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Abstract. A recent approach to derive transport equations for rarefied gases from the Boltzmann
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1. Introduction. While it is well known that the Navier–Stokes–Fourier (NSF)
equations fail to describe processes in rarefied gases for Knudsen numbers above 0.05,
it is still a matter of debate how a set of meaningful macroscopic equations for larger
Knudsen numbers can be derived from the Boltzmann equation.

The NSF equations are routinely derived from the Boltzmann equation by means
of the Chapman–Enskog expansion [1], [2], [3], which yields the NSF equations in
first order of the Knudsen number. However, the Chapman–Enskog expansions to
second and third order yield the Burnett and super-Burnett equations [3], [4], which
are known to be unstable in transient processes [5] and to give unphysical results
in steady state problems [6]. Thus one has to conclude that the Chapman–Enskog
expansion fails at higher orders. The reasons for that failure, however, remain unclear.

In recent years some authors proposed ad hoc improvements of the Burnett equa-
tions which yield stability [7], [8], [9], [10] but are somewhat difficult to justify, since
they are not linked well to the Boltzmann equation; see [11], [6] for a discussion.

Another well-known method for obtaining equations for rarefied gas flows is
Grad’s method of moments [12], [13], which provides stable equations at any level, that
is, for any set of moments considered as the basic variables of the theory. There are
two major points of criticism against Grad’s method, namely, that Grad’s equations
fail to describe smooth shock structures for Mach numbers above a critical value [14]
and that the equations are not related a priori to the Knudsen number as a smallness
parameter.

The failure to describe smooth shock structures is related to the fact that the Grad
equations are of hyperbolic type and thus have a maximum signal velocity [14]. Only
recently Struchtrup and Torrilhon introduced a regularization for Grad’s 13 moment
equations which is based on a Chapman–Enskog expansion around a nonequilibrium
state [15], [11]; see also [16] for a similar approach. The regularized Grad equations
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produce smooth shock structures for all Mach numbers and thus overcome this par-
ticular problem.

In a series of papers Reinecke and Kremer were able to show that NSF and
Burnett equations can be derived from certain sets of Grad’s moment equations by
means of a Maxwellian iteration [17], [18], a method that is essentially equivalent to a
Chapman–Enskog expansion of the moments [19]. Struchtrup and Torrilhon showed
that a Chapman–Enskog expansion of the regularized 13 moment equations yields the
Burnett and super-Burnett equations for Maxwell molecules [15], so that this set of
equations is of third order.

The first attempt to derive Grad’s equations by means of arguments on the Knud-
sen number is due to Müller, Reitebuch, and Weiss [20], who considered the infinite
system of coupled moment equations of the Bhatnagar–Gross–Krook (BGK) equa-
tion [21]. From these they determined the order of magnitude of moments in terms of
orders in powers of the Knudsen number and declared that a theory of order λ needs
to consider all terms in all moment equations up to the order O

(
ελ
)
. At first, these

are the moment equations for all moments of order β ≤ λ under omission of higher or-
der terms. However, these equations split into two independent subsystems, and only
a smaller number of equations (and variables) remain as equations of importance [20].

In the method developed below, we do not ask for the order of terms in all moment
equations but of the order of magnitude of their influence in the conservations laws,
i.e., on heat flux and stress tensor. This is quite different. For example, in order
to compute the heat flux with third order accuracy, as is necessary in a third order
theory, other moments are needed only with second order accuracy, while others can
be ignored completely. Müller, Reitebuch, and Weiss’s consistent order extended
thermodynamics [20], on the other hand, would require higher order accuracy for
these moments and a larger number of moments. The new method was applied to the
special cases of Maxwell molecules and the BGK model in [22], and it could be shown
that it yields the Euler equations at zeroth order, the NSF equations at first order,
Grad’s 13 moment equations (with omission of a nonlinear term) at second order,
and Struchtrup and Torrilhon’s regularization of these at third order. An important
feature of the new method is that the equations at any order are stable, other than in
the Chapman–Enskog method, where the second and third approximation—Burnett
and super-Burnett equations—are unstable.

The restriction to Maxwell molecules, or the BGK model, leads to a comparatively
simple application of the new method, and what has to be done for other models of
molecular interaction was only sketched roughly in [22]. The present paper gives a
detailed account of the method applied to arbitrary interaction models up to second
order accuracy. It will be shown that, again, the first order approximation agrees with
the NSF equations as they are derived by means of the Chapman–Enskog expansion,
while the theory of second order accuracy yields a set of 13 moment equations which
differ from Grad’s original 13 moment equations. In particular the new equations have
different numerical coefficients and some additional terms. All coefficients depend
on the interaction model used. The latter feature is well known from the Burnett
equations where the coefficients depend on the interaction model used as well [1], [18].

In the present paper, the method is outlined in detail, but numerical values of
the coefficients are not computed. Indeed, this paper serves to set the stage for
detailed calculations, since it carefully analyzes the problem for the most general
setting—arbitrary interaction potentials of particles. This allows us to identify exactly
what quantities—mostly coefficient matrices for moments of the collision term—must
be determined for a theory of second order. Thus, the present paper presents the
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necessary work that needs to be done before numerical values for coefficients can
be computed. Detailed calculations of the numerical values of coefficients for the
generalized 13 moment equations, and tests of the new equations, are planned for the
future.

Accordingly, the present paper is quite technical in nature. The reader interested
in more background to the new method used here is referred to [22], where the new
method is discussed in detail, including careful comparisons with the classical methods
of Chapman–Enskog and Grad.

The remainder of the paper is organized as follows. In section 2 the moments
are defined as basic irreducible tensors, and the infinite set of moment equations is
derived. The moments of the collision term of the Boltzmann equation are discussed
in section 3. Their computation requires an expression for the particle distribution
function in terms of the moments, and the Reinecke–Kremer–Grad method [17], [18]
is suggested to determine that function. In section 4 the order of magnitude of
the moments is determined, and the minimum number of moments of first order
is discussed. The results are then used in section 5 to develop the proper sets of
equations for zeroth to second order accuracy. The paper ends with our conclusions.

2. Basic equations.

2.1. Boltzmann equation. Our starting point is the Boltzmann equation [1],
[2], which we write as

Df

Dt
+ Ck

∂f

∂xk
=

1

ε
S (f) ,(2.1)

where f denotes the phase density, Ck = ck − vk denotes the peculiar velocity with
ck as the velocity of a particle, and vk denotes the center of mass velocity of the flow.
D
Dt = ∂

∂t + vk
∂

∂xk
denotes the material time derivative.

ε is a formal smallness parameter which stands for the Knudsen number. This
parameter will be used for monitoring the order of magnitude of the moments and the
order of magnitude of terms within equations. At the end of all calculations, ε will
be set equal to unity. In fact, if proper dimensionless quantities were introduced,
the dimensionless Boltzmann equation would read as (2.1) with the Knudsen number
instead of ε, and the Knudsen number could be used as the smallness parameter for
the procedure below. Reinserting of the dimensions would then remove the Knudsen
number—this corresponds to setting ε = 1 at the end of the computations. Thus the
use of ε removes the necessity of introducing dimensionless quantities.

S (f) is the collision term that accounts for the change of f due to collisions and
is given as [1], [2]

S (f) =

∫
(f ′f ′

1 − ff1)σg sin ΘdΘdεdc1,(2.2)

where c and c1 are the velocity vectors of two colliding particles before the collision, c′

and c′1 are the velocities after collision, g = c − c1 is the relative velocity and g = |g|,
σ is the collisional cross section, Θ is the collision angle, and ε is an angle that defines
the direction of the collisional plane. Finally, f ′ = f (x, t, c′), etc.

The collision term has the following properties: (a) conservation of mass, momen-
tum, and energy, so that

m

∫ {
1, ci, C

2
}
S (f) dc = 0.(2.3)
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(b) In equilibrium, the phase density is the Maxwellian,

S (f) = 0 =⇒ f = fM =
ρ

m

√
1

2πθ

3

exp

[
−C2

2θ

]
,(2.4)

where ρ is the mass density, and θ = k
mT is the temperature in energy units, where

T is the temperature, m is the particle mass, and k denotes Boltzmann’s constant.
(c) The Boltzmann equation leads to a positive entropy production.

