospace Research, USAF, under contract F196285700008, and by the
Air Farce Office of Scientific Nesearch, Office of Aerospace Research, USAF,
under AFOSR (rant No, AF-AFOSR-1203-67.
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ABSTRACT
A derivation in a phrase-structure grammar is said to be k-bounded if each

ward in the derivation contains at most k occurrences of nonterminals, A set

L is said to be derivation bounded if there exists a phrase-structure grammar

C and & positive integer k such that L is the set of words in the language
generated by G which bave same k-bounded derivation. The main result is that
every derivation-bounded set is a context-free language., Various character-
izations of the derivationebounded languages are thea given, Ffor example, the
derivation-bounded languages coincide with the standard matching-choice sets
discussed by Yntema, They also coincide with the smallest family of sets
containing the lirear context-free langusges and closed under arbitrary sub-

stitution,
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Other interesting results give equivalent characterizations of the family of
derivation-bounded languages and suggest that thie is a natural family of
languages,

The paper is divided into four sections, In section one the family of
derivation-bounded sets is introduced and ite study reduced to the study of
the sets generated by k-bounded derivations in a "weighted context-free
grammar," (A "weighted context-free grammar® is a context-free grammer in
wvhich every nonterminal is assigned a positive integer as its weight. A
"k-bounded derivation" in such a grammar is a derivation in each ward of which
the sum of the weights of all the occurrences of nonterminals is bounded by
k.)

In section two a certain family of derivations, the family of "standard
derivations," in a weighted context-free grammar is examined, It is shown
that every word in the set generated by a weighted context-free grammar is
generated by some standard derivation., Furthermare, a unique factorization
of standard derivations as composites of "minimal" standard derivations is
established,

In section three notation and terminology are introduced which provide a
description of the "weights" of various subwards of words in standard deriva-
tions, The main result of the section is a technical one relating various
weights in a standard derivatiom.

In section four the technical results of the earlier sections are ussd to
construct a context-free grammar generating Lk(G)’ Thus the main result,

namely that Lk(G) is context free far every G and every k, is obtained. Various
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characterizations of the family of derivation-bounded languages are then pre-
sented, One of these characterizes the family &s generated by "nonexpansive"
context-free srammars, a concept introduced :lsewbere (9] in another comnection,
A consequence of this characterization is that the family is a proper subfamily
of the family of all context-free languages. Anotber characterization shows
the family as the smallest family containing all linear languages and closed
under arbitrary substitution. As a consequence of thia characterizatiom, it
follows that the family is a (full) AFL., This, in turn, implies that it is

undecidable vhether an arbitrary context-free language is derivation bounded,

Section 1, Derivatiom-bounded sets

In an earlier paper (5] we discussed the family of languages generated by
nonterminal bounded grammars, Such grammars G = (V,%,P,c) are context-free(l)
and have the property that there exists a positive integer k such that if
onw °=...=wt, with v, in }::*, then each v, contains at most k occurrences of
elements of V-I. In the present paper we extend this family of sets in two
ways: (a) We allow G to be an arbitrary phrase-structure grammar, and (b) wve
consider those wards w in Z* for vhich there is at least one derivation as
descrived above, In this section we reduce consideration of such phrase-

structure grammars to consideration of "weighted" context-free grammars.

(1)The reader is referred to [3] far all undefined terms and symbolism.
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Definition, Let G = (V,E,P,0) be a phrase-structure grammar and k a positive

integer. A derivation wf’...”wt is said to be k-bounded if each v, contains

at most k occurrences of elements of V-I. Let Lk(G) be the set of those words
v in L(G) for which there exists & k-bounded derivation

ol ] w°=...°wt = v,

*
A et LSy is said to be derivation bounded if L = Lk(G) for same phrase-

structure grammar G and some positive integer k.

It 1s clesr that L (G)FL,(G)...SL(G) and that L(G) -kglx,k(c).

Example, Let G = (V,X,P,0), vhere £ = (a,b}, V = (0}, and P = (¢ = 809,00 #b}.
Let [wn]nil. be the sequence of woards defined inductively by v = b and Viel ™
av,v,. Then it is easy to see that for all n >1, v 18 in Ln(G) - Ln_l(G).
Therefare, Ln(c)#L(c) far each n (and also Ln(c)#Lm(G) for nfn). Additionally,
Ln(G) is finite far every n2l,

Observe that if G is nonterminal. bmmded,(a) then there exists k such
that L(G) = Lk(G)' This raises the question as to whether every derivation-
bounded set is ultralinear, An example is now provided to show that this is
not 80, It was noted in [5] that the context-free language L(G) =(L'c)” 1a
not ultralinear, where G =(,%,P,0), L = (a,b,c,}, V = 2U(c,§),

P=(c~E8co,0~¢b6 ~alh,§ ~q}, and L' = {a®"/n20)}. Since every leftmost

mA context-free grammar G = (V,Z,P,0) 1s said to be nonterminsl bounded [1]

if there exists a positive integer m such that for any ward w in V* such that
*
o = w there exists at most m occurrences of symbols of V- in w., A set gene-

rated by some nonterminal bounded grammer is called an ultralinear language [5].
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derivation in G is 2-bounded, LQ(G) = L(G). Thus, LQ(G) is a derivation-bounded

set which is not ultralinear,

We now introduce an auxiliary concept with which we shall be concerned.

Definition. A weighted context-free grammar is & 5-tuple G = (V,I,P,q,¢),

where (V,Z,P,0) is & context-free grammar and 5, called the weight function,
is a mapping of V-I into the positive integers.

The relaticns = and s are defined for a weighted context-free grammar as
in a context-free grammar, and L(G) 1s defined as the set {w in Z*/c - w)e
Definition. Let G = (V,I,P,0,p) be a weighted context-free grammar. Let p(a)
= 0 far each a in L, p(e) = O,and for each w in V*, let p(w), called the
weight of w, beigl p(x,) where w = x)...x, each x; in V.

Each context-free grammar may be regarded as a weighted context-free
grammar in which each element of V-L has weight one. In this case, the
weight of each word is the number of occwurrences of variables in 1it,
Definition. Let G = (V,%,P,0,0) be a weighted context-free grammar and k a

positive integer., A derivation w. =...= w_ in G is said to be k-bounded if

1 t
p(wi) Sk for each w,. Let Lk(G) be the set of those words w in L(G) far
which there exists a k-bounded derivation ¢ = wo Peee™ wt = v,

It is clear that

Ll(G) c L2(G) C.eo& L(G)
and that L(G) = T Lk(G). Furthermare, Lk(G) as defined far weighted context-
free grammars g::;iralizes the previously defined Lk((}) for context-free
grammars,

Our interest in weighted context-free gremmars is due to the following

result,
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Lemma 1,1. Far every phrase-structure grammar G and every positive integer k

v

there is a wecighted context-free grammar Gé such that Lk(G) = uK{Gé).

. *
Proof. Let G = (V,5,P,0). Far each non-¢ ward u in (V-L) of length <k, let
§u be a distinct symbol and let v/i= ZU[@u/all u}. Define a weight function

? by p(§u) = lul for each §u. Let P’ consist of the following productions

(where J, (u,u.1 ,v,, and (wl,wz) dencte arbitrary positive integers, pairs of

i’
*
non-¢ wards in (V-X)* of length € k, non-¢ words in L , and arbitrary pairs of

*
wards in (V-£) such hat |w uwe' < k respectively):

/
(1) If u =€ 18 in P, let § - £ be in P,
wiuw, W)Wy

(2) If u~ v, is in P, let § E v.& bein P’,
1 wluw2 vy 1l w2

(3) If u ~u_ 1is in P and [wuw | <k, let § - £ be in P,
1 112 Wiuw, W W
is in P, let § -3 v.§ v g v, .8

...vuv LN )
lul 37y d+1 ) wluw2 vy 1l W 2 uJ J+1 v,

(4) If u =v

be in P',
(5) If u = wv,...uy (J22) 16 in P and |w ul' <k and lu w2' <k, let

un

ngooovg beinP.

v, 1“1 2w, J7u v

(6) 1 ulv TELA WY is in P and lwlull < k, let gwluwzd
%v1u1v2§u2...§u SR v, ve in P’.

