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1. Introduction

Spatiotemporal patterns in non-equilibrium and nonlinear systems have been widely studied from the
viewpoint of statistical physics and nonlinear dynamics [1–3]. For their studies, cellular automaton
(CA) models [4–6] and reaction–diffusion equations [7] have been developed. In addition, char-
acterizing the relationship between CA models and nonlinear equations for describing the same
phenomena has been an important problem [8]. For example, a CA model generating a Sierpinski
gasket pattern can be obtained as a solution of a nonlinear reaction–diffusion equation for pulse prop-
agation [9]. In general, ultradiscretization [10] has been used as a systematic mathematical method
for deriving CA models from reaction–diffusion equations [11]. In particular, this method has been
successfully applied to integrable systems [12].

Recently, one of the authors proposed the following dynamical model for spatiotemporal patterns
of bistable units {φ j } with global and asymmetric local interactions [13,14]:

φ̇ j = −(φ j − α)(φ j − β)(φ j − γ ) + D{θ(φ j+1 − φ j ) + θ(φ j−1 − φ j )} − (φ̄ − V ) + ξ j , (1)

where j = 1 ∼ N . The parameters α, β, and γ satisfy 0 < α < β < γ . V and D are positive
constants. θ(x) is defined as θ(x) = x (x ≥ 0), and 0 (x < 0). φ̄ represents the average of {φ j }:
φ̄ = 1

N
�N

j=1φ j . ξ j is a noise term. The first term of the right-hand side of Eq. (1) brings about

the bistability of φ j , where φ j = α and γ are stable points. The second and third terms show the
asymmetric local interaction and the global interaction, respectively. There exist the following two
characteristic dynamical properties in Eq. (1). (i) Due to the asymmetric local interaction, the state
φ j ≈ α, which is one of the bistable states, changes to the other bistable state φ j ≈ γ . Note that this
property is independent of the existence of the global interaction and noise. It is clear that the number
of φ j taking γ increases and finally all φ j become γ if only this asymmetric local property is con-
sidered. (ii) However, the system changes from bistable to monostable with φ j ≈ α due to the global
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interaction when the number of φ j having γ exceeds a threshold, which is given as a function of V .
Furthermore, for the noise term, the change of φ j from γ to α occurs stochastically. Accordingly,
this global property regulates φ̄ to be a constant value.

The above dynamical properties have also been expressed by a CA model, which was constructed
heuristically [15]. (In this paper, the previous CA model is referred as the “Y12” model hereafter.)
The Y12 model gives the time evolution of a cell state and describes the competition between the
elementary CA rule 254 and a probabilistic rule. The CA rule 254 and the probabilistic rule are
considered to correspond to the asymmetric local interaction and the global interaction with noise
in Eq. (1), respectively. Nevertheless, the mathematical derivation of the Y12 model from Eq. (1) is
not yet clear.

In this paper, we show the derivation of a CA model from Eq. (1) by ultradiscretization and prob-
abilistic treatments. In the next section, we review the ultradiscretization method briefly. In Sect. 3,
we derive the elementary CA rule 254 from the asymmetric local interaction by means of ultradis-
cretization. In Sect. 4, a probabilistic function is introduced to consider the global interaction and
noise terms. The discussion and conclusion are given in Sect. 5.

2. Brief review of ultradiscretization with tropical discretization

Ultradiscretization is a limiting procedure transforming a difference equation into another type of dif-
ference equation subject to max-plus algebra [16]. Now we consider a difference equation of positive
variables un

j , where n is discretized time and j is a discretized position. First, in ultradiscretization,
un

j is replaced by using U n
j as un

j = exp(U n
j /ε), where ε is a positive parameter. After such a variable

transformation from un
j to U n

j , the formula called the ultradiscrete limit,

lim
ε→+0

ε log(eA/ε + eB/ε + · · · ) = max(A, B, . . .),

is adopted. By this procedure, we can obtain a new time-dependent difference equation, namely, an
ultradiscrete equation of U n

j . If U n
j takes a value included in a set {0, 1, 2, . . . , N }, U n+1

j can take
one of the values in the same set [17]. This property implies that an ultradiscrete equation associates
with CA. However, this ultradiscretization method is not applicable to all difference equations, since
there is a “negativity” problem [10]. In general, ultradiscretization for a difference equation assumes
that the equation does not have a minus sign because the ultradiscrete limit of ε log(eA/ε − eB/ε)

is not definable when A ≤ B. To tackle this problem, Murata has developed the following method,
which is called tropical discretization [18]. This method is applicable to ultradiscretization for a
reaction–diffusion equation with a minus sign, such as