2.2. Moments. We define the general irreducible moments of the phase density
as

ua
i1···in = m

∫
C2aC〈i1Ci2 · · ·Cin〉fdc,(2.5)

where indices in angular brackets denote the symmetric and trace-free part of a tensor.
Note that the moments ua

i1···in that are used in this paper are trace-free by definition,
ua
i1···in = ua

〈i1···in〉, and that this is not made explicit with brackets in order to avoid
confusing notation involving several pairs of brackets. Appendix A gives a short
introduction to trace-free tensors.

Some of the moments have a particular interpretation, namely,

u0 = ρ, u0
i = 0, u1 = 2ρe = 3ρθ = 3p, u0

ij = σij , u1
i = 2qi.

Here we introduced the specific internal energy e = 3
2θ of the ideal gas, the pressure p,

the irreducible part of the pressure tensor σij , and the heat flux qi.
The values of the moments in equilibrium (E), when by (2.4) the phase density

is a Maxwellian, are given by

ua
|E = (2a + 1)!!ρθa, ua

i1···in|E = 0, n ≥ 1,

where (2a + 1)!! =
∏a

s=1(2s+1). The moments of the collision term of the Boltzmann
equation (2.1) are defined as

Pa
i1···in = m

∫
C2aC〈i1Ci2 · · ·Cin〉S (f) dc

and will be discussed in section 3. Due to the conservation conditions (2.3), we have

P0 = P0
i = P1 = 0.(2.6)

2.3. Generic moment equation. Multiplication of the Boltzmann equation
with mC2aC〈i1Ci2 · · ·Cin〉 and subsequent integration over velocity space yields, after
some rearrangement, the general equation for the moments (2.5),

Dua
i1···in
Dt

+ 2aua−1
i1···ink

Dvk
Dt

+
n

2n + 1
(2a + 2n + 1)ua

〈i1···in−1

Dvin〉
Dt

+
∂ua

i1···ink
∂xk

(2.7)

+
n

2n + 1

∂ua+1
〈i1···in−1

∂xin〉
+ 2aua−1

i1···inkl
∂vk
∂xl

+ 2a
n + 1

2n + 3
ua
〈i1···in

∂vk〉
∂xk

+ 2a
n

2n + 1
ua
k〈i1···in−1

∂vk
∂xin〉

+ nua
k〈i1···in−1

∂vin〉
∂xk

+ ua
i1···in

∂vk
∂xk

+
n (n− 1)

4n2 − 1
(2a + 2n + 1)ua+1

〈i1···in−2

∂vin−1

∂xin〉
=

1

ε
Pa
i1···in .
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Note that all moments are trace-free by definition, and additional trace-free tensors
are made explicit by means of angular brackets. This implies that each of the terms in
the above equation is trace-free and symmetric in the indices i1 · · · in. The derivation
of the equation above requires multiple use of relation (A.2) [23]

C2aC〈i1Ci2 · · ·Cin〉Ck = C2aC〈i1Ci2 · · ·CinCk〉 +
n

2n + 1
C2a+2C〈i1Ci2 · · ·Cin−1δin〉k.

The set of infinitely many moment equations (a → ∞, n → ∞) is equivalent to the
Boltzmann equation. We are interested in limits of the Boltzmann equation given
by orders of the Knudsen number ε, and due to this equivalence we can perform the
limiting process on the moment equations, rather than on the Boltzmann equation
itself.

2.4. Conservation laws. First, we consider the conservation laws, that is, those
equations which, by (2.6), have a vanishing collision moment. For a = 0, n = 0 we
obtain the mass balance

Du0

Dt
+ u0 ∂vk

∂xk
= 0,

and for a = 1, n = 0 we find the balance of internal energy as

Du1

Dt
+

∂u1
k

∂xk
+ 2u0

kl

∂vk
∂xl

+
5

3
u0 ∂vk

∂xk
= 0.

Note that by introducing ρ, θ, σij , qi and some simple manipulations these two equa-
tions can be brought into their usual textbook form:

Dρ

Dt
+ ρ

∂vk
∂xk

= 0,(2.8)

3

2
ρ
Dθ

Dt
+ ρθ

∂vk
∂xk

+
∂qk
∂xk

+ σkl
∂vk
∂xl

= 0.(2.9)

For the choice a = 1, n = 1 we obtain the balance of momentum

ρ
Dvi
Dt

+ θ
∂ρ

∂xi
+ ρ

∂θ

∂xi
+

∂σik

∂xk
= 0.(2.10)

2.5. Scalar moments. For scalar moments (n = 0), the general equation (2.7)
reduces to

Dua

Dt
+ 2aua−1

k

Dvk
Dt

+
∂ua

k

∂xk
+ 2aua−1

kl

∂vk
∂xl

+
2a + 3

3
ua ∂vk

∂xk
=

1

ε
Pa.

Next, we introduce the difference between the scalar variables and their equilibrium
values as

wa = ua − ua
|E(2.11)

and rewrite the scalar equations for these new variables, where all time derivatives of
ρ, θ, vi are replaced by means of the conservation laws. This yields

Dwa

Dt
− 2a

3
(2a + 1)!!θa−1 ∂qk

∂xk
− 2a

3
(2a + 1)!!θa−1σkl

∂vk
∂xl

+ 2aua−1
kl

∂vk
∂xl

− 2aua−1
k

∂θ

∂xk
− 2aua−1

k θ
∂ ln ρ

∂xk
− 2a

ua−1
k

ρ

∂σkl

∂xl
+

∂ua
k

∂xk
+

2a + 3

3
wa ∂vk

∂xk
=

1

ε
Pa.

Of course, for a = 0 and a = 1, the equations are identically fulfilled, so that the
above equation makes sense only for a ≥ 2. Note that w0 = w1 = 0 and u0

i = 0.
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2.6. Vector moments. For vectors, the general equation (2.7) reduces to

Dua
i

Dt
+ 2aua−1

ik

Dvk
Dt

+
2a + 3

3
uaDvi

Dt
+

∂ua
ik

∂xk
+

1

3

∂ua+1

∂xi
+ 2aua−1

ikl

∂vk
∂xl

+
4a

5
ua
〈i
∂vk〉
∂xk

+
2a

3
ua
k

∂vk
∂xi

+ ua
k

∂vi
∂xk

+ ua
i

∂vk
∂xk

=
1

ε
Pa
i .

We introduce the quantities wa in the vector equation and replace the time derivatives
of the velocity by means of the momentum balance (2.10) to obtain

Dua
i

Dt
+

a (2a + 3)!!

3
ρθa

∂θ

∂xi
− 2a + 3

3
wa ∂θ

∂xi
− 2aua−1

ik

∂θ

∂xk
− 2aua−1

ik θ
∂ ln ρ

∂xk

(2.12)

− 2a + 3

3
waθ

∂ ln ρ

∂xi
− 2a

ua−1
ik

ρ

∂σkl

∂xl
− 2a + 3

3

wa

ρ

∂σik

∂xk
− (2a + 3)!!

3
θa

∂σik

∂xk
+

∂ua
ik

∂xk

+
1

3

∂wa+1

∂xi
+ 2aua−1

ikl

∂vk
∂xl

+
2a + 5

5
ua
i

∂vk
∂xk

+
2a + 5

5
ua
k

∂vi
∂xk

+
2a

5
ua
k

∂vk
∂xi

=
1

ε
Pa
i .

This equation is relevant for a ≥ 1. Note that w1 = 0 and u0
i = 0.

2.7. Rank-2 tensor moments. After replacing the time derivatives of velocity
by (2.10), the equations for tensors of rank 2 read

(2.13)

Dua
ij

Dt
− 2a

ua−1
ijk

ρ

(
∂σkl

∂xl
+ θ

∂ρ

∂xk
+ ρ

∂θ

∂xk

)
− 2

5
(2a + 5)

ua
〈i
ρ

(
∂σj〉k
∂xk

+ θ
∂ρ

∂xj〉
+ ρ

∂θ

∂xj〉

)

+
∂ua

ijk

∂xk
+

2

5

∂ua+1
〈i

∂xj〉
+ 2aua−1

ijkl

∂vk
∂xl

+
6a

7
ua
〈ij

∂vk〉
∂xk

+
4a

5
ua
k〈i

∂vk
∂xj〉

+ 2ua
k〈i

∂vj〉
∂xk

+ ua
ij

∂vk
∂xk

+
2

15
(2a + 5)wa+1 +

2

15
(2a + 5)!!ρθa+1 ∂v〈i

∂xj〉
=

1

ε
Pa
ij .