(7) If u - Vi Vpee el is in P and lu v, | <k, let € wyuw, - § v §u1v9...

2
Then Gé- (V',Z,P',o,p) is a weighted context-free grammer and, as s easily

ngu w_ be in P,

seen, LK(G =L, (G k).

Note that the weighted context-free grammar Gé has the property that there
is a one to one carrespondence between all derivations in Gé and those derivation
in G in which each subword of variables in each ward of the derivation is of

*
length at most k. In particular, L(Gé) 1s the set of words in L which
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can be derived in G (fram o) by such derivations. This ylelds

Corollary. Let G = (v,z,P,0) be a phrase-structure grammar and k a positive
integer. The set of all wards w in L with the following property is a
context-free language: There exists a derivation o = wo Reee® LA such that
each ward of (V-}:)* which is a subward of some wi is of length at most k,

It seems reasonable to consider nontermiral bounded phrase-structure

*
grammars, (3) If G 18 such a phrase-structure grammar and k is such that ¢ = w
in G implies w contains at most k occurrences of variables, then the grammar

Gl: is also nonterminal bounded and L(G) = L(GI:). Therefare languages gene-
rated by nonterminal bounded phrase-structure grammars are ultralinear,
Remark, One could extend the notion of a phrase-structure grammer to that

of a weighted phrase-structure grammar in the obvious way. With this exten-
sion, Lemma 1,1l would be valid if the phrase-structure grammar G in its
statement were replaced by a weighted phrase-structure grammar G, The

lemma has been stated for the case when the weights are one since owr primary
1iivésest in this paper 1s in phrase-structure and context-free grammars,

not weighted phrase-structure grammars, We consider weighted context-free

grammars only as a tool in studying phrase-structure grammars.

(3) The definition of a phrase-structure grammar being nonterminal bounded

is the same as far a context-free grammar,
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Section 2., Standard derivatioms

In this section we study derivations in weighted context-free grammars,
We first define the concept of a "standard derivation.” Then we show that it
18 possible to rearrange the productions used in any derivation of a terminal
ward to obtain & standard derivation of that word. Furthermore, if the ariginal
derivation is k-bounded for some k > 1, then so 1s the rearranged one, (Thus
the set LR(G) consists of wards derivable by same k-bounded standard derivation
in G.) Finally, we establish a unique factorization of standard derivations as
camposites of "minimal" standard derivations.

let G = (V,5,P,c,») be a weighted context-free grammar and let w  be a
word in V* with a factarization w = v, \(J.i)vz cen Vo ‘(l:)vs-tl’ where s 2 1, V,j is

(o) *
is inV far 1 € J € s. As in known [3],

*
inf farl £ jss+1], 9.nduJ

given a derivation
s =
wo ..."wt ( )
, 1 (1
there are induced factarizations wi vlu1 vz...vsua vE5+l such that faor each

1,0 €1 <t-1, and j, O £ J S5, either u‘(ji)- ugiﬂ) ar ugi)” ugi*l). Thus
for each J, the distinct wards ugi) fcrm & carresponding derivation ugo)=’...

(t)

u .

J

Definition, Let W 2...= W, be a derivation such that p(wt) < p(wo). Let w _ =

*
Isinf faol s Js
(1)
8

z £ -
V151 Vor e VstgVeel be a factorization such that s 21, \rJ

(1)
- <1 s
s+l, and §J 18 in V- far 1 s Jss8, For 01 st letw =Vl VooV i

Vesl be the induced factarization., Since o(wt) < o(wo), there exist integers

J, 1L £J <8, such that p(uj(t)) < o(éJ). Hence there is a smallest integer
(1)

1,0<1 St, such that far same J, 1 S j <8, ofu ) <p(5, ). In this

o o) o’ o ’ "o 'jo
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case EJ is called the distinguished variable of L in the derivation(b')
Q

and v, is called the distinguisher of L in the derivatim,
o

In a derivation w_ =...= w,, with p(wt) < p(wo), if r 1s an integer such

that p(wr) < o(wo), then the distingulsher of v (under a given factorization)
in the derivation LA Teee™ wt is in the subderivation wo=...= V. and is the
distinguisher of v, in this subderivation., Furthermore, the distinguished
variable of wo in the original derivation is also the distinguished variable
of LA in the subderivation,

Definition. Let w_ =,,.= wt,t > 1, be a derivation, with D(Vt) < P(Wi) far

each 1, 0 <1 <t, The derivation is said to be standard at Yy far 0 €1 <t

if w +1 is obtained from w, by applying & production to the distinguished

i i
(5)

variable of wi in the subderivation wi Peee® wt. The derivation 1s said to

be standard if it 1is standard at w, far each 1, 0 <1 < ¢,

i

It follows from the definition that if wo"wl”...= L

standard derivation, then wl=...ﬁ A is a standard derivation.

We now show how to rearrange the productions in an arvitrary derivation

t22, isa

of & terminal ward to obtain a standard derivation of the same word,
Lemma 2,1, Let W R D Wt 2 1, be a derivation with p(wt) < p(wi) far all
1,0 £1 <t. Suppose that foar scme r, O €r <t, and all i, 0 €1 <r, the

derivation is standard at v,. Suppose that o(wi) 2 o(wo) far each 1,0 €1 < r,

(u)‘I‘o be precise, we should actually say that this occurrence of EJ is the
0
occurrence of the distinguished variable of L in the derivation.

(5)Forr each 1 < t, LA has & unique factarization in the definition of

distinguished variable of wi.
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*
Let w_ = wfu’, where u and u’ are in V. and § 1s the distinguished variable of

(1) i
w. Then for each i, 0 1 Sr, w, = uu u’ for some u( ) and the distinguished
o

1
(r)

variable of wr is inu .

Proof, The proof is by induction on r. If r = O, then there is nothing to

prove, Assume that r > 0 and the result is valid far r-l. Then w, = uu(i)u'

1
for all 1, O <1 <r-1, and the distinguished variable of w_, 1s in u(r-l).
Since the derivation is standard at w__,, W . *® w)y ! where G-, ().

It only remains to verify that the distinguishec variable of w_ is in u(r)'

r
Assume the distinguished variable of wr is not in u(r) but 18 in u or u’,

*
- £
1§1“"’s§s"s+1’ s 21, each v, in I, and each §J in V-£. let § be

_ (1) (1)
the distinguished variable of W For each i, let wim iy cedVUSTIV o

Let w = v
o

- (r) (r) (r)_ [(r)
be the induced factorization. Then wr vlu1 ...vsu8 vs+l, with uk u

and ui(r)- Ei for 1 # k. By assumption, the distinguished variable of w. is
€ foar some m,m*k, Let w_be the distinguisher of w_. Then p(% ) > o(u(Q)),

m
(a) (r)

o(EJ) s o(u, ) far j#m, J¥k, and p(uw ) < p(uk(Q)). Furthermore, for all

wr < <q, o(5) < ou™), o8 ) € 0w, M) ror s, st ana o(u”) < ().
Thus wq is the distinguisher of v and ";m, m#k, is the distinguished variable of
L This is a contradiction.