∂u

∂t
= D

∂2u

∂x2 + f (u) − g(u), (2)

where u = u(x, t) > 0, D is a diffusion coefficient, and f (u), g(u) ≥ 0. In order to get an ultra-
discrete equation for Eq. (2), it is necessary to derive a difference equation suitable for tropical
discretization. For instance, the difference equation for Eq. (2) can be written as

un+1
j − un

j

�t
= D

un
j+1 − 2un

j + un
j−1

(�x)2 + f (un
j ) − g(un

j ), (3)

where �t = t/n, �x = x/j . In tropical discretization, we set vn
j = (un

j+1 + un
j−1)/2 and replace

f (un
j ) − g(un

j ) with vn
j ( f (vn

j ) − g(vn
j ))/(v

n
j + �tg(vn

j )). Then, we obtain

un+1
j = vn

j

vn
j + �t f (vn

j )

vn
j + �tg(vn

j )
, (4)
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where we set D�t/(�x)2 = 1/2 for simplicity. Equation (4) is the difference equation of Eq. (2)
with tropical discretization. By adopting the variable transformations �t = (1/2)n+1eT/ε, un

j =
(1/2)neU n

j /ε, f (un
j ) = eF(U n

j )/ε, and g(un
j ) = eG(U n

j )/ε into Eq. (4) and by the ultradiscrete limit,
the ultradiscrete equation is obtained as

U n+1
j = V n

j + max{V n
j , T + F(V n

j )} − max{V n
j , T + G(V n

j )}. (5)

Here V n
j = max{U n

j+1, U n
j−1}. Although we use the coefficients (1/2)n and (1/2)n+1 for variable

transformations of ultradiscretization, these coefficients depend on the properties of functions f and
g in general. For instance, if f and g are positive homogeneous functions with respect to k, we should
choose the coefficient for �t as 2n(k−1)−1.

3. Ultradiscretization for the asymmetric local interaction

3.1. Derivation of ultradiscrete equations

Now we apply the ultradiscretization with tropical discretization to property (i) shown in Sect. 1.
Focusing on the first and second terms on the right-hand side of Eq. (1), we consider the difference
equation

φn+1
j − φn

j

�t
= f (φn

j ) − g(φn
j ) + D{θ(φn

j+1 − φn
j ) + θ(φn

j−1 − φn
j )}. (6)

Here f and g are defined as

f (φ) = (α + β + γ )φ2 + αβγ, g(φ) = φ3 + (αγ + αβ + βγ )φ. (7)

For the asymmetric local interaction in Eq. (6), we first consider the case where φn
j+1 > φn

j and
φn

j−1 > φn
j . In this case, Eq. (6) becomes

φn+1
j − φn

j

�t
= f (φn

j ) − g(φn
j ) + D(φn

j+1 − 2φn
j + φn

j−1). (8)

The tropical discretization of Eq. (8) is done in the same way as that of Eq. (3), and we obtain

φn+1
j = wn

j

wn
j + �t f (wn

j )

wn
j + �tg(wn

j )
, (9)

where wn
j = μ(φn

j+1 + φn
j−1) + (1 − 2μ)φn

j and μ = D�t . Similarly, we obtain the following
difference equations in other cases:

φn+1
j = φn

j+1

φn
j+1 + �t f (φn

j )

φn
j+1 + �tg(φn

j )
, (φ j+1 > φ j , φ j−1 ≤ φ j ) (10)

φn+1
j = φn

j−1

φn
j−1 + �t f (φn

j )

φn
j−1 + �tg(φn

j )
, (φ j+1 ≤ φ j , φ j−1 > φ j ) (11)

φn+1
j = φn

j

φn
j + �t f (φn

j )

φn
j + �tg(φn

j )
, (φ j+1 ≤ φ j , φ j−1 ≤ φ j ). (12)

The difference equations (9–12) with Eq. (7) have no subtraction. Then the ultradiscrete equations
in each case can be derived. First, the variables in these difference equations are transformed as
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follows: ⎧
⎪⎪⎨

⎪⎪⎩

�t = eT/ε/(μn+1)2, φn
j = μneU n

j /ε
,

α = μn+1eA/ε, β = μn+1eB/ε, γ = μn+1e�/ε,

(1 − 2μ)/μ = eM/ε, (1 − μ)/μ = eM ′/ε.