This equation is relevant for a ≥ 0. Note that all terms in this equation are trace-free
and symmetric in the index pair ij.

2.8. General equation. For moments of order higher than two, the general
equation reads

Dua
i1···in
Dt

− 2a
ua−1
i1···ink
ρ

(
∂σkl

∂xl
+ θ

∂ρ

∂xk
+ ρ

∂θ

∂xk

)

− n

2n + 1
(2a + 2n + 1)

ua
〈i1···in−1

ρ

(
∂σin〉k
∂xk

+ θ
∂ρ

∂xin〉
+ ρ

∂θ

∂xin〉

)
+

∂ua
i1···ink
∂xk

+
n

2n + 1

∂ua+1
〈i1···in−1

∂xin〉
+ 2aua−1

i1···inkl
∂vk
∂xl

+ 2a
n + 1

2n + 3
ua
〈i1···in

∂vk〉
∂xk

+ 2a
n

2n + 1
ua
k〈i1···in−1

∂vk
∂xin〉

+ nua
k〈i1···in−1

∂vin〉
∂xk

+ ua
i1···in

∂vk
∂xk

+
n (n− 1)

4n2 − 1
(2a + 2n + 1)ua+1

〈i1···in−2

∂vin−1

∂xin〉
=

1

ε
Pa
i1···in .

This equation is relevant for a ≥ 0. Note that all terms in this equation are trace-free
and symmetric in the indices i1 · · · in.
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3. Moments of the collision term. The moments of the collision term of the
Boltzmann equation (2.2) are defined as

Pa
i1···in = m

∫
C2aC〈i1Ci2 · · ·Cin〉S (f) dc.(3.1)

For the method used subsequently, it is necessary to express the Pa
i1···in through

the moments. Since the collision term depends explicitly on the phase density, this is
tantamount to having a relation between the moments and the phase density. Only in
few special cases can the collisional moments be computed without explicit knowledge
of the phase density. In particular, this is the case for BGK models [21] and Maxwell
molecules. For these models, the method was discussed in detail in [22].

For general interaction potentials the situation is more difficult, and we suggest
the Reinecke–Kremer–Grad method [17], [18]. Essentially, this method uses the Grad
method to compute the phase density as a function of the moments and the micro-
scopic velocity ci. That phase density is then used to compute the production terms
(3.1). One problem that arises here is that this method requires the restriction to a
finite number of moments.

The ansatz for the Grad phase density reads

f|G = fM (1 + Φ) = fM

[
1 +

∑
n

An∑
a=0

λa
i1···inC

2aC〈i1Ci2 · · ·Cin〉

]
,(3.2)

where λa
i1···in are expansion coefficients, and An denotes the numbers of moments

of tensorial rank n that are taken into account in the approach. The An introduce
some degree of freedom here, and we shall later give an argument on how they must
be determined to ensure sufficient accuracy. For the informed reader, we mention
already here that the numbers An correspond to the number of Sonine polynomials
that is standard in the Chapman–Enskog expansion; see, e.g., [3].

The expansion coefficients follow from plugging the Grad phase density (3.2) into
the definition of the moments (2.11), (2.5),

wb = m

∫
C2a (fG − fM ) dc = ρ

A0∑
a=0

θa+bB(0)
ba λa (b = 0, . . . , A0),

ub
j1···jr = m

∫
C2aC〈j1Cj2 · · ·Cjr〉fGdc = r!ρ

Ar∑
a=0

θa+b+rB(r)
ba λa

j1···jr (b = 0, . . . , A0),

where

B(r)
ab =

a+b+r∏
k=r+1

(2k + 1) (a, b ∈ [0, Ar]).

The relations between moments and the expansion coefficients are linear, and we find
by inversion

λa
j1···jr =

∑
b

[
B(r)
ab

]−1 ūb
j1···jr

r!ρθa+b+r
with ūa = wa, ūa

i1···in = ua
i1···in(3.3)

so that the Grad phase density is explicitly given. For more details on the above
calculations, we refer the reader to [24].
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With the Grad phase density, the collision moments are given by

Pa
i1···in = m

∫∫
C2aC〈i1Ci2 · · ·Cin〉

(
f ′
|Gf

′
|G,1 − f|Gf|G,1

)
σg sin ΘdΘdεdc1dc

= m

∫∫ (
C ′2aC ′

〈i1C
′
i2 · · ·C

′
in〉 − C2aC〈i1Ci2 · · ·Cin〉

)
f|Gf|G,1σg sin ΘdΘdεdc1dc.

We use f|G = fM (1 + Φ) to obtain

Pa
i1···in = m

∫∫ (
C2aC〈i1Ci2 · · ·Cin〉

)
(Φ′

1 + Φ′ − Φ − Φ1 + Φ′Φ′
1 − ΦΦ1)

× fMfM,1σg sin ΘdΘdεdc1dc

= m

∫∫ (
C ′2aC ′

〈i1C
′
i2 · · ·C

′
in〉 − C2aC〈i1Ci2 · · ·Cin〉

)
(Φ1 + Φ + ΦΦ1)

× fMfM,1σg sin ΘdΘdεdc1dc.

Without evaluating the integral further, we see from the equations above that Pa
i1···in

is at most quadratic in the moments and thus must be of the general form

Pa
i1···in = −

∑
b

C(n)
ab

ūb
i1···in
τθb−a

−
∑
r,m

∑
b,c

Yn,r,m
a,bc

ūb
j1···jr〈i1···im ūc

im+1im+2···in〉j1···jr

τρθb+c+r−a
,(3.4)

where the matrices C(n)
ab , Yn,r,m

a,bc contain pure numbers. Above, we have introduced
the mean free time τ as

1

τ
=

m

ρ

∫
fMfM,1σg sin ΘdΘdεdc1dc.

In the present paper, we shall not compute the matrices C(n)
ab , Yn,r,m

a,bc which depend on
the particularities of the molecular interaction, as they are reflected in the collisional
cross section σ. Obviously, their computation is cumbersome, and one will try to
compute only those matrices that are necessary indeed. One of the goals in the
following will be to give arguments in order to determine which matrices must be
considered for a theory of second order. For now we shall just assume that the

matrices C(n)
ab are invertible, which is the case as long as the numbers An remain

finite.

4. The order of magnitude of moments. We shall now assign orders of
magnitude to the moments, and then construct new sets of moments, such that at
each order of magnitude we have the minimal number of variables.

We base the discussion on a Chapman–Enskog like expansion of the moments,
with ε as the smallness parameter. All moments are expanded according to

ua
i1···in =

∑
β=0

εβua
i1···in|β = ε0ua

i1···in|0 + ε1ua
i1···in|1 + ε2ua

i1···in|2 + ε3ua
i1···in|3 + · · ·

and a similar series for the wa.
We shall say that ua

i1···in is of leading order λ if ua
i1···in|β = 0 for all β < λ. We

emphasize that we are not interested in computing the expansion coefficients ua
i1···in|β

but only in finding the leading order of the moments.
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4.1. Zeroth and first order expansion. For the evaluation of the order of
magnitude, it is important to note that the production terms are multiplied by the
factor 1

ε . If the above expansion is inserted into the moment equations for the non-
conserved quantities, it becomes immediately clear that

wa
|0 = ua

i1···in|0 = 0

for all moments. This follows from balancing the factors of 1
ε on both sides of the

equations—there are none of these on the left, and thus we have the above result. In
other words, all quantities that are not conserved are at least of first order.

In the next step, we balance the factors of ε0 in the equations and find

0 = −
∑
b

C(0)
ab

wb
|1

τθb−a
,

a (2a + 3)!!

3
ρθa

∂θ

∂xi
= −

∑
b

C(1)
ab

ub
i|1

τθb−a
,(4.1)

2

15
(2a + 5)!!ρθa+1 ∂v〈i

∂xj〉
= −

∑
b

C(2)
ab

ub
ij|1

τθb−a
,

0 = −
∑
b

C(n)
ab

ub
i1···in|1

τθb−a
.