*
lemma 2,2, Let w =...=2w, W, in £, be a derivation such tbat for some r, O

< r <t, the derivation is standard at w, far all i, 0 €1 <r. Taen a deriva-

i
’ ’
tion WL DR W - v, can be found, using the same productions with the

same frequency as in W Peee® W, such that wi' =W, for O £ 1 < r and the

derivation wé Peee wé is standard at v, for all 1, O s 1 <r, Furthermare,

if, far some k, the derivation Wy Deee@ W is k-bounded, then the derivation

w('; B, .= wt' 18 also k-bounded.
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*
g - <3 s
Proof. Let w = Vlgr“"s’s"sw with EJ in V-f far 1 € J < s and vy in £ for

- (1) (1)
1<) sstl, Farr si st, let w=viuy ceeV UV be tbe induced

factorization. Let §J be the distinguished variable of W, and let wq, where
o
r <q st, be the distinguisher of v, in wr='...-' Wy Using the productions

occurring in wr"...= wq and with the same frequency in the same relative order

where possible, we obtain an integer p, I <p <q, and a derivation w = wzf Pee®

! - . < < ! - '(i) ! (1)
wq wq with the following property: Far r 1 € q let W, Vit e \r'suB

Vel be the induced factorization. Then the productions are first applied to
some variable in qu(i) for all 1, r €1 < p, and then applied to variables in

ugi? J#J, farall i, pS1<q.
Let w/ =w if 1 ST ari>d. We shall show that wé = ...= v/ has the
desired properties. To prove that the derivation wc') Dy e wf: is standard at

w{ for a1l 1, 0 €1 $r, it suffices to verify that for each 1,0 <1 €r, the

distinguished variable of wi' in the derivation wjt 2, .. w,(" 1s also the

distinguished variable of v, ir the derivation WyDeeo™ Voo Thus let i be given,
0 €1 €r., Let w, be the distinguisher of w{ in the derivation w{ 2, 0 wé.

i
0

Several cases arise,

(a) Suppose 1 <1i_ sr. Since w3 -V, for 0 € J s, v, oObviously is
o
the distinguisher of Wy in wi Beee™ W, and v, and wi' have the same distinguished

variable,

(a) Suppose r < io < p. This case cannot occur because of the way the

wJ, r < J <p, have been defined.
(v) Suppose i_ > p. Since 1_ 2 p, o(wj) p3 p(w{) for each J, 1 € J ST,
Let w{ -, = ufu, where £ is the distinguished variable of w . By Lemma 2.1
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applied to the derivation wi=...== wt, wJ = uu (‘j)u' far each J, 1 < J s,

and the distinguished variable of V. ie in u(r). From the way the derivation

(p)

v; =,,.° W was defined, 1t follows that wI; = uu(p)u' for same u . Suppose

[
.

i, = pe Then o(u(p)) < p(E), so that £ is the distinguished variable of w,

Suppose 1 _ 2 q. Since Wy w‘; for J 2 q, wi' -, and § is the distingulshed
o) )

variable ia w'=,..2 w/. Suppose p < 10 < q and § 18 not the distinguished

1 t
varisble of w/. Then o= yuy', with v the distinguished variable of w,.

Either yv is an initial subward of u or uy' is a terminal subvard of u’.
Assume the former, an analogous argument holding if the latter, Then W= yvz

for some z, and the distingulshed variable §J of v 1is in z. Let wi' = ylyeyl'
c
be the induced factorization by wi' = yuy' in the derivation w{ 2,02 wé.

Then °(y2) < p{v). From the definition of p and the fact that wq is the
distinguisher of Vs it follows that the production applied at wq-l is also

applied at w;;-l‘ Since the productions occwrring in W, =...= ¥, with the seme

frequency and in the same relative arder, are used to derive w; Tiee™ w;,

there exists some :Ll, r < 11 < q, such that wiln Y152, for some Z5) is the

induced factarization by w = yvz. Since p(v) < o(y2), A cannot be the
distinguisher of V. 8 contradiction.

To show that the new deiivation is k-bounded if the ariginal one is, we
prove that far each 1,0 <! <t, there is k(1),0 < k(1) < t, such that o(wi') <
p(wk(i)). Incase 1 €£r ar 1 2 q, let k(1) = 1. Incaser <1 <q, let L(1),
r < k(1) < q, be the integer such that the occurrence of the production used
to obtain wjf from wi’-l is the occurrence of the production used to obtain

(k1)) L, A1) (1)

and, for Ja‘Jo, u =

(1) from wk(i)-l' Ifr <i <p, thenu 3

J

e} 'jO



8 January 1968 15 TM-738/041/00

€J. Since §J

o

is the distinguished variable of wr and wq is the distinguisher

of w_, o(uj(k(i))) > D(EJ) - p(uj'(i))for J;‘jo. In thie case, therefare, p(w{)

, (1) (q) (1) ()
Wiy ) e <1 <q, th = , Whe ( )= o )
< of k(i)) If p<1i <gq, then uJo u‘jo nce o uJo 0 u‘jo
(k(1)) (1) (k(1)) ,
< p(u'j ), and uy = uy far J#Jo. Therefare o(wi) < p(wk(i)) in
o

this case, and the proof is complete,
Usi g the previous lemma we obtain

*
Theorem 2,1, Let wo='...= wt be a derivation with wt in £ ., Then there is a

standard derivation v wé”..." wt" =, Furthermore, if, far some k, the arigi-

nal derivation is k-bounded, then the new derivation is k-bounded.

Proof, By Lemma 2,2 and induction onr, O €£r <t, it follows that there exists

o = \T)
gr) "'tr = Vg

for each 1, O £ 1 € r, Then w

a derivation LA k-bounded 1if WoReee® W is k-bounded, which

(t-1),
(o]

= w(t'l) is a standard

is standard at w soe t

i
derivation satisfying the theorem,

Given a weighted context-free grammar, the last result shows that in con-
sidering derivations of terminal words, we may restrict ourselves to standard
derivations, The next result shows that standard derivations can be composed to
yleld a standard derivation,

Thearem 2,2, Let AT A be a derivatic. such that p(wt) < p(wJ) for all J,
0 $J<t., Letr be an integer, O <r < t, such that p(wr) < p(wi) for all i,
0 €1 <r, Then the derivation is a standard derivation if and only if both of
the subderivations woﬁ...= v, and wrﬁ...= w, are standard derivations,

Proof. Since p(wr) < p(wi) far each 1, O €1 <r, it follows that far each k,
O €k <r, tae distinguished variable of Vi in the derivation Wy Teee@ W,

is also the distiiguished variable of Wy in the subderivation wk"...= Wy
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Therefore for each k, O € k < t, the derivation Wo Meee® W, is standard at Wi
if and only if either (a) k < r and the subderivation Wy Teee® W is standard
at wk, ar (b) k 2 r and the subderivation wr"...== wt is standard at wk. This
gives the result.

Definitiom, A derivation wo S wt is called a standard block if it is a

standard derivation such that p(wi) 2 o(wo) for each 1,0 €1 < t,

Suppose wo=...=’ L is & standard block., Then LA is the distinguisher of
W, Futhermare, for each J, 0 < J <t, since p("j) 2 p(wo), the subderivation
W Seee™ wJ ie not a standard derivation. Hence a standard block is a
"minimal" standard derivation,

It follows from Thearem 2,2 that a composite of standard derivations is
& standard derivation. We shall prove that each standard derivation is e
unique coamposite of standard blocks,
Lenma 2,3. Let WoTeee™ Wy be a standard derivation and let wq be the distin-
guisher of L Then q is the unique integer such that LA P, e wq is a standard
block,
Proof. Since LATTLAA is standard, q is the smallest integer such that
o(wq) < p(wo). By Theorem 2.2, w =...= w_1s a standard derivation. Clearly

q
it is & standard block, To complete the proof it suffices to show that there

is no other standard block woﬂ...= wq' Thus suppose that WoSees® wq; is a
standard block, Then p(wq:) < p(wo), 80 that g < q’ by the minimality of q.
Since p(wi) 2 p(wo) for C £1 < q', q' S q. Therefare q’- q, 80 there is no
other standard block,

Theorem 2.3. Fach standard derivation is a unique composite of standard blocks.
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Proof. Let W Meee™ W be a standard derivation and let w , w , ..., W_ =

my o &
v, be defined as follows. Let wm = wo and for each jJ 2 1 let wm be the
° J
distinguisher of LA By induction, Lemma 2.3, and Thearem 2,2, it follows
J-1
that w = v, far same r, and that
wm =.l.:w ) .'O, wm =...-wm, l.., wm g..‘: wm
o} il J-1 J r-1 r

is a unique factarization of wo o™ wt into standard blocks,

If we regard a standard block as a "prime" (ar "irreducible") standard
derivation, then Thearem 2,3 gives a unique factarization of any standard
derivation into "primes". The next result concerns how "primes" multiply.
Lemma 2.4, Let v = wé w. A derivation v =..,2 v, is & standard block if

and only if either (a) there is a standard block wé 2,02 wé such that w, =

14 "

vy w'c') for each 1, 0 €1 €t, or (b) there is a stancard block wc’; e Wy

such that v, = wé wj for each 1, 0 $1 %t.