(13)

After these transformations, we adopt the ultradiscrete limit (ε → 0) in the four cases.
(i) When φn

j+1 > φn
j and φn

j−1 > φn
j , namely, U n

j+1 > U n
j , and U n

j−1 > U n
j , we obtain

φn+1
j = wn

j

wn
j + �t{(α + β + γ )(wn

j )
2 + αβγ }

wn
j + �t{(wn

j )
3 + (αγ + αβ + βγ )(wn

j )}
(14)

from Eq. (9) with Eq. (7). Equation (14) is rewritten by Eq. (13) as

U n+1
j = ε log

[(
eU n

j+1/ε + eU n
j−1/ε + e(M+U n

j )/ε
)

+ eT/ε

{(
eA/ε + eB/ε + e�/ε

) (
eU n

j+1/ε + eU n
j−1/ε + e(M+U n

j )/ε
)2 + e(A+B+�)/ε

}]

− ε log

{

e0/ε + eT/ε
(

eU n
j+1/ε + eU n

j−1/ε + e(M+U n
j )/ε

)2

+ e(A+B)/ε + e(A+�)/ε + e(�+B)/ε

}

.

Using the ultradiscrete limit, we obtain

U n+1
j = max{W n

j , T + max(A + 2W n
j , B + 2W n

j , � + 2W n
j , A + B + �)}

− max{0, T + max(2W n
j , A + B, A + �, B + �)}, (15)

where W n
j = max(U n

j+1, M + U n
j , U n

j−1). This equation is equivalent to Eq. (5) if we set F(U ) =
max(A +2U, B +2U, � +2U, A + B +�), G(U )= max(3U, A + B +U, A +� +U, B +� +U ).
Additionally, when we replace A with −∞ and � with 0, Eq. (15) is the same as the ultradis-
crete Allen–Cahn equation reported by Murata [18]. Moreover, by the relation A < B < �, Eq. (15)
becomes simpler in form:

U n+1
j = max{W n

j , T + max(� + 2W n
j , A + B + �)} − max{0, T + max(2W n

j , B + �)}. (16)

The ultradiscrete equations in the other cases are obtained from Eqs. (10–12) in a similar way.
(ii) When U n

j+1 > U n
j , and U n

j−1 ≤ U n
j , from Eq. (10),

U n+1
j = max{Ln

j , T + max(� + 2Ln
j , A + B + �)} − max{0, T + max(2Ln

j , B + �)}. (17)

(iii) When U n
j+1 ≤ U n

j , and U n
j−1 > U n

j , from Eq. (11),

U n+1
j = max{Rn

j , T + max(� + 2Rn
j , A + B + �)} − max{0, T + max(2Rn

j , B + �)}. (18)

(iv) When U n
j+1 ≤ U n

j , and U n
j−1 ≤ U n

j , from Eq. (12),

U n+1
j = max{U n

j , T + max(� + 2U n
j , A + B + �)} − max{0, T + max(2U n

j , B + �)}. (19)

Here Ln
j = max(U n

j+1, M ′ + U n
j ) and Rn

j = max(M ′ + U n
j , U n

j−1). The four equations (16–19) are
the ultradiscrete equations of the bistable and asymmetric local interaction parts of Eq. (1).

4/7

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2014/8/083A01/1494533 by guest on 20 August 2022



PTEP 2014, 083A01 S. Ohmori and Y. Yamazaki

3.2. The bistability and correspondence to the CA rule 254

We consider the bistability of the ultradiscrete equations (16–19). Now we assume φ0
j ∈ [α, γ ].

This assumption is followed by A ≤ U 0
j ≤ �. Additionally, we set the parameter T > max

{0, −(A + B + �)}. For this setting, it is found that the solutions of these ultradiscrete equations
take only two states after a number of time steps from the initial condition; the state eventually
reaches either A or � from any φ0

j ∈ [α, γ ]. The proof is as follows. In the case of Eq. (19), if

U 0
j has an arbitrary value with A < U 0

j < A+B
2 , U 1

j becomes A, owing to T > −(A + B + �). If
A+B

2 < U 0
j < B, then U 1

j becomes 2U 0
j − B(< U 0

j ). Also, there is a time n at which U n−1
j satisfies

A < U n−1
j < A+B

2 . Then, the next state U n
j takes A. Furthermore, if a state U n

j is smaller than A,
it is proved that U n

j converges with A. In the same way, it is also proved that, if U 0
j has an arbitrary

value satisfying B < U 0
j < �, the value of U n

j becomes � at a finite time n. Hence, the bistability
of Eq. (19) is proved.

For Eqs. (16–18), the above proof of bistability will be changed by the existence of W n
j , Ln

j ,
and Rn

j . However, if the parameters M, M ′ satisfy the inequalities M, M ′ < A − �, it is found
that the effect of the local interaction can be ignored and that the bistability holds in the time
evolution of U n

j , even for Eqs. (16–18). In fact, when M, M ′ < A − � are satisfied, we obtain
W n

j = max(U n
j+1, U n

j−1), Ln
j = U n

j+1, Rn
j = U n

j−1. Then, from the above proof, the bistability for
Eqs. (16–18) is confirmed.