It follows that the leading order of vectors and rank-2 tensors, ua
i and ua

ij , is the
first order, while the nonequilibrium parts of the scalar moments wa and the higher
moments ua

i1···in (n ≥ 3) are at least of second order. Note that the nonlinear terms
in the productions do not contribute at the zeroth and the first order.

4.2. Second order. Next, we have a look at the second order quantities. Since
the vectors and rank-2 tensors are already known to be of first order in ε, we have to
consider only the other moments. We make the equations for tensors of rank 3 and 4
explicit. Keeping only factors of ε1 in the equations (note that, e.g., ua

i is a O (ε)
contribution) yields

−2a

3
(2a + 1)!!θa−1 ∂qk

∂xk
− 2a

3
(2a + 1)!!θa−1σkl

∂vk
∂xl

+ 2aua−1
kl

∂vk
∂xl

− 2aua−1
k

∂θ

∂xk
− 2aua−1

k θ
∂ ln ρ

∂xk
+

∂ua
k

∂xk

= −
∑
b

C(0)
ab

wb
|2

τθb−a
−
∑
b,c

Y0,1,0
a,bc

ub
ju

c
j

τρθb+c+1−a
−
∑
b,c

Y0,2,0
a,bc

ub
jku

c
jk

τρθb+c+2−a

so that the wa are of second order.
For the moments of rank 3 and 4, we obtain

−3

7
(2a + 7)ua

〈ij

[
θ
∂ ln ρ

∂xk〉
+

∂θ

∂xk〉

]
+

3

7

∂ua+1
〈ij

∂xk〉
+

6

35
(2a + 7)ua+1

〈i
∂vj
∂xk〉

= −
∑
b

C(3)
ab

ub
ijk|2

τθb−a
−
∑
b,c

Y3,0,2
a,bc

ub
〈iju

c
k〉

τρθb+c−a
,
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12

63
(2a + 9)ua+1

〈ij
∂vk
∂xl〉

= −
∑
b

C(4)
ab

ub
ijkl|2

τθb−a
−
∑
b,c

Y4,0,2
a,bc

ub
〈iju

c
kl〉

τρθb+c−a

so that the ub
ijk and the ub

ijkl are also of second order. For all higher moments we find

0 = −
∑
b

C(n)
ab

ub
i1···in|2

τθb−a
, n ≥ 5.

It follows that the nonequilibrium parts of the scalar moments wa and the tensors of
rank 3 and 4 are second order quantities. All higher moments are at least of third
order. We will not go further, but it is evident that tensors of rank 5 and 6 are third
order, tensors of rank 7 and 8 are fourth order, etc.

4.3. Minimal number of moments of order O (ε). From our first order
result for the scalar and 2-tensors, (4.1), we see that the first order terms ub

i|1 and

ub
ij|1 are related to the gradients of temperature and velocity, respectively, and thus

they are linearly dependent. We obtain

ub
i|1 = −κbτρθ

b ∂θ

∂xi
, ub

ij|1 = −µbτρθ
1+b ∂v〈i

∂xj〉
,(4.2)

where κb and µb are pure numbers, given by

κb =
∑
a=1

[
C(1)
ba

]−1 a (2a + 3)!!

3
, µb =

∑
a=0

[
C(2)
ba

]−1 2

15
(2a + 5)!!.(4.3)

The first few values of these coefficients for Maxwell molecules (MM) and the BGK
model are [22]

MM: κ1 = 15/2, κ2 = 105, and µ0 = 2, µ1 = 14,(4.4)

BGK: κ1 = 5, κ2 = 70, and µ0 = 2, µ1 = 14.(4.5)

In particular, the pressure deviator and heat flux are given to first order as

qi|1 =
1

2
u1
i|1 = −1

2
κ1τρθ

∂θ

∂xi
= −κ

∂θ

∂xi
,(4.6)

σij|1 = u0
ij|1 = −µ0τρθ

∂v〈i
∂xj〉

= −2µ
∂v〈i
∂xj〉

,

where we have introduced heat conductivity and viscosity as κ and µ, respectively.
Thus, in first order we obtain the laws of Fourier and Navier–Stokes. Note that the

computation of µ and κ involves the inverses of the matrices C(1)
ab , C(2)

ab .
It follows from (4.2), (4.6) that we can write

ub
i|1 =

2κb

κ1
θb−1qi|1, ub

ij|1 =
µb

µ0

θbσij|1.

While these equations relate the first order contributions of the vector and 2-tensor
moments, it is straightforward to introduce new moments wa

i , w
a
ij that are of second

order only,

wa
i = ua

i −
2κa

κ1
θa−1qi (a ≥ 2) and wa

ij = ua
ij −

µa

µ0

θaσij (a ≥ 1)(4.7)
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so that

wa
i = m

∫ (
C2a−2 − 2κa

κ1
θa−1

)
C2Cifdc (a ≥ 2),

wa
ij = m

∫ (
C2a−2 − µa

µ0

θa
)
C〈iCj〉fdc (a ≥ 1).

This means that we can formulate a set of moments, where only σij and qi are of first
order, while all other moments are at least of second order (excluding the conserved
moments, of course).

It is in principle possible to go to higher order with this: the second order terms
of wa

i (say), when expanded, will be linearly dependent, and again one can use this
to obtain a minimal set of moments of second order, while the remaining ones can be
constructed to be of third order, etc. This is not necessary for the levels of accuracy
that are important in this paper, and so we shall not pursue this idea further.

5. The transport equations with second order accuracy. In the previous
section we have established the order of magnitude of the various moments up to
O
(
ε2
)
. Now we ask what equations we need in order to describe a flow process in a

rarefied ideal gas with an accuracy of O
(
ελ
)
.

In this section, we shall use the smallness parameter ε in a slightly different
manner, namely, as an indicator for the leading order of a quantity. Thus, in any
equation we shall replace ua

i1···in by εβua
i1···in when β denotes the leading order of

ua
i1···in . This will allow for a proper bookkeeping of the order of magnitude of all

terms in an equation.

5.1. The conservation laws and the definition of λth order accuracy.
We start the argument by repeating the conservation laws for mass, momentum, and
energy, (2.8), (2.10), (2.9), which read, when we assign the factor ε to the first order
quantities σij and qi,

Dρ

Dt
+ ρ

∂vk
∂xk

= 0,

3

2
ρ
Dθ

Dt
+ ρθ

∂vk
∂xk

+ ε

[
∂qk
∂xk

+ σkl
∂vk
∂xl

]
= 0,(5.1)

ρ
Dvi
Dt

+ ρ
∂θ

∂xi
+ θ

∂ρ

∂xi
+ ε

[
∂σik

∂xk

]
= 0.

These equations are not a closed set of equations for ρ, vi, T , but they contain pressure
deviator σij and heat flux qi as additional quantities, and equations for these are
required to obtain a closed set of equations.

We shall speak of a theory of λth order accuracy when both σij and qi are known
within the order O

(
ελ
)
.

The equations of order O
(
ε0
)

result from (5.1) by setting σij = qi = 0, that is,
by ignoring the terms with the factor ε in the balance laws. This yields the Euler
equations for ideal gases,

Dρ

Dt
+ ρ

∂vk
∂xk

= 0,
3

2
ρ
Dθ

Dt
+ ρθ

∂vk
∂xk

= 0, ρ
Dvi
Dt

+ θ
∂ρ

∂xi
+ ρ

∂θ

∂xi
= 0.

For higher order accuracy, i.e., first order and higher, we shall need the moment
equations for the pressure deviator and heat flux.
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5.2. Collision moments for vectors and tensors. For these, we have to
consider the production terms for vectors and 2-tensors up to first order in ε. For
vectors, we obtain from (3.4) by setting n = 1 and making the first two terms of the
r-summation explicit

1

ε
Pa
i = −1

ε

∑
b

C(1)
ab

εub
i

τθb−a
− 1

ε

∑
b,c

Y1,0,1
a,bc

εub
iε

2wc

τρθb+c−a

− 1

ε

∑
b,c

Y1,1,1
a,bc

εub
ijεu

c
j

τρθb+c+1−a
− 1

ε

∑
r=2

∑
b,c

Y1,r,1
a,bc

ε2r−1ūb
ij1···jr ū

c
j1···jr

τρθb+c+r−a
.