Proof, Let w =..=w, be a standard block and let w, = w{ w; be the induced fact-

orization far O €1 < t., By Lemma 2,1, if the distinguished variable of LA is in w(;

(o in wg), then the distinguished variable of w, for 0 €1 <t is in wi' (or in

i
" " R4 ’ ’ ’ ’
wi). Therefore w, = w_ (or A wo) for 0 €1 <t, 80 that W 2.2 W, (or w
/

=...=ﬂ€) 1s & standard block such that w = w/ wg (ar w

"

(o]

' "
L™ Yo wi) far 0 €1 < t,

Hence either (a) or (b) holds,
Conversely, if either (a) ar (b) 1is satisfied, it is trivial that A
Teee® W is a standard block,
*
4
0,1°°" xo,k’ vhere xo,J is inV for each J, 1 £ J < k.
A derivation LA wt is a standard block if and only if there exist J,

Thearem 2,4, Let LACIES
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‘ LI - LN
1 € J s kyand a standard block xo,J B e xt,J such that v, xo,l xo’ 31

ves X for each 1, 0 €1 < ¢t,

1,9 %o, 301
Proof. Since the "if" is ocbvious, it suffices to show the "only if". The

0,k

argument is by induction on k. For k = 1, the "only if" is cleariy true,

Assume that k > 1 and that the "only if" is valid for k-l. Let wé R and

’

W ® X . vee X_ .. By Lemma 2,4, either there exists a standard block w'
o 0,2 o,k o

[ [4 ” 4
SDeee@ Wy such that LA I w, xo,2 cos xo,k or there exists a
” M [l " "
standard block Wy Deee® W such that w, = w W, = xo,l"i' In the former case,

let J =1 and X( 1" w{, thereby obtaining the result. Consider the latter
b4

case. By the induction hypothesis on the standard block wg By ye wé, where wg-

there exist J, 2 < J S k, and a standard block X, 3 0P Xy 3 with
14 ’

X eoe X

0,2 o, k’
the desired properties, This campletes the induction and the prcof,
*
£ £ -
Carollary. Let w = vl)l...vsisv“l, 8 2 1, each A in £ and es:ch EJ in V-Z,
The standard blocks of a standard derivation Wy Peee® W give rise, in the

obvious way, to the standard blocks of the induced derivation §J = V0 Peee®
’

w.j,t far each £,.

J J
v ul1) (1)
Proof. Let w1 E A wi: be a standard block and wi vlul .o vsuB vs+l the

induced factarization, By Thearem 2,4, with k = 2s+l, there exist J, 1 % J £ s,
(1) (1) (1) 1)y o(@)
and a standard block u:J L T u'J such that wq vl“l e uJ_i vJuJ VJ+1

(1) /
cee VUV far each q, 1 €q < 1. This gives the result,

Section 3, Control functions

In this section we introduce notation and concepts that allow us to consider

standard derivations starting with w = vl§l see vaﬁsvsﬂ in vhich the weights of
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the words derived fram each €J, 1 < J < s, satisfy suitable restrictions.
Definition. Given s z 1, denote by g = (B(1), ..., B(s)) an s-tuple of non-
negative integers, Let < be the partial arder in the set of such s-tuples
defined by p < g’ 1f B(3) £ p’(J) far each J, 1 £ J < s, The weight | of B

B8
{s defined as the integer £ pB(J).
J=l

Thus |g| 20, and g} = 0 if and only 1f B = (0, ..., O). Furthermcre,
8 SB' implies !Bl S]B", and if B ‘B' then B<ﬁ' if and oanly if |B‘ < \5".
In a weighted context-free grammar s-tuples arise in the fallowing natural manner,
Definition., let G = (V,%,P,0,p) be a welghted context-free grammar. Given a
* *
ward w in V and a factorization w = Vi ceoV UV ., whewe 8 2 1, VJ is in Z

for 1 € J < s+l, and u fsin V" forl s J < 8, let p(w) be the s-tuple (o(ul),

coey o(us)).

Note that if W = ViU ..o V UV 1s a8 above and if v =,,..» v’ 15 &

8 8 B+l

derivation in G, then there is an induced factarization w =y ul' ces v u'y
1 8 8 s+l
which defines av s-tuple p(w’) = (p(u{), ceny o(ué)). In particular, given a
derivation Wy Deee™ Wy in G and a factorization of LA Vi e VgVl there
is defined a sequence a(wo), ...,B(wt) of s-tuples, Restrictions on the weighte
of subwords of the vy will be expressed in terms of B(wi) using the partial
ordering of s-tuples,
Definition., Given an s-tuple B, s2l, a 8-chain B is a simply ordered sequence
of s-tuples 8 > ...>p, for some rz0 such that B, =8, B, = (0, «¢e,0), and
far each 1, 1 €1 <7r, B, 4 and By differ in exactly one coordinate.
Given g, 1t is obvious that there are only finitely many p-chains,

If B is ae-chainso, coey Br of r+l1 terms, then r < |6\ and r is at least as
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large as the number of nonzero coardinates or 8,
In case B = ', we denote the l-tuple (a) by a and observe that lal = a,

Then an a-chain A is a sequence of integers a = ao > al > ee ar = 0, We

shall use A to denote an a-chain and R to denote a B-chain, where g is an
s-tuple, s 2 1,

*
Definition. Let LA TN ad LA be a standard derivation, with vy in . Let L

*
vee V > s 4
vlgl B§Bv8+l, s2l, be a factarization with vy inf farl < )< s+l and g,

in V- for 1 < 3} <8, Let mo =0 < m <. < m, = t be such that the subderi-

vation w_ =...® v 18 a standard block for each J, 1 € J s r (as given in
J-1 J
Thearem 2.3). Then the a(wo)-chain By eeesBy, vhere By = B(wm ) for 0 s j <r,
J

is called the a(wo)-chain defined by the standard derivation,

Note that if B, ...,B, 1s the B(w )-chain defined by a standard

derivation wo Peee@ W

= < < < -
” then the sequence m, 0 M <e..<m, t has the

property that far each J, m, 1s the smallest integer { with O €1 <t such

J
that g, = a(wi)-

Definition. Given an s-tuple g, a B-control function is an ordered pair (B,f),

where B is a g-chain B“Bo; ...,Br, and £ is a function from B to the nonnegative
integers such that f(ao) = ‘Bo‘ and f(ai) < f(BJ) whenever 1 s J.