Regarding the inequalities for M and M ′, we focus on a solution of Eq. (2) with Eq. (7). Due to the
effect of the local interaction, which is represented by D, a solution of Eq. (2) forms a monotonically
increasing function connected with u = α and u = γ . When D is small, the rise of the solution from
α to γ is so steep that u is supposed to take the two states (α and γ ) approximately. Since M and M ′

involve the diffusion coefficient D in Eq. (1) through μ, A − � gives the threshold for M and M ′,
which determines whether the state can be regarded as bistable or not.

We consider the correspondence of the ultradiscrete equations to an elementary CA rule. In general,
A and � are not necessarily integer values, and U n

j takes continuous values. However, it is clear that
U n

j is integer for all j and n if U 0
j , A, and � take integer values. From Eqs. (16–19), if is found

that U n+1
j is determined by a set [U n

j+1, U n
j , U n

j−1]. For example, if [U n
j+1, U n

j , U n
j−1] is given as

[�, A, A] at time n, U n+1
j becomes � by Eq. (17). In a similar way, U n+1

j is given from Eqs. (16–19)
as follows:

U n
j+1 U n

j U n
j−1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0

U n+1
j 1 1 1 1 1 1 1 0

Here, we use “1” and “0” instead of � and A, respectively. This is exactly the elementary CA rule
254. By formally denoting the CA rule 254 as f254, we show the time evolution of U n

j as

U n+1
j = f254(U

n
j+1, U n

j , U n
j−1). (20)

4. Interpretation of the global interaction as a probabilistic rule

In Sect. 3, we applied ultradiscretization to Eq. (6) and derived the CA rule 254. In this derivation,
we did not consider the global interaction and noise terms in Eq. (1). This treatment is considered
to be valid if φ̄ does not exceed the threshold, as described in Sect. 1. But owing to the effect of the
asymmetric local interaction, φ j tends to change from α to γ , and φ̄ can exceed the threshold, and
the effect of global interaction and noise terms cannot be ignored for the dynamics of φ j . The global
interaction brings about a change from a bistable state to a monostable state with one stable point
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φ j = α. In addition, φ j changes from γ to α stochastically because of the existence of noise. These
effects can be represented by the following probabilistic function θn

j (x) [19]. If 0 ≤ x ≤ 1, then

θn
j (x) =

{
U n

j , with the probability x

0 , with the probability 1 − x

and θn
j (x) ≡ 0 (x < 0, 1 < x). By using this function θn

j , the probabilistic rule for U n
j is given

as follows. The global interaction −(φ̄ − V ) in Eq. (1) is replaced by −(Ū n − V ′), where Ū n is
1
N �N

j=1U n
j , V ′ is some constant (<1). Furthermore, in order to take the noise term ξ j into account,

we modify −(Ū n − V ′) as −θn
j (Ū

n − V ′). Here, we can regard the parameter V ′ as a threshold of
Ū n . Then the time evolution of U n

j is given by a combination of the CA rule 254 (derived from the
asymmetric local interaction) and the probabilistic rule (reflecting the global interaction and noise):

U n+1
j = f254(U

n
j+1, U n

j , U n
j−1) − θn

j (Ū
n − V ′). (21)

5. Discussion and conclusion

We comment on the difference of the present CA model (Eq. (21)) from the Y12 model. In the Y12
model, the following probabilistic rules are adopted for U n

j ∈ (0, 1). If Ū n ≥ V ′, each cell having

“1” is converted to “0” with the probability Ū n−V ′
Ū n at each time step. On the other hand, if Ū n < V ′,

each cell having “0” is converted to “1” with the probability V ′−Ū n

1−Ū n . In the present model, each state

U n
j is converted from “1” to “0” with the probability Ū − V ′. However, U n

j is not converted from “0”
to “1” stochastically. In fact, considering the dynamics around the threshold, there is no effect if U n

j
converts its state from “0” to “1” stochastically in Eq. (1). Hence, Eq. (21) expresses the dynamical
behavior of Eq. (1) more adequately than the Y12 model.

In conclusion, we show the derivation of the stochastic CA model (Eq. (21)) from the nonlinear
difference equation (Eq. (1)) by means of ultradiscretization and probabilistic treatment. The ultradis-
crete equations (16–19) possess bistability, and bring about the CA rule 254. The global interaction
and the noise in Eq. (1) can be interpreted as a probabilistic rule for changing from the “1” state to
the “0” state, and regulate the average of the total cell states.
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