We shall only be interested in terms up to order O (ε), where the above equation
reduces to

1

ε
Pa
i = −

∑
b

C(1)
ab

2κb

κ1

qi

τθ1−a − ε

⎡
⎣∑

b

C(1)
ab

wb
i

τθb−a
+
∑
b,c

Y1,1,1
a,bc

2µbκc

µ0κ1

σijqj

τρθ2−a

⎤
⎦ .

For 2-tensors, we obtain in the same manner

1

ε
Pa
ik = −

∑
b

C(2)
ab

µb

µ0

σik

τθ−a

− ε

⎡
⎣∑

b

C(2)
ab

wb
ik

τθb−a
+
∑
b,c

Y2,0,1
a,bc

4κbκc

κ1κ1

q〈iqk〉

τρθ2−a +
∑
b,c

Y2,1,1
a,bc

µbµc

µ0µ0

σj〈iσk〉j

τρθ1−a

⎤
⎦ .

5.3. Equations for the pressure deviator and heat flux. We consider (2.14)
with a = 0, where we introduce the moments (4.7) and obtain, after assigning the
proper order of magnitude to the various terms,

ε

⎡
⎣Dσij

Dt
+

4

5

∂q〈i
∂xj〉

+ 2σk〈i
∂vj〉
∂xk

+ σij
∂vk
∂xk

+
∑
b

C(2)
0b

wb
ik

τθb
+
∑
b,c

Y2,0,1
0,bc

4κbκc

κ1κ1

q〈iqk〉

τρθ2

(5.2)

+
∑
b,c

Y2,1,1
0,bc

µbµc

µ0µ0

σj〈iσk〉j
τρθ

⎤
⎦ + ε2

[
∂u0

ijk

∂xk
+ · · ·

]
= −ρθ

[
σij

µ
+ 2

∂v〈i
∂xj〉

]
.

Here we have used that

∑
b=0

C(2)
0b µb =

∑
a,b=0

C(2)
0b

[
C(2)
ba

]−1 2

15
(2a + 5)!! =

∑
a=0

δ0a
2

15
(2a + 5)!! = 2

and

1

τµ0

=
ρθ

2µ
,

where µ is the viscosity. The last two equations follow directly from (4.3) and (4.6).
The corresponding equation for the heat flux results from setting a = 1 in (2.12),

where we introduce the second order moments (4.7) and assign the proper order of
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magnitude to obtain (remember that w1 = 0)

ε

⎡
⎣Dqi
Dt

+

[
1

2

µ1

µ0

− 1

]
σik

∂θ

∂xk
− σikθ

∂ ln ρ

∂xk
+

[
1

2

µ1

µ0

− 5

2

]
θ
∂σik

∂xk

(5.3)

+
7

5
qi
∂vk
∂xk

+
7

5
qk

∂vi
∂xk

+
2

5
qk

∂vk
∂xi

+
1

2

∑
b

C(1)
1b

wb
i

τθb−1
+
∑
b,c

Y1,1,1
1,bc

µbκc

µ0κ1

σijqj
τρθ

⎤
⎦

+ ε2

[
1

2

∂w1
ij

∂xk
+

1

6

∂w2

∂xi
+ u0

ikl

∂vk
∂xl

− σik

ρ

∂σkl

∂xl
+ · · ·

]
= −5

2
ρθ

[
qi
κ

+
∂θ

∂xi

]
.

Here we have used that∑
b=1

C(1)
1b κb =

∑
a,b=1

C(1)
1b

[
C(1)
ba

]−1 a (2a + 3)!!

3
=

∑
a=1

δ1a
a (2a + 3)!!

3
=

5!!

3
= 5

and

1

τκ1
=

1

2

1

κ
ρθ,

where κ is the heat conductivity. The last two equations follow directly from (4.3)
and (4.6).

We close this section by pointing out that µ and κ are O (ε), as are σij and qi, so
that their respective ratios

σij

µ , qi
κ are O

(
ε0
)
. Also τ is O (ε) and wb

i , w
b
ij are O

(
ε2
)

so that their respective ratio is O (ε).

5.4. First order accuracy: NSF equations. We recall that our goal is to
provide the equations for pressure deviator σij and heat flux qi within an accuracy of
a given order. If we are satisfied with first order accuracy, we need to consider only the
leading terms in (5.2), (5.3)—those of O

(
ε0
)
—which yields the laws of Navier–Stokes

and Fourier,

σij = −2µ
∂v〈i
∂xj〉

, qi = −κ
∂θ

∂xi
,

where viscosity µ and heat conductivity κ are given by (4.3), (4.6).
The equations of first order accuracy obtained here coincide with the first or-

der Chapman–Enskog expansion; see [17], where viscosity and heat conductivity are
computed in accordance with the above formulae.

It is worthwhile to have a look at the corresponding phase density. At this order,
the only relevant moments are the vectors and 2-tensors, so that the phase density
(3.2), (3.3) reduces to

f|G = fM

⎡
⎣1 +

A1∑
a,b=0

[
B(1)
ab

]−1 ub
i

ρθa+b+1
C2aCi +

A2∑
a,b=0

[
B(2)
ab

]−1 ub
ij

2ρθa+b+2
C2aC〈iCj〉

⎤
⎦ .

But to first order we have from (4.2), (4.6)

ub
i|1 = −2κ

κb

κ1
θb

∂ ln θ

∂xi
, ub

ij|1 = −2µ
µb

µ0

θb
∂v〈i
∂xj〉
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so that we can write the distribution function for the NSF case as

f|NSF = fM

⎧⎨
⎩1 − 2κ

ρθ1/2

⎡
⎣ A1∑
a,b=0

[
B(1)
ab

]−1 κb

κ1

C2a

θa

⎤
⎦ Ci√

θ

∂ ln θ

∂xi

− µ

ρθ

⎡
⎣ A2∑
a,b=0

[
B(2)
ab

]−1 µb

µ0

C2a

θa

⎤
⎦ C〈iCj〉

θ

∂v〈i
∂xj〉

⎫⎬
⎭ .

The terms in square brackets are polynomials in ξ2 = C2/θ and can be rewritten
in terms of Sonine polynomials; see, e.g., [25]. Thus, it is evident that the present
method yields the same phase density as the classical first order Chapman–Enskog
method.

Heat conductivity κ and viscosity µ are given by

κ = τρθ

A1∑
a=1

[
C(1)
1a

]−1 a (2a + 3)!!

6
, µ = τρθ

A2∑
a=0

[
C(2)
0a

]−1 (2a + 5)!!

15

and thus depend on the numbers A1, A2 of moments that are considered. This gives
a good criterion for the determination of these numbers: increasing A1, A2 gives
successive approximations for κ, µ, and these will converge to the accurate value if
A1, A2 go to infinity. One will choose these numbers such that an increase by one
will lead only to a sufficiently small change in the values for κ, µ. This, of course,
corresponds to the growing accuracy when higher order Sonine polynomials are taken
into account in the Chapman–Enskog method [1].

Indeed, Reinecke and Kremer computed κ, µ essentially in this manner [17] and
showed that a fourth order correction is already very accurate. Moreover, they showed
that their values for κ, µ to order A = A1 = A2 agree with the corresponding values
of the Ath degree of approximation in Sonine polynomials, as given, e.g., in [1].

The difference between our approach and the one of Reinecke and Kremer lies
in the fact that Reinecke and Kremer chose the moments to base their approach
on intuitively (they consider wa, ua

i , and ua
ij), while we reduced the full moment

system (wa, ua
i1···in) by discussion of the order of magnitude of moments and the

order of accuracy of equations. In particular, this makes clear that at first order the
scalar moments wa need not be considered. Moreover, Reinecke and Kremer perform
a Maxwell iteration on the full moment equations, a method which essentially is
equivalent to the Chapman–Enskog expansion of the moments [19]. For a second
order theory, they perform the second order Maxwell iteration in [18], which yields
the Burnett equations, just as in the standard Chapman–Enskog expansion. These,
as is well known, are unstable [5] and therefore should not be used. Our approach
does not yield the Burnett equations at second order, as will become clear in the next
section.