Obviously f can be regarded as the sequence of integers |gl = f(ao)

Seeos £(p).
Given an s-tuple g and a positive integer M, there obviously are only
a finite number of g-contral functions (B,f) such that £((0, ..., 0)) S M,

We now use p-contral functions in conjunction with standard derivations

in a particular way.
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»*
Definition, Let wo ERE wt be a standard derivation with v, in ., Let wo =

*
8 2 1, be a factarization, with v, in Z far 1 € j < s+l and

R T
V1t1 Vs s s+’ J

EJ in V-Z far 1 < J < s, The derivation is said to be contralled by a a(wo)-
control function (B,f) if B is the s(wo)-chain By +++sB, defined by the
derivation, and 1f far each J, O € jJ S r, the subderivation Wy Deee™ W is
f(BJ)-bounded. !

Since f(aj_l) < f(ﬁJ) for 1 € J <r and o(wo) = f(ao), the derivation
1s contralled by (B,f) if and only if o(w,) < f(BJ) far a2l 1 € J < r and all
i, mJ-l <1< mJ.

Given a standard derivation Wo Teee™ Wy with LA and w,_ as sbove let B

t
be the B(wo)-cha.in defined by the derivation, Let (B,f) bte the 5(wo)-control
function defined by f(aJ) = max [o(wi)/ 0<1i < mJ]. Then the derivation is
controlled by (B,f), and, if 1t is controlled by any B(wo)-control function
(B',:’), then B = B’ and f(aj) < f'(aJ) far all J§, 0 < § <,

Given a weighted context-free grammer G and a positive integer k, in
the next section we shall construct a context-free grammar G’ such that L(G') =
LR(G)‘ The variables of G’ will be ordered pairs (€, (A,f) ), where € 15 a
variable of G and (A,f) is & p(E)-control function such that f(ai) <€ k for all 1.

Carresponding to a production £ = vlil...vsésvs+l of G there will be pro.uctions

(8 (&, 0)- v, (5, Wy (s ale)e®)yy,

of G'. We shall inirciuce snother auxiliary concept, the notion of "domination",

L)

) } and

in arder to make the relation between the sequence ((A 1y
<) <s

(A,f) precise,
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Assume that w_ = W =...= W, is a standard derivation, with w = g, v, in

"
" s > 1, each v, in 3, and each EJ in V-L.

F vy ¥ '_.vFv o
L, and 5 171 5°s s+l |~ "1’

Suppose that W) Peee Wy eeey W =,..= w_ are the standard blocks of the
M-l
=

standard derivation w; =...=w. If o(w) 2 p(E), then w_ = w =...2 wml,...,

LA =,,,> w_ are the standard blocks of W_ =,.¢= W It o(wl) < p(€), then

r-1
WD W, W Raee> W, eee, W =,,,» w are the standard blocks of w =...=
o] 1 m o._1 0

W This fact will be useful and motivates the following definition.,

t.
Definition. Let (A,f) be an a-control function, with A having r+l elements,
r2l., A p-control function (B,g) is dominated by (A,f) 1f elther

(1' B has r+l1 elements, gl 22, and \Bi| = a, and g(ai) < f(ai)
far all 1 > C;
ar (2) B has r elements, and ]ai! =8 and g(ai) < f(ai-vl) far all

1 20,

For a given s-tuple g and an a-control function (A,f), there are only
finitely many (possibly none) p-control functions (B,g) dominated by (A,f).
The next result shows how the concevt of damination is used,

Lemma 3.1, Let W= § =v “'ngsv = w_ be a production in a weighted

£
1°1 s+l 1
*
context-free grammar G = (V,Z,P,a,o), with s>1, each vy 1n £ , and each f‘j in

*
v-£. OGiven w in £, a deiivation v = wl==...= LA is a standard derivation

controlled by a o(%)-control function (A,f) {f and only if W] Feee@ Wy is a

standard derivation controlled by some a(wl)-control function (B,g) darinated

by (A,f).
Proof. Assume that w_ = W =...2 W 2V 1s a standard derivation controlled by (A,f).
Let B be the a(wl)-chain defined by the standard derivation W) Peee® W

Thus B is the sequence of s-tuples Bo’ ...,Br, where W, = wmo -, wml, wmr .
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Tees® W = w are the standard blocks of w, =, .= W,
m. t 1 t

Let (B,g) be the a(wl)-control function defined by g(g

and 8 .= g(w_ ) for each J.
J my

.j) = max (p(wi)/l <1 SmJ).

As noted earller, W) @e..™ W, 18 contralled by (B,g). To show that (B,g) is

dominated by (A,f), we distinguish two cases,

(a) Suppose p(wl) 2 p(wo). Then the standard blocks of the two standard
derivations are equal in number, and are identical except for the beginning of
the first one, Thus IBJI = e, and g(BJ) Sf(aJ) far 0 < J € r, so that (B,g)
is daminated by (A,f).

() Suppose p(wl) < o(v ). Then A has r+l terms, Furthermare, the standard

blocks of wo P oo™ wt consist of wo = wl and the standard blocks of wl Pyee™ wt.

\ = = s
Thus a; o(wl), 80 that IBJI a1 and g(aj) < f(aJ+l) for all J§, 0 S J <,
so that (B,g) 1s dominated by (A,f).
To see the converse, assume W] Peee® Wy 1e a standard derivation contralled
by scme B(wl)-control function (B,g) dominated by scme p(£)-control function

(A,f), Then Wo ® ¥ @ +ee® W, 18 & standard derivation whose standard blocks

are related to the standard blocks of W) =ee0= W as descrived in (@) and (B)

above, If o(wl) > p(wo), then ’BJ[ - aJ and S(ﬁj) < f(a")fcn' all J, 0 <j <r,
Then a(wo) < p(wl) < g(aj) Sf(ad) and p(wi) < S(BJ) < f(aJ) far 1 €1 < m, and
13 <r, Thus o(wi) < f(aj) for all w, in the j-th standard block of Wy Deee®
Wee If p(wl) < o(wo), then IBJl =a and S(BJ) < f(aj-bl) far all §, 0 € J <
r. Thus p(wl) < o(wo) = f(ao) < f(a.l), 80 that D(wi) < f(al) for all w, in the

first standard block of Wy Dee® wt. Far all v, in the j-th standard block of

l <J<r, thus all wi in the j+l-st standard block of wo Py a e

“’l 7‘:.,.:’ ‘Vt’
0 < < E
W, we have o(wi) g(ﬁj) f(ajﬂ). Hence W, @ees® W, 15 controlled by (A,£).
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The preceding lemma gives one necessary and sufficient condition far the

existence of & standard derivation
vli "ngs el " M1 » .2V =V

controlled by some 5(wl)-cmtrol functl on., The next lemma gives another such
condition, The two conditions together will then be used to describe the
productions in the grammar ¢’ we are seeking.
Definition. Let (B, g) be a p- -control function, where B is a p-chain Bo’ '“’Br
of s-tuples., For each J, 1 €3 <8, let A(J) be the chain a(‘j) (J)
vhich consists of the distinct J-th coordinates of B , «ee, Be (Thus £ rJ- r.)
For each J and each 1, 0<i s rJ, let i(J) be the smallest integer such that

(9 e

the j-th coardinate of Bi(J) is a,i('”. For each J, L € ) < 8, let

the function on A(J) defined by

(6)

Then (A(J) (‘j)) +s sald to be determimd by (B,8).

Since ‘Bi(.j)' < 8(51(3))’ f('j)(a§'j)) >0, For 1’ s1, since 3(51'(.])) <
g(p (J)) ard B, / () 284 (4)? it follows that f(J)\a(l)) < f(‘j (a(J)) Further-
, 0l = sl -5 8o(37 = 8lo) - aga>. mus (A0, £09)) 16 en

(1) #1)y 2 (3,8).

agj)- control function. In case s=l, it 1s clear that (A

Lemma 3.2. Leu B be the ao-chain By *+*2Bp and let w) = vlél...vsss e+l O

*
glven, with s2l, each v, in L, and each EJ in V-£. There exists a standard

(6) '
Bi(J)(‘j ) 1s the J'-th coardinate of 51(1).
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*
derivation vy Deae™ wt = w of a ward w in I contralled by the a(wl)-control
o ) . - ! ’ ' ’ *
function (B,g) if and only 1if w ViU e eVeUgVasg far some Uy eeey Uy in £

and for each J, 1 < J < 8, there exists a standard derivation EJ- wJ o v
’

Virg o with t < t-1, controlled by the o(%J)-control function (A
J

determined by (B,g).

*
Proof. Let vl§ seeV EB ool wl 2 ee™ wt be a standard derivation of w in T

contralled by the B(wl)-control function (B,g). Far each 1, 1 <1 < t, let

(1) (1)_ ¢
= Vlul ... Vels Veal be the induced factorization, with woT= 5, far each
ke Let w, mw  =,,,2w , ..., W Peee® W w, be the standard blocks of
1 m m..1 t
W, = =w.TbusBir5(wm)fareachi, 0O<isr, Fareach J, 1 < <s,

1 .
(3)

let (A(‘j) (‘j)) be the contral function determined by (B,g), A the sequence

ag‘j)..., al(“j). We use the notation of the preceding definition., Also, let
>

*
E,. = W, T, W = u(t) be the iduced derivatiom of §, = u(t). By the
Sty 3

carallary to Theorem 2,4, the standard blocks of vy Beee® Wy give rise, in an

obvious manner, to the standard blocks of §J = wJ o=°...=’ wJ t Thus A(‘j) is
) b4

J

defined by w , and t, < t-l,

Teee™ W
Js 0 J,*\"‘j J
Let ) be an integer, 1 < J S8, Giveni, 0 <1 ST, let 1 ve the

smallest integer such that a§‘j) - p(w‘j 11). Since A(‘j) is defined by w
’

Jy0
, the integer 1’ exists. Fram the carrespondance of the standard

:—9.“.= w
b,

is the smallest integer n such that a.(J)-:

blocks, it follows that m
o(w J )'O(u('j)) and that in'-uJ « Thus for each k, Sksi',
b
(k") /
< =
there exists k' , 1 < ' mi(J)’ such that wj,k uJ . Since k < mi(J)

and RITRAA 1s contralled by (B,g), it follows that p(wk:) < 3(61(3))° Then
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/

}5 )) = o(wk:) < E(BI(J)) = f(‘j)(

(3,

o(w, )+ % o(u( N

J)k J'{J cj
!
*X; Bi(J)(J ).
J 4

?
Since the derivation w =,..= v 18 standard, .'.)(u‘jgk )) 2 siu)(,j') for 3'#3.

) < f(‘j)(agj)). Hence the induced derivation Ef"‘= ugt) =

(9) £y,

Then p(w u

Co ~

Js K
ig contralled by (A

Consider the converse, For each j, 1 < < s, let %d = wJ o T
’

Vg - uj be a standard derivation controlled by (A(‘j), f(J)), where A(J) is

b
) (3)
o ’

the sequence a

I.l’

af_‘j). We obtain a standard derivation wl g g 0 wt as

follows. Far each k, O < k <1, there exists a unlque J, 1 € J <8, and

unique 1,0 €1 <1y, such that k = 1(J). Let w; 2...@ W, be the standard

derivation such that the 1(J)-th standard block, 1(j) 2 1, carresponds to the

i-th standard block of the derivation &5, = w Teae™ W = u’', To camplete
J 3o Jt J

the proof, it suffices to show that ¥, =eee™ W, is controlled by (B,g). It

1s clear (using induction on k for B, and the definition of the derivation

W) Peest "k) that the B(wl)-chain cefined by the derivation is B itself. Let

wl = wmo Reees™ W ) eeey wmr‘l'—‘-?.gnw = wt be the Bta-n.dard blOCkB of wlﬁncoﬂ Wt.

Thus B, = a(wmi) for each 1, 0 <1 €r, Let kand 1’ be given, O Sk T
and 1 1’ < m, . By induction on k we now prove that p(wi,) < g(sk), thereby
campleting the proof. If k = 0, then m = 1. The induction is thus started
since p(wl) = g(e.o). Assume k >0, If 1'% m_qs then, by inductiom,

< <

Suppose 1> mo_g- There exists a unique J, 1L = J < 8, and unique 1, 0 « 1 =

. _ (1) (1) (1)
Ty such that k = 1(J). Then Wy v SRAN Vel where u, 18
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!
J gi’ -
Bi(J)(J') for j'#J. Since the derivation EJ Dy uJ' 1s controlled by (A(‘j),

in the i-th standard block of the derivation £ k6 =,.,= uj, and o(u

9,

)

o(u

1’ (3)(a(3) ‘
) < el By (5)(8")

= 8(51(3)) -JZ,:"‘J

Therefare

ez o s aey ) = slsy)

o(w, +) = p(u
1’ J 1743

and the induction is extended,
Combining Lemmas 3.1 and 3.2, we obtain the faliowing main result of
this section,
Thearem 3.1. Let W, = E ~ vl§l...v8§5vs+1 =¥ be a rroduction in a weighted
context-free gramuar G = (V,Z,P,q,p), with s21, each vy in z*, and each ::‘,j in
V-Z. Given w in )’_‘,* there exists a standsrd derivation Wo D ¥ Deeem Wy =W
[

E " F
contralled by a p(§)-ecntral function (A,f) if and only if w = VU eee VUV

*
for some u]:, ceey us' in L and for each J, 1 € J < 5, there exists a standard
!

derivation 51 eee Uy, of length < t, controlled by (A(‘j), f('j)), where

[(A(J),f(J))/l € J <8 } 18 determined by some a(wl)-ccntrol function (B,g)

daninated by (A,f).

Section 4, Nonexpansive grammars

In this section we finally prove owr main result, namely that every deriva-
tion-bounded set 1s context free. The proof will actually show that each
derivation-bourded set can be generated by a special type of context-free

grammar called "nonexpansive", From this it will follow that the family of
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all derivation-bounded sets is a proper subfamily of the context-free languages,
We also give seversl characterizations of the family of all derivation-bounded
sets,

In arder to prove our main result we need the following technical lemma,
Lemma 4,i, Let G = (V,5,P,0,0) be a weighted context-free grammar and let k
be a positive integer, Let S be the set of all pairs (%, (A,f)), where £ is in
V-£ and (A,f) 1s a o(%)-contrul fuaction with £{0) <k, Let ¢’ = (V',5,P’,0’),
where V' = £ U S U (+'), o’ being a new symbol, and P’ consists of the following
productions.

(1) o'= (o, (A,f)) far each (a, (A,£)) in S,

(11) (,(A,£))- vl(il,(A(l),f(l)))...VB(EB,(A(s), £(8)y) v, for each
production §~'vl§1...v8€8vs*l in ¥, where s2l, each v, is in z*; each EJ is in
V-Z, and the set {(A(J), f(‘j))/l < J s 8) 15 determined by same [o(él)+...+
p(§8)]-control function dominated by (A,f).

(111) (5,(A,£))= v for each production E~v in P, v in E*, and each
(A,f) where A is the sequence a, = o(8), a =0,

Then G’ 18 a context-free grammar and far each (5,(A,f)) 1n S, the set (w in E*/
(§,(A,1)) % w in G’) coincides with the set of all w in £* for which there
exists a standard derivation § =,.,= w in G controlled by (A,f).
Proof, Obviously S is finite, so that G’ is context-free,
We first prove that foar each derivation
(5, (8,1)) = w! =uum wlm v

t

»*
in ¢’ of a word w In © there exists a standard derivation B W M, ., W, I =W

o} t

in G controlled by (A,f). Suppose t = 1, Then w{ = wand (5, (A,f))=w Ls 1n

P’'., This is possible if and only if 5~ w is in P and A is the sequence G

un
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(%), a, = 0. Since 5 = w is a standard Jerivation controlled by (A,f), the

result is valid far t = L. Using induction, assume t > 1 and the result valid
’ ' ' -
for derivations of length < t. Supposc that (%, (A,£)) = WO W) Teee® W =W

i{s a derivation of length t. Then wé* w{ is a production 1in P: s8y

!