5.5. Second order accuracy: 13 moment theory. In the next order, we
have to consider all terms in (5.2), (5.3) which have the factors ε1 and ε0 to obtain

Dσij

Dt
+

4

5

∂q〈i
∂xj〉

+ 2σk〈i
∂vj〉
∂xk

+ σij
∂vk
∂xk

(5.4)

+
∑
b

C(2)
0b

wb
ik

τθb
+
∑
b,c

Y2,0,1
0,bc

4κbκc

κ1κ1

q〈iqk〉

τρθ2 +
∑
b,c

Y2,1,1
0,bc

µbµc

µ0µ0

σj〈iσk〉j
τρθ

= −ρθ

[
σij

µ
+ 2

∂v〈i
∂xj〉

]
,
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Dqi
Dt

+

[
1

2

µ1

µ0

− 1

]
σik

∂θ

∂xk
− θσik

∂ ln ρ

∂xk
+

[
1

2

µ1

µ0

− 5

2

]
θ
∂σik

∂xk
(5.5)

+
7

5
qi
∂vk
∂xk

+
7

5
qk

∂vi
∂xk

+
2

5
qk

∂vk
∂xi

+
∑
b

C(1)
1b

wb
i

2τθb−1
+
∑
b,c

Y1,1,1
1,bc

µbκc

µ0κ1

σijqj
τρθ

= −5

2
ρθ

[
qi
κ

+
∂θ

∂xi

]
.

Before we proceed, we compare the above set with Grad’s famous 13 moment theory
[12], [13]. In Grad’s equations, those terms in (5.4), (5.5) that are underlined do not
appear. Moreover, our equations contain the general expression µ1

µ0
which depends on

the interaction potential (through C(2)
ab ), while in Grad’s equations this value is set to

µ1

µ0
= 7. Finally, Grad’s equations contain a term −σik

ρ
∂σkl

∂xl
in the equation for heat

flux, which does not appear here, since it is of order O
(
ε2
)
.

It was already shown in [22] that µ1

µ0
= 7 for the BGK model and Maxwell

molecules, where (4.5), (4.4) hold. In addition, the underlined terms do not ap-
pear for Maxwell molecules or for the BGK model. Thus, with the omission of the
second order term, −σik

ρ
∂σkl

∂xl
, Grad’s 13 moment equations are the proper equations of

second order accuracy for the description of rarefied gas flows for Maxwell molecules
and the BGK model only.

For other interaction models, however, the above equations must be used in order
to give second order agreement with the Boltzmann equation. Together with the
conservation laws (5.1), equations (5.4), (5.5) form a set of 13 equations for the
13 variables ρ, θ, vi, σij , qi. This system is not closed, since it contains the moments
wa

i , w
a
ij as well, and additional equations are required for these quantities. The wa

i , w
a
ij

are of order O
(
ε2
)
, and for the theory of second order accuracy that we are considering

here, it will be sufficient to know only the leading terms for these quantities. The
calculations and results for this can be found in Appendices B and C; see (B.1), (C.2).

The final equations for the pressure deviator and heat flux read

Dσij

Dt
+ ψ1

∂q〈i
∂xj〉

+ (2 + ψ2)σk〈i
∂vj〉
∂xk

+ ψ2σk〈i
∂vk
∂xj〉

+

(
1 − 2

3
ψ2

)
σij

∂vk
∂xk

(5.6)

− ψ3q〈i
∂ ln ρ

∂xj〉
− ψ4q〈i

∂ ln θ

∂xj〉
+ ψ5

q〈iqk〉
µθ

+ ψ6

σj〈iσk〉j
µ

= −ψ7ρθ

[
σij

µ
+ 2

∂v〈i
∂xj〉

]
,

Dqi
Dt

+ χ1σik
∂θ

∂xk
− χ2θσik

∂ ln ρ

∂xk
+ χ3θ

∂σik

∂xk
+

5

3

(
1 − 2

5
χ4

)
qi
∂vk
∂xk

(5.7)

+ (1 + χ4) qk
∂vi
∂xk

+ χ4qk
∂vk
∂xi

+ χ5

σijqj
µ

= −χ6ρθ

[
µ0

κ1

qi
µ

+
∂θ

∂xi

]
.

In the above equations, the coefficients ψi and χi are pure numbers that must be
computed according to

(5.8)

ψ1 =
4

5

⎡
⎣1 −

∑
d,a

C(2)
0d E−1

da

[
1 − κa+1µ0

κ1µa

]⎤⎦ ,

ψ2 =
∑
d,a

C(2)
0d E−1

da

4a

7
,
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ψ3 =
4

5

∑
d,a

C(2)
0d E−1

da (2a + 5)
κaµ0

κ1µa

,

ψ4 =
4

5

∑
d,a

C(2)
0d E−1

da

[
(2a + 5)

κaµ0

κ1µa

− a
κa+1µ0

κ1µa

]
,

ψ5 =
µ0

2

⎡
⎣∑

b,c

4κbκc

κ1κ1
Y2,0,1

0,bc +
∑
d,a

C(2)
0d E−1

da

∑
b,c

4κbκc

κ1κ1

[
µ0

µa

Y2,0,1
a,bc − Y2,0,1

0,bc

]⎤⎦ ,

ψ6 =
µ0

2

⎡
⎣∑

b,c

Y2,1,1
0,bc

µbµc

µ0µ0

+
∑
d,a

C(2)
0d E−1

da

∑
b,c

µbµc

µ0µ0

[
µ0

µa

Y2,1,1
a,bc − Y2,1,1

0,bc

]⎤⎦ ,

ψ7 = 1 −
∑
d,a

C(2)
0d E−1

da

[
1 − µ0

µa

(2a + 5)!!

15

]

and

(5.9)
χ1 =

1

2

µ1

µ0

− 1 −
∑
d,a

C(1)
1d D−1

da

[
1

2

µ1

µ0

− 1 − a
κ1

κa

[
1

2

µa

µ0

−
µa−1

µ0

]]
,

χ2 = 1 −
∑
d,a

C(1)
1d D−1

da

[
1 − a

κ1µa−1

κaµ0

]
,

χ3 =
1

2

µ1

µ0

− 5

2
−
∑
d,a

C(1)
1d D−1

da

[
1

2

µ1

µ0

− 5

2
− κ1

κa

[
1

2

µa

µ0

− (2a + 3)!!

6

]]
,

χ4 =
2

5
−
∑
d,a

C(1)
1d D−1

da

[
2

5
− 2a

5

]
,

χ5 =
µ0

2

⎡
⎣∑

b,c

Y1,1,1
1,bc

µbκc

µ0κ1
+
∑
d,a

C(1)
1d D−1

da

∑
b,c

µbκc

µ0κ1

[
κ1

κa
Y1,1,1
a,bc − Y1,1,1

1,bc

]⎤⎦ ,

χ6 =
5

2
−
∑
d,a

C(1)
1d D−1

da

[
5

2
− a (2a + 3)!!

6

κ1

κa

]
.

The coefficients κb, µb are given by

κb =
∑
a=1

[
C(1)
ba

]−1 a (2a + 3)!!

3
, µb =

∑
a=0

[
C(2)
ba

]−1 2

15
(2a + 5)!!,(5.10)

and we have introduced the matrices

Dab =

[
C(1)
1b − C(1)

ab

κ1

κa

]
, Eab =

[
C(2)
0b − µ0

µa

C(2)
ab

]
.(5.11)

Equations (5.6)–(5.11) give the complete set of equations for σij and qi. Thus, we
have reduced the problem to the computation of the matrices

C(2)
ad , Y2,0,1

a,bc , Y2,1,1
a,bc , C(1)

ad , Y1,1,1
a,bc .

These follow by using the reduced Grad function (3.2)

f|G = fM (1 + Φ) = fM

[
1 +

A1∑
a=0

λa
iC

2aCi +

A2∑
a=0

λa
klC

2aC〈kCl〉

]
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to compute the collision moments Pa
i ,Pa

ij as outlined in section 3. We consider that
to be a separate task that will be discussed in a future paper. The numbers A1, A2

must be chosen such that their further increase does not change the values of the
coefficients ψα, χα considerably.