(5, (1) v, (5, (&, M (e, 0, eI v m,

| F F o
with s 2 1 since t > 1. By (11), £ Vi Ve ia el is in P and the set
{(A(‘j), f(lj))/l < J < 5] is deteminef’. by somne [Q(gl)+...+o(€s)]'cmtrol fun.ctiorl

*
dominated by (A,f). There exist u.l', ceny u; in £ such that w = vll.ll.‘“vsu;vs-#l

J
derivations has length < t, by inductiomn, for each J, 1 s J <35, there exists in g &

and, far each J, 1 < J <5, (;;J’ (A(‘j), f(J))) 2.es= u's Since each of these

standard derivation :J=...= u; controlled by (A(J),f(J)). By Theorem 3,1,

there exists a standard derivation £ = wo=..‘= wt, contralled by (A,f). Thus

the induction is extended,
We now prove that far each standard derivation § = W, Teee® W, =W in G,
* * ]

w in I, contralled by (A,£), (§,(A,f)) ® win G'. Suppose t = 1, Then &~ w

s in P and A is the sequence a_ = o(§), a = O. Therefore (€,(A,f))- w is 1in

P’. Using induction, assume t > 1 and the result is valid for each standard

derivation of length <t, Let € = Wy Beee@ W, =W be a standard derivation in

t
G, of length t, contralled by (A,f). Then £- Wy is in P and wl is of the farm

*
g€ oo £ i g “le
ViS5 eV BeVee where s2l, each v, is in £, and each ey is in V-Z. By
' ' ' ’ *
Thearem 3,1, w = ViU eesV UV o for some Wpeeeyly in £ and for each J,

1 s ) < s, there exists a standard derivation § =...= us, of length < t,
controlled by (A(‘j),f(")), where [(A(‘j),f(‘j))/ 1 <) <8} is determined by

some [o(;l)+...+ o( gs)]-control function dominated by (A,f). By inductiom,
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(EJ,(A(J),f(J))) : u; in G’ far each J, 1 s J <s. By (11),

(i;(A:f))" Vl(glx(A(l):f(l)))-o-V (Esv (A(S); f(S))) Vo,

8 33 2%
is In P'. Thus

(=, (0= vy Gy, (M s W)y v e, ey v

5 vou/ vau'v
11 o0 VeYs el

= v,
completing the induction and the lemma,

We are now ready far the proof of the main result.
Theorem L4.1. Every derivation-bounded set is context free, that is, Lk(G) is
a context-free language far every phrase-structure grammar G and every positive
K.
broof. By Lemms 1,1, there exists a weighted context-free grammar G'=
(v',5,B’, o’,0') such that Lk((}) = Lk(G'). Let G’ be the context-free grammar
defined in Lemma L.l by means of G’ and k., From the definition of G", L'G") 1s
the set of all words W in z* far which there exists a standard derivation ~'
... w in G’ controlled by same o'(~')-control function (A,f) with £(0) < k.
This set coincides with Lk(G') by Theorem 2,1, since every standard derivation
o' .. wwhich 1s k-bounded is controlled by same o'(g')-control function
(A,f) with £(0) < k, Therefare Lk(G) = L(G"), so that Lk(G) is context free,

The proof of Thearem 4,1 far the speclal case of context-free grammars is
equivalent to the argument far weighted context-free grammars in which the weight
of every varlable is one, The demonstration far this speciel case is much

simpler than that for the general case since it does not require the machinery

of control functions developed in section three,
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Cbserve that the family of ultrelinear languages is a subfamily of the
family of derivation-bounded languages,(7) and as noted in section one, the
inclusion is proper. In fact, it is undecidable whether ar not a derivation-
bounded language is ultralinear, (Far let U be the family of ultralinear
langrages over an alphabet I containing at least two elements and let ¢ be a
new symbol, Tt follows from Thearem 4.2 below that ((Lc) /L in U} 1s & family
of derivation-bounded languages. By the proof of Theorem 4,2,2 1n {3], 1t is
undecidable whether or not an arbitrary L in U is regular., It is shown in (5]
that for an arbitrary context-free language L & 8*, thus far L in U, (Lc)*

18 ultralinear if and only if L is regular., Thus far L in U, 1t is undecidable
whether or not (Lc)*, which is derivation bounded, is ultralinear,) In the
balance of this paper, we shall study characterizations ani properties of
derivation-bounded languages,

We now introduce a special class of grammars which characterize the deriva-
tion-bounded languages, These grammars have also been considered by Yntema [9]

in her investigation of "standard metching-choice sets”.

Definition. A context-free grammar G = (V,L,P,g) is called nonexpansive, if, far
every § in V-F and w in V*, 3 - w implies w does not contain two occurrences

of €.,

Lemma 4,2. For each derivation-bounded language L there exists a nonexpansive

context-free grammar G’ such that L = L(G').

(7) Since the derivation-bounded sets are now known to be context-free languages,

we call them derivation-bounded }M_.
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Proof. Since L is derivation bounded, L = L (G) for some weighted context-free
grammer G = (V,Z,P,0,p0). let G' = (V/,5,P’,g’) be the context-free grammar
defined in Lemma 4,1 It suffices to prove that G’ is nonexpansive.

Let o’ be the function on V'-L defined by p'(c’) = k and o'((§,(A,£)))=
£(0) for each (£,(A,f)) in V', Since £(0) 2 p(E) >0, o’ 1s a function
from V'-E to the positive integers, Thus (V',L,P’,0’,0’) 1s a weighted context-

!

free grammar, To prove G’ nonexpansive, it suffices to show that if €' = ve

200 wt" = w is an arbitrary derivation in G’, where £’ 15 in V'-Z and w 1s in
V’*, then w can contain no variables of weight > p’(£’) and at most ome variable
of weight o0’(§’). Since the only productions involving ¢’ are of the farm o'~
(o, (A,£)), there is no loss in assuming £ '# o', 1.e., there is no loss in
assuming £’ is of the form (§,(A,f)). Suppose t = 1, Then the derivation is
€' w{- w, Either w{ is in I‘.*, in which case the result is true, or else v’ =

Vl(t_'l,(l\(l),f(l)))..,VS(EB,(A(’)’f(')))' vhere 521, each v, is in 8*, and

1
{(A("),r("))/l < j < 8) 1s determined by a control function (B,g) dominated by

(A,£). 1In the latter case, g(0) < £(0) = p'((§,(A,£))). Now far each J and 4,

l1<j<sand0<isr, fm(.i("))- 8(31(3))-38"{3 ﬂi(J)(J'). Thus there exists

some J , 1 <] <s, such that f(Jo)(O) = 3(0)-38"&1 0 = g(0)., Far Ji.‘]o,

f('j)(o) - f(J)(a':E'j))
w )-Z (39
BB (37 T, O 0)
<gl0)-z B (3")
5 J'i.‘) rJ(J)
< 8(0)' er(J)(JO)

< g(0).
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(3,) () .
Tus o'(5, ,(& ©,2 ) < 0'(g’) amd, for §4y, p‘(ad,(n(~),f“)>) <0'(8).
C
Therefare the result is true in this case. Continuing by induction, suppose

the result is true for all derivations of length < t,t> 1. Consider §'= w!

Byee® wf‘: = w in G’. By induction, wt‘:_l can contain no variable of weight >
0’(€’), and at most one variable of weight o‘(£'). Now w,; is obtained by

applying a production v’~ z’ to a variable v’ in "1:-].' By induction, z’ can
contain no variable of weight > p(v’), thus none of weight > p’(§’) 2 p’(v’),
and can contain at most one variable of weight p’(v’) < p“(E’). Thus wt' =y
can contein no variable of weight > o’(£’) and at most one varisble of weight

p’(5'). Hence the induction is extended and the proof is complete,

Remark, It was shown in [9] that there exist context-free languages generated
by no nonexpansive grammar. (In fact, the set L S (a,b)" of all wards w with
the following two properties is such a language: (i) The number of occurrences
of a in v equals the number of occurrences of b in w; and (1i) For each
initial subward w' of w, the number of occurrences of & in w’ is greater than
ar equal to the number of occurrences of b in w'.,) From Lemma 4.2 it follows
that the family of derivation-bounded languages is a proper subfamily of the
family of context-free languages.
We now present several characterizations of derivation-bounded languages.

Thearem 4.2, Given a set L < }3*, the fallowing statements are equivalent:

(1) L is a derivation-bounded language,

(2) L = L(G) for some nonexpansive context-free grammar G.

(3) L velongs to the smallest family of sets containing all
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the linear languages and closed under arbitrary substitution of sets in the
family for letters.

() L=L(G) = I‘k(G) far same context-free grammar G and some
positive integer k,
Proof. By Lemma 4,2, (1) = (2). The implication (4) = (1) is trivial.
Thus there only remain proofs of (2) = (3) and (3)= (¥). Let I, and ) be the
families satisfying conditions (3) and (4) respectively.

Consider (2) = (3). We shall prove tha: L(G) is in .:3 for each nonexpansive
context-free grammar G = (V,L,P,0). To this end, suppose that V-I contains just
one element, i.e., just c. Since G is nonexpansive, it is linear, Thus L(G)
is in £3. Continuing by induction assume that V-I contains n > 1 elements
and that the result is valid for all nonexpansive grammars with < n variables,
Without loss of generality, we may assume that G is reduoed.(e) (Far otherwise,
as noted in [2;3], there exists a reduced grammar G = (V,%,F,0), vith V&V and
T © P, such that L(G) = L(G). Clearly G is alco nonexpansive,) Let H = V-I
be the set of all variables € such that § > u ow, for some w and w, in Vs
Gbviously o is in H. Let G'= (V,Z',P’,), where =’'= V-H and P’ consists of all
productions § - w in P such that £ is in H, Since G is nonexpansive, G’ is a

linear grammar, (For suppose otherwise. Then there exists a production § -

3
( )A context-free gramme~ G = (V,Z,P,5) is said to be reduced if for each
variable € (i) there exist u and v in v" such that o = uév, and (1i) there

* *
exists w in £ such that € = w,

e —————
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*
ulylu?yeug, where ¢, Yl’ and Y, are in H end ul, u2, and u3 are in Vv,

Since and Y, are in H and G 1s reduced, there exist u,, uh, ur, us, Usy u s

y

- * * * -
and in V such that vy, = 3 g = X
\;7, ur A 1.1(7\15 ulusa.ndy_ ur*u(uu7

Then & b uluu usu EQ LEP contradicting G being noaexpansive,) If HwV-g,

then GG’ is linear, so that 1(G) is in £ Suppose H # V-Z, so that £ < z; ZI-E# 2,

3.
and P-P'48, For each £ in r'-5 let G.= (L, £, P-P, €). Then Gr 18 a nonexpansive

grammar with fewer than n variables, (Note that 1if v = u Y, 1s in P-P’ far

* *
same v 1n H, then y = 1
Y ’ Y u3c vy, far some a3 and u,. Thus v = ulu3o U, 60 that

o 1s in H, a contradiction., Hence, each producation in P-P’ involves only

symbols 1in z', 80 that G. 1s a context-free grammar. Since G is nonexpansive

and P-FP" < P, G- is nonexpansive. Since g is not in 2', G. has fewer than n
variables,) Therefare L(GF) is in £3 by induction. Since eech finite set is a
linear language, {a} is in £3 far each a in I, Let 7 be the substitution

mapping defined by T(a) = (a) for each a in £, and 7(§) = L(Gg) far each £ in H,

Obviously L(G) = 7(L(G')). Thus L(G) is in £, so that (2) = (3).

3.’
Consider (3) - (L4). Obviously it suffices to prove £3 c Ih' Since Iu
contains every linear language, it therefore suft'ices to show that :’h is

closed unijer arbitrary substitution of sets in .if‘4 foar letters, Assume that L

is in I and that 7 1s a substitution of sets in I, for letters. Thus, for
each & in L, 7(a) € L * 1s 1n {,. Then there exists a context-free grammar

G = (V,L,P,~) such that L =L(G) = Lk(G) for some k21, Also, for each a in I,

there exists a context-free grammar G, = (Vv,z,P na) such that r(a) = L(Ga)-

a’ “a’ "a’

L (Ga) faor some ka>l. Without loss of generality, we may assume that

K
a
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- N = - m - = o
(va L) "V = . and (va z&) (vb zb) * far all aand b in £, & ¥ b, Let h

*
be the homomorphisi: on V defined by h(E) = £ for £ in V-Z and h(a) = o, for

ainZ. Let G' = (V' £, P', ~), where V' / VU U Ve ! =y £,, and
a in a in I
P’ = P, U(E ~ h(z)/5 = z in P},
a in Z

Clearly G’ is a context-free grammar such that (L) = L(G'). Let m = max
{('z!/7 =2 1n P}, m' = max (ka/a in £} and n = mm’ + k. Tc complete the proof,
1t suffices to show that L(G') = Ln(G').

Clearly Ln(G') <L(G'). To see the reverse containment, let w' be in
L(G'). Then there exists w in L(G) such that r(w) = w’, Since L(G) = Lk(G)’
there exists a derivation 7 =...= w in G which is k-bounded. Then ¢ = h(~)
>..= b(w) in G’ is k-bounded. For each a in I, L(G,) = L, (G,). Tous, for
each ward u in L(Ga)’ a in I, there exists a ka-bounded derisation “a b u in
G,» thus in G'. These derivations give rise, in the obvious manner, to a
derivation

(*) A=202 w22
in G. Rearrange the application of the productions used in (*) so that whenever
a symbol in [na/a in £} in introduced by some production in P = {i - h(z' /§ - z in P},
no other prodaction of P is applied until all occurrences of elements in [qa/a in )

1

have been replaced by wards in U L(‘Ga)' This ylelds a new derivation g =,..™ W
a
in G'. Each ward in the new derivation can contain at most m occurrences of

symbols in [ca/a in £}, and theretare at most mm’ occurrences of symbols in
U (Va-Za). Since each word in the new derivation has at most k occwrrences of
a

symbols in V'-r’, the new derivation is (mm’ + k)-bounded, Thus L{G') = Ln(G')

and the proof is complete,
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Remarks. (1) The proof that the family of contexi-free languages is closed under
intersection with regular sets [2;3] can be readily adopted to show that the
family of languages generated by nonexpansive grammars, thus the femily of deri-

vation-bounded languages, is closed under intersection with regular sets, Since

this tamily is closed under substitution, i. follows from a result in [o]
that it 1is an abstract family of languages (AFL) as defined in (4] which is
clored under arbitrary homomorphism, i.e., is a full AFL.

(2) It is shown in [7] that for any AFL £ properly contained in the
context~free languages, it is undecidable whether a context-free language
belongs to £. Thus it is undecidable whether a context-free language 1is
derivation bounded.

(3) It can be shown that any AFL closed under arbitrary substitution and
containing the context-free language L = (wwR/ w in {a,b}*] contains &ll
linear, hence all derivation-bounded, languages. Therefore the family of

derivation~-bounded languages is the smallest AFL closed under substitution

and containing L.
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(3]

()
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