For Maxwell molecules and the BGK model, the coefficients have the values

ψ1 =
4

5
, ψ2 = ψ3 = ψ4 = ψ5 = ψ6 = 0, ψ7 = 1,

χ1 =
5

2
, χ2 = 1, χ3 = 1, χ4 =

2

5
, χ5 = 0, χ6 =

5

2
.

Furthermore, κ1

µ0
= 15

4 for Maxwell molecules, and κ1

µ0
= 5

2 for the BGK model. This

choice of coefficients results in the original Grad’s 13 moment equations [12], [13].

6. Conclusions. From the treatment above, it follows that the conservation laws
(5.1) together with the balance laws (5.6), (5.7) form the proper transport equations
for rarefied monatomic gases with second order accuracy in the Knudsen number. The
coefficients in the balance equations (5.6), (5.7) depend on the microscopic interaction
potential between the gas atoms, and, as was shown already in [22], the well-known
13 moment equations of Grad are of second order accuracy only for Maxwell molecules
and the BGK model. Indeed, a similar behavior is observed in the Chapman–Enskog
method where Burnett coefficients depend on the interaction potential.

Both the Chapman–Enskog method and the method used here become simplest
when Maxwell molecules or the BGK model are considered. In [22] we were able
to use our method to derive field equations up to third order accuracy, which agree
with the regularization of Grad’s 13 moment equations proposed before by Struchtrup
and Torrilhon by means of a different argument [15], [11]. Going to third order for
arbitrary interaction models will be more cumbersome by far. In particular, the third
order theory will include full balance laws for the minimum number of vectors wa

i and
tensors wa

ij that are of second order, and thus the number of variables will be higher
than 13.

In the case of Maxwell molecules, it is well known that Grad’s 13 moment equa-
tions are stable with respect to spatial and temporal disturbances, while the Burnett
equations are unstable. This points to problems within the Chapman–Enskog method
which proposes the Burnett equations as those equations that have second order accu-
racy. Our new method, however, proposes the 13 moment equations and thus stable
equations.

Whether the 13 moment equations for arbitrary interaction potentials that were
derived above are unconditionally stable or not remains to be seen. This can only be
tested in the future, after the coefficients are computed. This task is planned for the
future, and corresponding results will be presented elsewhere.

Appendix A. Symmetric and trace-free tensors.

A.1. Symmetry. A tensor Si1i2···in of rank n is called symmetric if for each pair
of indices ij , ik

Si1i2···ij ···ik···in = Si1i2···ik···ij ···in .

A nonsymmetric tensor Ai1i2...in can be symmetrized by the rule

A(i1i2···in) =
1

n!

(
Ai1i2···in−1in + Ai1i2···inin−1

+ · · · all permutations of indices
)
.
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Here, the indices in round brackets denote the symmetric part of the tensor. For
example, for a 2-tensor, one finds the symmetric part as

A(ij) =
1

2
(Aij + Aji) .

A.2. Trace-free tensors. A tensor Si1i2···in of rank n is called trace-free (or
irreducible) if for each pair of indices ij , ik

Si1i2···ij ···ik···inδijik = 0.(A.1)

The trace-free part of a symmetric tensor Ai1i2···in can be obtained according to the
rule [23]

A〈i1i2...in〉 =

‖n
2 ‖∑

k=0

ankδ(i1i2···δi2k−1i2kAi2k+1...in)j1...jkj1...jk ,

where

ank = (−1)
k n! (2n− 2k − 1)!!

(n− 2k)! (2n− 1)!! (2k)!!
,

∥∥∥n
2

∥∥∥ =

⎧⎨
⎩

n
2 , n even,

n−1
2 , n odd,

n!! = n (n− 2) · · · (2 or 1) =

‖n−1
2 ‖∏

j=0

(n− 2j) .

We emphasize that in the above equations, Ai1i2···in is symmetric, which is not made
explicit by means of round brackets in order to avoid overly complicated notation.
For actual computations, it is more convenient to use

A〈i1i2...in〉 = Ai1i2···in + αn1 (δi1i2Ai3···inkk + permutations)

+ αn2
(δi1i2δi3i4Ai5···inkkll + permutations)

+ · · · ,

where only those permutations must be considered that are really different, i.e., that
cannot be related by means of symmetry properties. Then the coefficients are given
as

αnk
=

(−1)
k

k−1∏
j=0

(2n− 2j − 1)

.

Simple examples are

A〈i〉 = Ai,

A〈ij〉 = A(ij) −
1

3
Akkδij ,

A〈ijk〉 = A(ijk) −
1

5

(
A(ill)δjk + A(jll)δik + A(kll)δij

)
.
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As an instructive example, let us consider the gradient of a symmetric 2-tensor,
∂Aij

∂xk
.

Its symmetric part is given by

∂A(ij

∂xk)
=

1

3

(
∂Aij

∂xk
+

∂Aik

∂xj
+

∂Ajk

∂xi

)
,

and its trace-free and symmetric part is

∂A〈ij
∂xk〉

=
1

3

(
∂Aij

∂xk
+

∂Aik

∂xj
+

∂Ajk

∂xi

)

− 1

15

[(
∂Air

∂xr
+

∂Air

∂xr
+

∂Arr

∂xi

)
δjk +

(
∂Ajr

∂xr
+

∂Ajr

∂xr
+

∂Arr

∂xj

)
δik

+

(
∂Akr

∂xr
+

∂Akr

∂xr
+

∂Arr

∂xk

)
δij

]
.

Obviously, the bracket notation allows for a highly condensed notation.
Note that the moments ua

i1···in that are used in this paper are trace-free by def-
inition, ua

i1···in = ua
〈i1···in〉, and this is not made explicit with brackets. This avoids

confusing notation involving several pairs of brackets. As an example, we consider
the gradient of uij made symmetric and trace-free only in two of its three indices:

∂ui〈j
∂xk〉

=
1

2

∂u〈ij〉
∂xk

+
1

2

∂u〈ik〉
∂xj

− 1

3

∂u〈ir〉
∂xr

δjk.

For this quantity we would have to write
∂u〈i〈j〉
∂xk〉

if we were to make the trace-free

properties of the moments explicit.
The trace-free part of the unit matrix δij vanishes, δ〈ij〉 = 0, and this implies

A〈i1i2...inδjk〉 = 0.

A.3. Spherical harmonics. Trace-free linear combinations of unit vectors
n〈i1 . . . nin〉 are related to spherical harmonics [25]. Here, the vectors ni are unit
vectors in spherical coordinates,

ni = {sinϑ sinϕ, sinϑ cosϕ, cosϑ}i.

Spherical harmonics form an orthogonal set of functions, in the sense that integration
over the solid angle dΩ = sinϑdϑdϕ yields

∫
n〈i1 . . . nin〉n〈j1 . . . njm〉dΩ =

⎧⎪⎪⎨
⎪⎪⎩

0, n 	= m,

4π
n∏

j=0
(2j+1)

δ〈i1···in〉〈j1···jn〉, n = m,

where δk1···kl
is a generalized unit tensor defined as

δk1···kl
= δk1k2 · · · δkl−1kl

+ · · · +
(

l!

( l
2 )!2

l
2

elements
)
.

An important relation following from this definition is that the product of the above
integral with a tensor Ai1i2...in yields

Ai1i2...in

∫
n〈i1 . . . nin〉n〈j1 . . . njm〉dΩ =

⎧⎪⎪⎨
⎪⎪⎩

0, n 	= m,

4πn!
n∏

j=0
(2j+1)

A〈j1···jn〉, n = m.
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Another important relation is

n〈i1 . . . nin〉nk = n〈i1 . . . ninnk〉 +
n

2n + 1
n〈〈i1 . . . nin−1〉δin〉k.(A.2)

By introducing the direction vector of the microscopic velocity as ni = Ci/C, the
moments (2.5) can be written as

ua
i1···in = m

∫
C2a+n+2n〈i1ni2 · · ·nin〉fdCdΩ.

This indicates that our definition of moments refers to an expansion of the phase
density in spherical harmonics n〈i1ni2 · · ·nin〉 and polynomials in the absolute value
of the microscopic velocity C.

Appendix B. Moment equations for wa
i . We consider the moment equation

for ua
i , (2.12). After introducing the wa

i , w
a
ij by means of (4.7), replacing the time

derivative of θ by means of the energy balance (5.1)2, and cancelling terms of O
(
ε2
)

and higher, we obtain after division by 2κa

κ1
θa−1

Dqi
Dt

+
a

2

κ1

κa

[
µa − 2µa−1

µ0

]
σik

∂θ

∂xk
− a

κ1µa−1

κaµ0

θσik
∂ ln ρ

∂xk

+
κ1

2κa

[
µa

µ0

− (2a + 3)!!

3

]
θ
∂σik

∂xk
+

[
25 − 4a

15
qi
∂vk
∂xk

+
2a + 5

5
qk

∂vi
∂xk

+
2a

5
qk

∂vk
∂xi

]

+
1

2

1

τ

∑
b

C(1)
ab

κ1

κa

wb
i

θb−1
+

1

τ

∑
b,c

Y1,1,1
a,bc

µbκc

µ0κa

σijqj
ρθ

= −a (2a + 3)!!

6

κ1

κa
ρθ

[
∂θ

∂xi
+

qi
κ

]
.

From this equation, we subtract the balance of the heat flux (5.5) to obtain

1

2

∑
b

[
C(1)
1b − C(1)

ab

κ1

κa

]
wb

i

τθb−1
=

[
1 +

a

2

κ1

κa

µa − 2µa−1

µ0

− 1

2

µ1

µ0

]
σik

∂θ

∂xk

+

[
1 − a

κ1µa−1

κaµ0

]
θσik

∂ ln ρ

∂xk
+

[
5

2
+

κ1

2κa

[
µa

µ0

− (2a + 3)!!

3

]
− 1

2

µ1

µ0

]
θ
∂σik

∂xk

+
4 − 4a

15
qi
∂vk
∂xk

+
2a− 2

5
qk

∂vi
∂xk

+
2a− 2

5
qk

∂vk
∂xi

+
∑
b,c

[
Y1,1,1
a,bc

µbκc

µ0κa
− Y1,1,1

1,bc

µbκc

µ0κ1

]
σijqj
τρθ

− ρθ

[
qi
κ

+
∂θ

∂xi

] [
5

2
− a (2a + 3)!!

6

κ1

κa

]
.

The above equation is meaningful for a ≥ 2 only. The wb
i follow from inversion of the

matrix

Dab =

[
C(1)
1b − C(1)

ab

κ1

κa

]

as

wd
i

2τθd−1
=

∑
a

D−1
da

[
1 − 1

2

µ1

µ0

+
a

2

κ1

κa

µa − 2µa−1

µ0

]
σik

∂θ

∂xk
(B.1)

+
∑
a

D−1
da

[
1 − a

κ1µa−1

κaµ0

]
θσik

∂ ln ρ

∂xk
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+
∑
a

D−1
da

[
5

2
− 1

2

µ1

µ0

+
κ1

2κa

[
µa

µ0

− (2a + 3)!!

3

]]
θ
∂σik

∂xk

+
∑
a

D−1
da

[
4 − 4a

15
qi
∂vk
∂xk

+
2a− 2

5
qk

∂vi
∂xk

+
2a− 2

5
qk

∂vk
∂xi

]

+
∑
a

D−1
da

∑
b,c

[
Y1,1,1
a,bc

µbκc

µ0κa
− Y1,1,1

1,bc

µbκc

µ0κ1

]
σijqj
τρθ

−
∑
a

D−1
da

[
5

2
− a (2a + 3)!!

6

κ1

κa

]
ρθ

[
qi
κ

+
∂θ

∂xi

]
.

Appendix C. Moment equations for wa
ij. We consider the equation for the

2-tensors ua
ij , (2.14). After introducing the wa

i , w
a
ij by means of (4.7), replacing the

time derivative of θ by means of the energy balance (5.1)2, and cancelling terms of
O
(
ε2
)

and higher, we obtain after division by µa

µ0
θa

Dσij

Dt
+

4

5

κa+1µ0

κ1µa

∂q〈i
∂xj〉

+
6a

7
σ〈ij

∂vk〉
∂xk

+
4a

5
σk〈i

∂vk
∂xj〉

− 2

3
aσij

∂vk
∂xk

+ 2σk〈i
∂vj〉
∂xk

+ σij
∂vk
∂xk

− 4

5
(2a + 5)

κaµ0

κ1µa

q〈i
∂ ln ρ

∂xj〉
− 4

5

[
(2a + 5)

κaµ0

κ1µa

− a
κa+1µ0

κ1µa

]
q〈i

∂ ln θ

∂xj〉

+
µ0

µaθ
a

1

τ

∑
b

C(2)
ab θ

a−bwb
ik +

∑
b,c

Y2,0,1
a,bc

4κbκcµ0

κ1κ1µa

q〈iqk〉

τρθ2 +
∑
b,c

Y2,1,1
a,bc

µbµc

µ0µa

σj〈iσk〉j
τρθ

= −µ0

µa

(2a + 5)!!

15
ρθ

[
σik

µ
+ 2

∂v〈i
∂xj〉

]
.

We also have

σ〈ij
∂vk〉
∂xk

=
1

3
σij

∂vk
∂xk

+
2

3
σk〈i

∂vj〉
∂xk

− 4

15
σr〈i

∂vr
∂xj〉

,

6a

7
σ〈ij

∂vk〉
∂xk

+
4a

5
σk〈i

∂vk
∂xj〉

− 2

3
aσij

∂vk
∂xk

=
4a

7

(
σk〈i

∂vj〉
∂xk

+ σk〈i
∂vk
∂xj〉

− 2

3
σij

∂vk
∂xk

)
.

From this, we subtract the balance for the pressure deviator (5.4) to obtain, after
some rearrangements,

∑
b

[
C(2)
0b − µ0

µa

C(2)
ab

]
wb

ik

τθb
=

4

5

[
κa+1µ0

κ1µa

− 1

]
∂q〈i
∂xj〉

+
4a

7

(
σk〈i

∂vj〉
∂xk

+ σk〈i
∂vk
∂xj〉

− 2

3
σij

∂vk
∂xk

)

− 4

5
(2a + 5)

κaµ0

κ1µa

q〈i
∂ ln ρ

∂xj〉
− 4

5

[
(2a + 5)

κaµ0

κ1µa

− a
κa+1µ0

κ1µa

]
q〈i

∂ ln θ

∂xj〉

+
∑
b,c

[
Y2,0,1
a,bc

4κbκcµ0

κ1κ1µa

− Y2,0,1
0,bc

4κbκc

κ1κ1

]
q〈iqk〉

τρθ2

+
∑
b,c

[
Y2,1,1
a,bc

µbµc

µ0µa

− Y2,1,1
0,bc

µbµc

µ0µ0

]
σj〈iσk〉j
τρθ

−
[
1 − µ0

µa

(2a + 5)!!

15

]
ρθ

[
σij

µ
+ 2

∂v〈i
∂xj〉

]
.
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The wb
ij follow from inversion of the matrix

Eab =

[
C(2)
0b − µ0

µa

C(2)
ab

]
as

(C.1)

wd
ik

τθd
=

∑
a

E−1
da

4

5

[
κa+1µ0

κ1µa

− 1

]
∂q〈i
∂xj〉

+
∑
a

E−1
da

4a

7

(
σk〈i

∂vj〉
∂xk

+ σk〈i
∂vk
∂xj〉

− 2

3
σij

∂vk
∂xk

)

−
∑
a

E−1
da

4

5
(2a + 5)

κaµ0

κ1µa

q〈i
∂ ln ρ

∂xj〉
−
∑
a

E−1
da

4

5

[
(2a + 5)

κaµ0

κ1µa

− a
κa+1µ0

κ1µa

]
q〈i

∂ ln θ

∂xj〉

+
∑
a

E−1
da

∑
b,c

[
Y2,0,1
a,bc

4κbκcµ0

κ1κ1µa

− Y2,0,1
0,bc

4κbκc

κ1κ1

]
q〈iqk〉

τρθ2

+
∑
a

E−1
da

∑
b,c

[
Y2,1,1
a,bc

µbµc

µ0µa

− Y2,1,1
0,bc

µbµc

µ0µ0

]
σj〈iσk〉j
τρθ

−
∑
a

E−1
da

[
1 − µ0

µa

(2a + 5)!!

15

]
ρθ

[
σij

µ
+ 2

∂v〈i
∂xj〉

]
.
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